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Introduction
problems after the Higgs discovery

- mass generation 

- EW symmetry breaking

?
Does the 125 GeV boson alone do the following jobs?
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Figure 19: Best fit values as a function of particle mass for the combination of ATLAS and CMS data in the case of
the parameterisation described in the text, with parameters defined as F · mF/v for the fermions, and as

p
V · mV/v

for the weak vector bosons, where v = 246 GeV is the vacuum expectation value of the Higgs field. The dashed
(blue) line indicates the predicted dependence on the particle mass in the case of the SM Higgs boson. The solid
(red) line indicates the best fit result to the [M, ✏] phenomenological model of Ref. [128] with the corresponding
68% and 95% CL bands.

6.3.2. Probing the lepton and quark symmetry

The parameterisation for this test is very similar to that of Section 6.3.1, which probes the up- and down-
type fermion symmetry. In this case, the free parameters are �lq = l/q, �Vq = V/q, and qq = q ·q/H ,
where the latter term is positive definite, like uu. The quark couplings are mainly probed by the ggF
process, the H ! �� and H ! bb decays, and to a lesser extent by the ttH process. The lepton couplings
are probed by the H ! ⌧⌧ decays. The results are expected, however, to be insensitive to the relative
sign of the couplings, because there is no sizeable lepton–quark interference in any of the relevant Higgs
boson production processes and decay modes. Only the absolute value of the �lq parameter is therefore
considered in the fit.

The results of the fit are reported in Table 19 and Fig. 22. The p-value of the compatibility between
the data and the SM predictions is 79%. The likelihood scan for the �lq parameter is shown in Fig. 23
for the combination of ATLAS and CMS. Negative values for the parameter �Vq are excluded by more
than 4�.
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Experiments will answer those grand questions in the near future.

Most importantly, those experiments may also shed light

on unsolved problems.

dark matter
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Higgs is a window to new physics.

Let us open the window!!
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Electroweak baryogenesis

✤ B violation: anomalous (sphaleron) process 


✤ C violation: chiral gauge interaction


✤ CP violation: KM phase and/or other sources in beyond the SM


✤ Out of equilibrium: 1st order EW phase transition (EWPT) with 
expanding bubble walls

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 (‘85) ]

Sakharov’s conditions

BAU can arise by the growing bubbles.

(LH fermions)



EWBG in a nutshell

H: Hubble constant
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EWBG in a nutshell

H: Hubble constant -> cannot redo EWPT in lab. exp.
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EWBG in a nutshell
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what we need is 

Esph is proportional to the Higgs VEV

B-changing rate in the broken phase is

EWPT has to be “strong” 1st order!!

large Higgs VEV after the EWPT
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Current status of EWBG
- SM EWBG was excluded.
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Recent papers on EWBG
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1601.01681 Sorry, this is incomplete list.
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Higgs decay with LFV
2.4σexcessCMS:

Atlas:

- LFV comes from the off-diagonal entries of ρij .

2 Higgs doublets model (2HDM) is one of the simplest solutions.

What does lepton flavor-violating (LFV) Higgs tell us?

1502.07400 [PLB]

1604.07730

ρij  ∈ ℂ ⇒ CPV
- μ-τ flavor violation can explain h->μτ   and g-2.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]
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EWBG with LFV

- g-2 favored region

mA ≳ mH

- EWBG-viable region
vC/TC > 1.17 

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]

- Br(h->μτ)=0.84%

benchmark point:

for Re(ρτμρμτ)>0.
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EWBG with LFV

- g-2 favored region

mA ≳ mH

- EWBG-viable region
vC/TC > 1.17 

300 GeV ≲ mH ≲ mA ≲ 450 GeVCombined: 

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]

- Br(h->μτ)=0.84%

benchmark point:

for Re(ρτμρμτ)>0.



A -> ττ
ATLAS-CONF-2016-085
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(d) hMSSM scenario

Figure 5: The observed and expected 95% CL limits on the production cross section times branching fraction of a
scalar particle decaying to a ⌧⌧ pair are shown for the combination of the ⌧lep⌧had and the ⌧had⌧had channels. For
comparison, the expected limits for the individual channels, ⌧lep⌧had and ⌧had⌧had, are shown as well. The production
mechanism of H/A ! ⌧⌧ is assumed to be (a) gluon–gluon fusion or (b) b-associated production. The observed
and expected 95% CL limits on tan � as a function of mA are shown in (c) for the MSSM mmod+

h
scenario and (d) for

the hMSSM scenario. In the case of the ⌧had⌧had channel, the mass range under study is 300 GeV–1.2 TeV. In the
case of the hMSSM scenario, exclusion limits are set also in the low tan � and mA = 200 GeV region and around
the mass value mA = 350 GeV. The exclusion limits are compared to the ATLAS 2015 H/A ! ⌧⌧ search result
of Ref. [31]. For the hMSSM scenario, the exclusion arising from the SM Higgs boson coupling measurements of
Ref. [110] is also shown.

19

- |ρτμ|=|ρμτ|=0.1-0.6,

- |ρττ|=0.8-0.9. 

-> probed by A->ττ. 

In our scenario:

- Br(A->ττ) also depends

on other ρ couplings.

(model dependent)

For BAU
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Figure 5: The observed and expected 95% CL limits on the production cross section times branching fraction of a
scalar particle decaying to a ⌧⌧ pair are shown for the combination of the ⌧lep⌧had and the ⌧had⌧had channels. For
comparison, the expected limits for the individual channels, ⌧lep⌧had and ⌧had⌧had, are shown as well. The production
mechanism of H/A ! ⌧⌧ is assumed to be (a) gluon–gluon fusion or (b) b-associated production. The observed
and expected 95% CL limits on tan � as a function of mA are shown in (c) for the MSSM mmod+

h
scenario and (d) for

the hMSSM scenario. In the case of the ⌧had⌧had channel, the mass range under study is 300 GeV–1.2 TeV. In the
case of the hMSSM scenario, exclusion limits are set also in the low tan � and mA = 200 GeV region and around
the mass value mA = 350 GeV. The exclusion limits are compared to the ATLAS 2015 H/A ! ⌧⌧ search result
of Ref. [31]. For the hMSSM scenario, the exclusion arising from the SM Higgs boson coupling measurements of
Ref. [110] is also shown.
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- |ρτμ|=|ρμτ|=0.1-0.6,

- |ρττ|=0.8-0.9. 

-> probed by A->ττ. 

In our scenario:

- Br(A->ττ) also depends

on other ρ couplings.

(model dependent)

For BAU



(B+L)-changing process and 

a band structure



B+L violation
- (B+L) is violated by a chiral anomaly in EW theories.

Vacuum transition (instanton)

Transition rate at finite-E

[Ringwald, NPB330,(1990)1, Espinosa, NPB343 (1990)310]

[’t Hooft, PRL37,8 (1976), PRD14,3432 (1976)]

- But, instanton-based calculation is not valid at E>Esph

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87,663(’92), PTP89,881(’93)]

Bounce is more appropriate (transition between the finite-E states)

-> Reduced model.

E⤴ ⟹ σ(E)⤴

instanton-based

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (’88)]

[H. Tye, S. Wong, PRD92,045005 (’15)]



Tye-Wong’s work
F(E)

(instanton calculus)

F(E) = 0 for E>Esph  (Tye-Wong) ∵ a band structure 

[H. Tye, S. Wong, PRD92,045005 (2015)]

Q1: Can we observe the sphaleron process at LHC? 

Tye-Wong 

Q2: Does the band affect sphaleron process at finite-T?

E0≃15 TeV



Reduced model
[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]

Sphaleron解を求める
saddle point = least-energy path上のmaximum-energy configuration

NCS=1

NCS=0

vacuum

vacuum

Energy

configuration
space

least-energy path/gauge trf. = noncontractible loop
↕

highest symmetry config.

⋆ 4次元SU(2) gauge-Higgs doublet系 ⋆

L = −1
4
F a

µνF
aµν + (DµΦ)† DµΦ− λ

(
Φ†Φ− v2

2

)2

DµΦ = (∂µ − igAµ) Φ, Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν], Aµ = Aa
µ

τa

2

— Sphaleron Transition — 39/47

μ(-∞)=0, μ(+∞)=π: vacuum, 

μ(tsph)=π/2: sphaleron

mainly by the difficulty in constructing the classical configuration from the high-energy
two-particle state, in contrast to the previous works in which the rate is suppressed by
the instanton action.

Recently the issue has been revived by Tye and Wong[6]. Their approch is similar to
ours in that the noncontracting-loop parameter is regarded as the dynamical variable to
reduced the field theory to a quantum-mechanical problem They argued that the energy
eigenstate of the system with a periodic potential becomes a Bloch wave, whose amplitude
is not suppressed in contrast to that evaluated by use of the intanton-like configurations.

In this bried report, we shall point out the some problems in the derivation of the
reduced quantum-mechanical system of [6], and propose the correct method of reduction.

2 The reduced model

2.1 classical mechanics

As discussed in [9], any static configuration of finite-energy doublet scalar field Φ(x)
defines a map from S2 spanned by the spatial coordinate (θ,φ) to S3 = SU(2) which

characterize the field at r = ∞ as a unitary transformation of the vacuum
(
0
1

)
. A one-

parameter family of such configurations connecting vacua, which cannot be contracted to
a point, is constructed by realizing the family of maps as a map from S3 to S3. Among
such one-parameter families, that of the highest symmetry is expected to form the least
energy set of configurations. The largest energy configurations along the parameter will
be a saddle-point configuration with one negative mode.

The theory we concern is the SU(2) gauge-Higgs model with one scalar doublet, whose
lagrangian is given by

L = −1

4
F a
µνF

aµν + (DµΦ)
†DµΦ− λ

(

Φ†Φ− v2

2

)2

, (2.1)

where Dµ = ∂µ + igAµ. The Manton’s ansatz for the noncontractible loop in the one-
doublet model is

Φ(µ, r, θ,φ) =
v√
2
Φ̃ =

v√
2

{
(1− h(r))

(
0

e−iµ cosµ

)
+ h(r)U(µ, θ,φ)

(
0
1

)}
, (2.2)

Ai(µ, r, θ,φ) =
i

g
f(r)∂iU(µ, θ,φ)U−1(µ, θ,φ), (2.3)

where

U(µ, θ,φ) =
(
eiµ(cosµ− i sinµ cos θ) eiφ sinµ sin θ

−e−iφ sinµ sin θ e−iµ(cosµ+ i sinµ cos θ)

)

= 1(cos2 µ+ sin2 µ cos θ) + i [(τ1 sinφ+ τ2 cosφ) sinµ sin θ + τ3 sinµ cosµ(1− cos θ)]

= 1
(
cos2 µ+

z

r
sin2 µ

)
+ i

[
τ1y + τ2x

r
sinµ+ τ3 sinµ cosµ

(
1− z

r

)]
(2.4)

= 1
(
cos2 µ+ ẑ sin2 µ

)
+ i [(τ1ŷ + τ2x̂) sinµ+ τ3 sinµ cosµ (1− ẑ)] .
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SU(2)-gauge Higgs system

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (1988)]

- We construct a reduced model by adopting 

a Manton’s ansatz. 

Non-contractible loop

(least energy path)

μ          ⇒ μ(t)

sphaleron

Let us promote μ to a dynamical variable:

(U(1)Y can be neglected)
[H. Tye, S. Wong, PRD92,045005 (2015)]



Comparison with Tye-Wong’s work

A0 Sphaleron mass Method for band 
structure

this work A0≠0 μ-dependent WKB w/ 3 
connection formulas

Tye-Wong A0=0 μ-independent Schroedinger eq. 
numerically

We use a Manton’s ansatz with 
Classical action:

Some differences between our work and Tye-Wong’s (TW’s).

fully gauge inv.

-> no div. issue

c.f., TW’s: Msph = 17.1 TeV. With same normalization, Msph(ours) -> 23.0 TeV.



Band structure
this work Tye-Wong

Band Centre E Band Width Band Centre E Band Width
14.054 0.0744 ? ?
13.980 0.0741 ? ?

⫶ ⫶ ⫶ ⫶
9.072 0.0104 9.113 0.0156
9.044 4.85x10-3 9.081 7.19x10-3

9.012 1.61x10-3 9.047 2.62x10-3

⫶ ⫶ ⫶ ⫶
0.1015 1.88x10-199 0.1027 ~10-177

0.03383 1.31x10-202 0.03421 ~10-180

Esph=9.08 TeV Esph=9.11 TeV

Band gaps still exist E>Esph due to nonzero reflection rate. 

Units: TeV
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Transition factor

Δ(E) ≃
sum of band widths up to E

energy (E)

N.B. Δ(E) is not exactly 1 at slightly above Esph.

instanton calculus

band picture

- State of density is restricted.
Band picture: 
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- Exponential suppression at 

E≪Esph is due to the tiny 

band width.

tunneling factor



Q. Does the band structure affect 
the (B+L)-changing process in 
high-E collisions?



LHC analysis

J
H
E
P
0
4
(
2
0
1
6
)
0
8
6

In a pure SU(2) theory, one finds ESph = 9.11TeV, and it is estimated that incorporating

the U(1) of the Standard Model reduces this by ∼ 1%. Here we follow [14] in assuming a

nominal value of ESph = 9TeV, while presenting some numerical results for the alternative

choices ESph = 8, 10TeV. Later, we also use a recast of early Run-2 searches for microscopic

black holes to constrain the sphaleron transition rate as a function of ESph.

As was discussed in detail in [14], the Bloch wave function for the periodic poten-

tial (2.2) is straightforwardly obtained, and the corresponding conducting (pass) bands

can be calculated, as well as their widths and the gaps between the bands. The lowest-

lying bands are very narrow, but the widths increase with the heights of the bands. Av-

eraging over the energies E1,2 of the colliding quark partons yields a strong suppression at

E1+E2 ≪ ESph, which corresponds to the exponential suppression found in a conventional

tunnelling calculation. However, this suppression decreases as E1 +E2 → ESph, and there

is no suppression for E1 + E2 ≥ ESph.

The result of the analysis in [14] can be summarized in the partonic cross-section

σ(∆n = ±1) ∝ exp

(
c
4π

αW
S(E)

)
, (2.4)

where E is the centre-of-mass energy of the parton-parton collision, c ∼ 2 and the suppres-

sion factor S(E) is shown in figure 8 of [14]. As seen there, it rises from the value S(E) = −1

in the low-energy limit (E ≪ ESph) to S(E) = 0 for energies E ≥ ESph, with very simi-

lar results being found in [14] for calculations based on the work of [2] and [23]. For the

purpose of our numerical calculations, we approximate S(E) at intermediate energies by

S(E) = (1− a)Ê + aÊ2 − 1 for 0 ≤ Ê ≤ 1 , (2.5)

where Ê ≡ E/ESph and a = −0.005.

The overall magnitude of eq. (2.4) is not given. We speculate that the relevant scale

should be proportional to the non-perturbative electro-weak cross-section for q-q scattering,

σEW
qq . Analogously to the fact that the inelastic p-p cross-section is given roughly by

∼ 1/m2
π, we take σEW

qq ∼ 1/m2
W . Our cross-section formula is, thus, given as

σ(∆n = ±1) =
1

m2
W

∑

ab

∫
dE

dLab

dE
p exp

(
c
4π

αW
S(E)

)
, (2.6)

where p is an unknown factor (that might well depend3 on the subprocess energy E) and
dLab
dE is the parton luminosity function of the colliding quarks a and b, which are obtained

from the parton distribution functions at a momentum fraction x, fa(x), evaluated at the

appropriate energy scale E:

dLab

dE
=

2E

E2
CM

∫ − ln
√
τ

ln
√
τ

dyfa(
√
τey)fb(

√
τe−y), (2.7)

where ECM is the centre-of-mass energy of the p-p collision and τ = E2/E2
CM.

3S.-H. Henry Tye and Sam S.C. Wong, private communication and to appear.

– 3 –

[J.Ellis and K.Sakurai, JHEP04(2016)086]

Δ(B+L)≠0 process in the band picture:

c≃2, p: unknown parameter

Here, S(E) is approximated by a fitting function.
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Figure 7. Right panel: acceptances for sphaleron-induced ∆n = −1 transitions in ATLAS event
selections with different cuts in (njet, HT ), as functions of ESph. Left panel: the exclusion in the
(ESph, p) plane of∆n = −1 transitions obtained by recasting the ATLAS 2015 search for microscopic
black holes using ∼ 3/fb of data at 13TeV. The variation in the exclusion for 1 ≤ c ≤ 4 is negligible.

Figure 8. Left panel: acceptances as in right panel of figure 6, but for ∆n = +1 sphaleron-induced
transitions to 14-particle final states. Right panel: the exclusion in the (ESph, p) plane, as in figure 7
but for sphaleron-induced transitions to 14-particle final states.

quarks. The left panel of figure 6 shows the simulated HT distribution for this possibility

as a blue histogram, which is shifted to larger values than for the ∆n = −1 sphaleron

transitions. Correspondingly, the acceptances in the ATLAS search regions are higher for

∆n = +1 transitions, as seen in the left panel of figure 8, reaching ∼ 0.8 for SR8 for the

nominal ESph = 9TeV. Consequently, the 95% CL exclusion in the (ESph, p) plane for

∆n = +1 transitions is correspondingly stronger than for ∆n = −1 transitions, as seen in

the right panel of figure 8, excluding p ≃ 0.2 for the nominal ESph = 9TeV.7

7Similarly, there would be even stronger exclusions for |∆n| > 1 transitions.
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p<0.2

Q. Can p≃0.1-0.01 be realized?

p<0.01

@E=Esph=9TeV:

LHC analysis
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Figure 3. Left panel: normalized invariant-mass distributions for the observable final-state parti-
cles in sphaleron-induced transitions in LHC collisions at 13 and 14TeV (blue and red histograms,
respectively). Right panel: corresponding invariant-mass distributions for future colliders at 33
and 100TeV (green and pink histograms, respectively). These distributions are calculated for our
nominal choices ESph = 9TeV, c = 2 and p = 1.

the left panel, the invariant-mass distributions for 13 and 14TeV are quite similar, both

being peaked at ∼ 8TeV and with tails extending to lower masses, corresponding to events

with (multiple) neutrino emission. As seen in the right panel, the corresponding distribu-

tions for collisions at 33 and (particularly) 100TeV extend to much larger invariant masses.

Figure 4 displays some more properties of the final states in sphaleron-induced transi-

tions: the red histograms are for the ∆n = −1 processes leading to 10-particle final states

discussed above (4.1). One should also consider processes with other values of ∆n, the

next simplest being the ∆n = +1 process that leads to 14-particle final states:

q q → ℓ ℓ ℓ q q q q q q q q q q q , (4.2)

whose simulation yields the blue histograms in figure 4. The difference between these

nominal multiplicities is visible in the upper left panel. The multiplicity may exceed the

nominal value if gluon radiation or other higher-order QCD processes yield additional final-

state partons satisfying our chose acceptance cuts: pT > 20GeV and |η| < 2.5. On the

other hand, the visible multiplicity may be reduced if some final-state particles fail these

acceptance cuts and/or if there are neutrinos in the final state.

The upper right panel of figure 4 shows the distribution in the sphericity, ST , for

sphaleron-induced final states with 10 and 14 final-state particles as red and blue his-

tograms, respectively. Both distributions are relatively broad, being peaked at ST ∼ 0.4

and 0.6, respectively. The lower left panel of figure 4 displays histograms of the number

of charged leptons, Nlep = Ne +Nµ, satisfying the nominal acceptance cuts. As expected,

Nlep ≤ 3, with smaller numbers of charged leptons in events with final state neutrinos

and/or charged leptons outside the nominal acceptance range. Finally, the lower right

panel of figure 4 shows histograms of the numbers of top quarks in the sphaleron-induced

final states. The most common outcome is to observe just one top quark, followed by final

states with two top quarks. There are relatively few final states with no top quarks, and

– 7 –

Δn=+1 process: 

- current LHC data

- LHC Run2 w/ 100fb-1

Δn=-1 process: 
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Figure 2. The energy dependence of the total cross section for sphaleron transitions for the nominal
choices ESph = 9TeV, c = 2 and p = 1 in (2.6) with S given by (2.5) (solid curve), and for the
outlying choices ESph = 8 and 10TeV (dot-dashed and dashed lines, respectively). The variations in
the curves for 1 ≤ c ≤ 4 are within the widths of the lines. We recall that the overall normalization
factor p is quite uncertain.

member of each electroweak doublet, i.e., e/νe, µ/νµ, τ/ντ , and 3 colours of u/d, c/s and

t/b, leading to transitions of the form

qq → ℓ̄ ℓ̄ ℓ̄ q̄ q̄ q̄ q̄ q̄ q̄ q̄ . (4.1)

A priori, the leading-order sphaleron-induced processes do not involve electroweak bosons.5

Since the dominant processes are induced by uu and ud collisions: the final states should

contain a single ū/d̄ antiquark, one antilepton from each generation, three c̄/s̄ antiquarks

and three t̄/b̄ antiquarks, for a total of 10 final state particles. The initial and final states are

constrained so that the total electric charge is conserved. We make parton-level simulations,

with the momenta of final-state particles given by phase space.6 We also simulate the decays

of heavy particles (t, W and τ). We accept only particles with pT > 20 and |η| < 2.5.

Neutrinos are removed from the list of observable particles.

The normalized invariant-mass distributions for the observable final-state particles are

shown in figure 3, for LHC collisions at 13 and 14TeV (left panel, blue and red histograms,

respectively) and for future colliders at 33 and 100TeV (right panel, green and pink his-

tograms, respectively), for our nominal choices ESph = 9TeV, c = 2 and p = 1. As seen in

5There are suggestions that the baryon and lepton number violating processes are enhanced if fermions

are produced associated with many O(1/αW ) electroweak bosons [5, 6, 24–26]. We leave the investigation

of this possibility for future work.
6We use our own code to simulate sphaleron-induced processes. There is also a public Monte Carlo tool

to simulate sphaleron events [27].

– 6 –

Δn=+1 process



Δ(B+L)≠0 process 

transition amplitude:

path integral using coherent state |φ,π>
∵ appropriate for describing classical configuration

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]

- tunneling suppression appears in the intermediate process.

- overlap issue: suppressions from <f|φ,π> and <φ,π|i>.

This point is not properly discussed in the work of  

Tye and Wong.
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∵ appropriate for describing classical configuration

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]

- tunneling suppression appears in the intermediate process.

- overlap issue: suppressions from <f|φ,π> and <φ,π|i>.

This point is not properly discussed in the work of  

Tye and Wong.
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- cross section ∝ |α1|2…|αn|2

inner product between n particle state and coherent state:

- |α|2 has a peat at k=mW.



Case1: 2 -> sphaleron

Creation of sphaleron from the 2 energetic particles is difficult.
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For |p1|=|p2|≃Esph/2
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Case1: 2 -> sphaleron

Creation of sphaleron from the 2 energetic particles is difficult.

Sphaleron
For |p1|=|p2|≃Esph/2

Sphaleron at LHC
W

W

Sphaleron

⫶

Case2: 2 -> n W -> sphaleron 80 W bosons

phase space 

factor:

difficult to produce about 80 W bosons.

n≃80 since Esph/√2mW

W

W



At high temperatures, the overlap suppressions do not exist. 

∵
Particles with momenta O(mW) are abundant in thermal bath.

sizable overlap with the classical configuration

Q. Does the band structure affect 
electroweak baryogengesis? 

How about high-T?



B preservation criteria

modified?



B preservation criteria

modified?

modified!If yes, 



B preservation criteria

modified?

modified!If yes, 

EWBG-viable region must be re-analyzed!!



Vacuum decay rate at finite-T
[Affleck, PRL46,388 (1981)]

Band case:

≃14 GeV

≃0.42 ≃0.51

Ordinary case: 



Impact of band 
For simplicity, we use the band structure obtained before.

For T=100 GeV, Γ/ΓA = 1.06.
How about B-number preservation criteria?

blue: ordinary case
red: band case



Impact of band 
For simplicity, we use the band structure obtained before.

For T=100 GeV, Γ/ΓA = 1.06.
How about B-number preservation criteria?

blue: ordinary case

typical EWBG region

red: band case



B preservation criteria
Γwith the band effect is

⇒



B preservation criteria

zero mode factor

Γwith the band effect is
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⋍ 4.4 (MSSM)
zero mode factor

Γwith the band effect is
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band effect
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B preservation criteria

⋍ 4.4 (MSSM)
zero mode factor

band effect

Γwith the band effect is

⇒



B preservation criteria

⋍ 4.4 (MSSM)
zero mode factor

band effect

Γwith the band effect is

Band effect has little effect on the B preservation criteria.

⇒



• We have discussed EWBG with LFV in 2HDM.


• some parameter space can explain h->μτ, muon g-2, and BAU.


• We also discussed the band effect on the sphaleron processes at 
T=0 and T≠0.


• Even though the tunneling suppression disappears at E≳Esph, 
sphaleron process in high-E collisions suffers from the overlap 
suppression.  -> the process is unlikely to occur.


• T≃100 GeV, sphaleron process is virtually unaffected.                        
-> no impact on EWBG.

Summary

300 GeV ≲ mH ≲ mA  for Re(ρτμρμτ)>0.



Backup



(1) Baryon number (B) violation

(2) C and CP violation

(3) Out of equilibrium

- After inflation

- Before Big-Bang Nucleosynthesis (T≃O(1) MeV).

BAU must arise

❒ Our Universe is baryon-asymmetric.

Baryon Asymmetry of the Universe (BAU)

❒ Sakharov criteria (’67)

[PDG2016]



In 2HDM, it is easy to accommodate not only h->μτ but 
muon g-2.

2

II. MODEL

The 2HDM is an extension of the SM by adding one ad-
ditional Higgs doublet. Such a two-Higgs doublets struc-
ture is motivated by some UV theories such as supersym-
metric theories. The most general Higgs potential at the
renormalizable level is

V0(Φ1,Φ2)

= m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 − (m2

3Φ
†
1Φ2 + h.c.)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+ λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

[
λ5

2
(Φ†

1Φ2)
2

+
{
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

}
(Φ†

1Φ2) + h.c.

]
. (1)

Hermiticity of V0 requires that m2
1, m

2
2, λ1, λ2, λ3 and

λ4 are all real while m2
3, λ5, λ6 and λ7 are generally

complex, with one of them being possibly made real by a
field redefinition of either Higgs doublet. We parametrize
Φi (i = 1, 2) as

Φi(x) = eiθi

(
φ+
i (x)

1√
2

(
vi + hi(x) + iai(x)

)
)

, (2)

where vieiθi are the VEV’s. For simplicity, we assume
that CP is not violated by the Higgs potential and the
VEV’s, leading to θi = 0. Here we express v1,2 in terms
of polar coordinates, v1 = v cosβ and v2 = v sinβ with
v ≃ 246 GeV. In the following, we will use the shorthand
notation sβ = sinβ, cβ = cosβ and tβ = tanβ.

When discussing phenomenology, it is useful to use the
Higgs (Georgi) basis [19] in which only one Higgs dou-
blet develops the VEV and the Nambu-Goldstone bosons
(G0, G±) are decoupled from the physical states:

Φ′
1 = cβΦ1 + sβΦ2 =

(
G+

1√
2

(
v + h′

1 + iG0
)
)

,

Φ′
2 = −sβΦ1 + cβΦ2 =

(
H+

1√
2

(
h′
2 + iA

)
)

,

(3)

where h′
1 = cβ−αH + sβ−αh and h′

2 = −sβ−αH + cβ−αh
with α being a mixing angle between the two CP-even
Higgs fields (h1,2). In this paper, h is the 125 GeV Higgs
boson and assumed to be the lightest of them all.

Without any symmetries, both Higgs doublets can cou-
ple to fermions. The relevant Yukawa interactions in the

lepton sector are

−LY = l̄iL(Y1Φ1 + Y2Φ2)ijejR + h.c.

∋ ēiL

[
yi√
2
δijsβ−α +

1√
2
ρijcβ−α

]
ejRh

+ ēiL

[
yi√
2
δijcβ−α − 1√

2
ρijsβ−α

]
ejRH

+
i√
2
ēiLρijejRA+ h.c. , (4)

where i, j are flavor indices, Y1,2 are general 3-by-3 com-
plex matrices, and

ρij = −tβyiδij +
1

cβ
(V e†

L Y2V
e
R)ij , (5)

with V e
L,R defined as the unitary matrices such that di-

agonalize the charged lepton Yukawa couplings Y SM =
(Y1cβ + Y2sβ), i.e., V

e†
L Y SMV e

R = YD = diag(ye, yµ, yτ ).
By this diagonalization, the mass terms of the charged
leptons are given by mi = yiv/

√
2 with i = e, µ, τ .

Non-diagonal elements of ρij are the sources of tree-
level FCNH processes. In the literature, the so-called
Chen-Sher ansatz [20] for ρij is adopted in order to avoid
experimental constraints. In our analysis, however, we
will not assume it to obtain a parameter space that can
accommodate both h → µτ and g − 2 anomalies. In
general, Y1,2 cannot be uniquely determined even though
YD is known. In our analysis, we make some working
assumption on Y1,2 for baryogenesis, and determine the
structure of FCNH couplings ρ at T = 0. For later use,
we define ρij = |ρij |eiφij .

III. h → µτ , (g − 2)µ AND EDM

Here we outline some important consequences of
Ref. [17] to make this paper self-contained.

The Higgs decay to µ and τ in the current model occurs
at tree level through µ-τ interactions (for earlier studies,
see Refs. [21]), and its branching ratio takes the form

Br(h → µτ) =
mh(|ρµτ |2 + |ρτµ|2)c2β−α

16πΓh
, (6)

where mh = 125 GeV and Γh = 4.1 MeV. It is easy to
accommodate Br(h → µτ) ≃ 0.84% by taking |ρµτ | ∼
|ρτµ| ∼ O(0.1) and cβ−α ∼ O(0.01). It had been shown
that such parameter choices did not violate the current
experimental bounds on other LFV processes such as τ →
µγ and τ → µνν̄, etc [17]. Note that it is sufficient for
either ρµτ or ρτµ to be nonzero to explain the h → µτ
excess only. If both couplings coexist, on the other hand,
we can have a one-loop diagram that induces g − 2 and
electric dipole moment (EDM) of muon, denoted by δaµ
and dµ, respectively. Contributions of the neutral Higgs

h->μτ and muon g-2

B. The muon anomalous magnetic
moment (muon g − 2)

We have shown that the μ − τ flavor violating Yukawa
couplings in the general 2HDM explain the CMS excess in
the h → μτ decay mode. Here we consider the contribution
of the μ − τ flavor violating interaction to the muon
anomalous magnetic moment (muon g − 2).
The discrepancy between the measured value (aExpμ ) and

the standard model prediction (aSMμ ) of the muon g − 2 has
been reported in Ref. [48]. For example, Ref. [57] suggests
the following result:

aExpμ − aSMμ ¼ ð26.1# 8.0Þ × 10−10: ð13Þ

Here we consider whether the extra contributions induced
by the μ − τ flavor violating interactions can accommodate
this muon g − 2 anomaly. The effective operator for the
muon g − 2 is expressed by

L ¼ v
Λ2

μ̄LσμνμRFμν þ H:c: ð14Þ

We note that the chirality of muon is flipped in the operator.
Therefore, if there is a large chirality flip induced by the
new physics, it can enhance the extra contributions to the
muon g − 2 [58]. Feynman diagrams for the one-loop
corrections involving the neutral Higgs bosons and the μ −
τ flavor violating Yukawa couplings are described in Fig. 1.
As shown in Fig. 1, the chirality is flipped in the internal
line of τ lepton in the diagram. Therefore, it induces the
Oðmτ=mμÞ enhancement in the extra contributions to the
muon g − 2, compared with the one generated by the
flavor-diagonal Yukawa coupling. We stress that the μ −
τ flavor violating interaction is essential to obtain such an
enhancement. Note that both couplings ρμτe and ρτμe should
be nonzero to flip the chirality in the internal τ lepton line.
Finally, the expression of the enhanced extra contribution
δaμ is given by

δaμ ¼
mμmτρ

μτ
e ρ

τμ
e

16π2

×
!c2βαðlog

m2
h

m2
τ
− 3

2Þ
m2

h
þ
s2βαðlog

m2
H

m2
τ
− 3

2Þ
m2

H
−
log m2

A
m2

τ
− 3

2

m2
A

"
;

ð15Þ

where we have assumed that ρμτe ρτμe is real, for simplicity.
We will discuss the effect of an imaginary part of these
Yukawa couplings later. We note that a degeneracy of all
neutral Higgs bosons suppresses the extra contribution to
the muon g − 2, as seen in Eq. (15).
The so-called Barr-Zee–type two-loop diagrams can

contribute to the muon g − 2 if diagonal elements of ρf
are nonzero. In the parameter space we are considering
here, such contributions are always subdominant and
numerically unimportant. In the cases of the flavor-
changing muon or tau decays, however, they can compete
with the one-loop contributions and can play a significant
role. Details will be discussed below.
In Fig. 2, we show numerical results for the extra

contribution to muon g − 2 (δaμ) as a function of cβα

FIG. 1. A Feynman diagram for neutral Higgs boson contri-
butions to the muon g − 2. A photon is attached somewhere in the
charged lepton line.

FIG. 2. Numerical result for δaμ as a function of cβα and
BRðh → μτÞ for mA ¼ 250 GeV (upper figure) and 350 GeV
(lower figure). Regions where the muon g − 2 anomaly in
Eq. (13) is explained within #1σ, #2σ, and #3σ are shown.
Here we determine the mass spectrum of heavy Higgs bosons
assuming λ4 ¼ λ5 ¼ 0.5 in Eq. (10). We have assumed ρμτe ρτμe <
0 with ρμτe ¼ −ρτμe to obtain the positive contribution to δaμ.

YUJI OMURA, EIBUN SENAHA, and KAZUHIRO TOBE PHYSICAL REVIEW D 94, 055019 (2016)

055019-4

muon g-2

h-> μτ

3

bosons to δaµ and dµ are given by

δaµ =
mµmτRe(ρµτρτµ)

16π2

×

[

c2β−αf(rh)

m2
h

+
s2β−αf(rH)

m2
H

−
f(rA)

m2
A

]

, (7)

dµ
|e|

= −
1

2mµ
Arg(ρµτρτµ)δaµ , (8)

where

f(rφ) =
−1

2(1− rφ)2

[

2 ln rφ
1− rφ

+ 3− rφ

]

≃
rφ≪1

ln r−1
φ −

3

2
, (9)

with rφ = m2
τ/m

2
φ. Non-degeneracy of the neutral Higgs

masses and proper choice of the overall sign are essential
for obtaining a sufficient δaµ. In Ref. [22], the discrep-
ancy of (g− 2)µ between the experimental value and the
SM prediction was estimated as

δaµ = aEXP
µ − aSMµ = (26.1± 8.0)× 10−10 . (10)

As demonstrated in Ref. [17], this deviation could be ac-
commodated for mH,A,H± ∈ [200, 500] GeV with an ap-
propriate mass hierarchy. From EWBG point of view,
this mass range of the heavy Higgs bosons has the right
scale for realizing the first-order EWPT, though the LFV
interactions by themselves do not play a central role in
the realization, as will be shown in the following sections.
The current limit on dµ is [23]

|dµ| < 1.9× 10−19 e cm , (11)

which is about three orders of magnitude larger than dµ
estimated with Arg(ρµτρτµ) = 1 and δaµ = 3.0×10−9 in
Eq. (8). In what follows, we will clarify the relationship
between CP violation appearing in dµ and that relevant
to BAU.

IV. BARYON NUMBER PRESERVATION

The baryon number is generated via the sphaleron pro-
cess outside the bubble (symmetric phase), and it can
survive if the sphaleron process is sufficiently quenched
inside the bubble (broken phase). To this end, the

sphaleron rate in the broken phase, denoted as Γ(b)
B (T ),

must be smaller than the Hubble constant, H(T ). More
explicitly,

Γ(b)
B (T ) ≃ (prefactor)e−Esph(T )/T

< H(T ) ≃ 1.66
√

g∗(T )T
2/mP , (12)

where Esph stands for the sphaleron energy, g∗ is the de-
grees of freedom of relativistic particles in the plasma
(g∗ = 110.75 in the 2HDM) and mP = 1.22× 1019 GeV.

We parametrize the sphaleron energy as Esph(T ) =
4πv(T )E(T )/g2 with g2 being the SU(2)L gauge coupling
constant. Eq. (12) is then rewritten as

v(T )

T
>

g2
4πE(T )

[

42.97 + log terms
]

≡ ζsph(T ) . (13)

One can see that ζsph(T ) is mostly controlled by E(T ).
The logarithmic corrections in the bracket come from

the prefactor of Γ(b)
B . To our best knowledge, an exten-

sive study on the prefactor in the 2HDM is still missing.
In the minimal supersymmetric SM case, on the other
hand, the zero mode factors of the fluctuations about
the sphaleron typically amount to about 10% [24]. This
is subdominant and, therefore, we will neglect them in
our numerical analysis for simplicity.
We impose Eq. (13) at a critical temperature TC at

which the effective potential has two degenerate minima.
In our analysis, TC and vC ≡ v(TC) are determined us-
ing finite-temperature one-loop effective potential with
thermal resummation. As mentioned in Sec. III, sβ−α

is close to 1 in the region of interest to us. In such a
case, we may simplify the analysis of EWPT to a one-
dimensional problem with a single order parameter as
discussed in Refs. [10, 12].
As is well-known, the extra heavy Higgs bosons can

play a major role in enhancing vC/TC in the 2HDM.
In this case, M2 ≡ m2

3/(sβcβ) must not exceed cer-
tain values, depending on the magnitude of quartic cou-
plings; otherwise, the so-called non-decoupling effects
would diminish, rendering a suppressed vC/TC . Phe-
nomenological consequences of the non-decoupling effects
at T = 0 include significant deviations in the h → γγ de-
cay width [25] and the triple Higgs coupling [26].
For the evaluation of E , we solve the equations of mo-

tion for the sphaleron with appropriate boundary condi-
tions [27, 28]. Here, we use the tree-level Higgs potential
for simplicity. In this case, ζsph may be underestimated
by O(10)% since E(0) > E(TC). As will be shown be-
low, this approximation does not affect our conclusion.
A detailed analysis of ζsph(T ) will be given elsewhere.
In passing, recent studies show that ζsph(TC) = 1.1 −

1.2 in the real singlet-extended SM [29] and ζsph(TC) =
1.23 in the scale-invariant 2HDM [13] for typical param-
eter sets.
In Fig. 1, vC/TC and δaµ are shown in the (mH ,mA)

plane. Here, we takemA = mH± to avoid the electroweak
ρ parameter constraint, and choose cβ−α = 0.006, |ρτµ| =
|ρµτ |, and φτµ + φµτ = π/4, as favored by the solution
of (g − 2)µ anomaly. For the remaining parameters, we
set M = 100 GeV, tan β = 1 and λ6 = λ7 = 0 as an
example. Contours of vC/TC are plotted with the solid
curves in gray with values of 1.0, 1.17, 1.5, 2.0, 2.5, 3.0
from bottom to top, where 1.17 corresponds to ζsph. Al-
lowed 1σ, 2σ and 3σ regions of δaµ are shown by the
areas colored in green, blue and pink, respectively. One
can see that the regions satisfying the baryon number
preservation condition (vC/TC > ζsph) and favored by
(g − 2)µ have an overlap if mA > mH . We note that

Appropriate mass differences among (mh, mH, mA) are needed.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]
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ancy of (g− 2)µ between the experimental value and the
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δaµ = aEXP
µ − aSMµ = (26.1± 8.0)× 10−10 . (10)

As demonstrated in Ref. [17], this deviation could be ac-
commodated for mH,A,H± ∈ [200, 500] GeV with an ap-
propriate mass hierarchy. From EWBG point of view,
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interactions by themselves do not play a central role in
the realization, as will be shown in the following sections.
The current limit on dµ is [23]

|dµ| < 1.9× 10−19 e cm , (11)

which is about three orders of magnitude larger than dµ
estimated with Arg(ρµτρτµ) = 1 and δaµ = 3.0×10−9 in
Eq. (8). In what follows, we will clarify the relationship
between CP violation appearing in dµ and that relevant
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sive study on the prefactor in the 2HDM is still missing.
In the minimal supersymmetric SM case, on the other
hand, the zero mode factors of the fluctuations about
the sphaleron typically amount to about 10% [24]. This
is subdominant and, therefore, we will neglect them in
our numerical analysis for simplicity.
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In our analysis, TC and vC ≡ v(TC) are determined us-
ing finite-temperature one-loop effective potential with
thermal resummation. As mentioned in Sec. III, sβ−α

is close to 1 in the region of interest to us. In such a
case, we may simplify the analysis of EWPT to a one-
dimensional problem with a single order parameter as
discussed in Refs. [10, 12].
As is well-known, the extra heavy Higgs bosons can

play a major role in enhancing vC/TC in the 2HDM.
In this case, M2 ≡ m2

3/(sβcβ) must not exceed cer-
tain values, depending on the magnitude of quartic cou-
plings; otherwise, the so-called non-decoupling effects
would diminish, rendering a suppressed vC/TC . Phe-
nomenological consequences of the non-decoupling effects
at T = 0 include significant deviations in the h → γγ de-
cay width [25] and the triple Higgs coupling [26].
For the evaluation of E , we solve the equations of mo-

tion for the sphaleron with appropriate boundary condi-
tions [27, 28]. Here, we use the tree-level Higgs potential
for simplicity. In this case, ζsph may be underestimated
by O(10)% since E(0) > E(TC). As will be shown be-
low, this approximation does not affect our conclusion.
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muon g-2.
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II. MODEL

The 2HDM is an extension of the SM by adding one ad-
ditional Higgs doublet. Such a two-Higgs doublets struc-
ture is motivated by some UV theories such as supersym-
metric theories. The most general Higgs potential at the
renormalizable level is
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Hermiticity of V0 requires that m2
1, m

2
2, λ1, λ2, λ3 and

λ4 are all real while m2
3, λ5, λ6 and λ7 are generally

complex, with one of them being possibly made real by a
field redefinition of either Higgs doublet. We parametrize
Φi (i = 1, 2) as

Φi(x) = eiθi

(
φ+
i (x)

1√
2

(
vi + hi(x) + iai(x)

)
)

, (2)

where vieiθi are the VEV’s. For simplicity, we assume
that CP is not violated by the Higgs potential and the
VEV’s, leading to θi = 0. Here we express v1,2 in terms
of polar coordinates, v1 = v cosβ and v2 = v sinβ with
v ≃ 246 GeV. In the following, we will use the shorthand
notation sβ = sinβ, cβ = cosβ and tβ = tanβ.

When discussing phenomenology, it is useful to use the
Higgs (Georgi) basis [19] in which only one Higgs dou-
blet develops the VEV and the Nambu-Goldstone bosons
(G0, G±) are decoupled from the physical states:

Φ′
1 = cβΦ1 + sβΦ2 =
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2
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1 + iG0
)
)

,

Φ′
2 = −sβΦ1 + cβΦ2 =
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H+

1√
2
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h′
2 + iA

)
)

,

(3)

where h′
1 = cβ−αH + sβ−αh and h′

2 = −sβ−αH + cβ−αh
with α being a mixing angle between the two CP-even
Higgs fields (h1,2). In this paper, h is the 125 GeV Higgs
boson and assumed to be the lightest of them all.

Without any symmetries, both Higgs doublets can cou-
ple to fermions. The relevant Yukawa interactions in the

lepton sector are

−LY = l̄iL(Y1Φ1 + Y2Φ2)ijejR + h.c.

∋ ēiL

[
yi√
2
δijsβ−α +

1√
2
ρijcβ−α
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ejRh

+ ēiL
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yi√
2
δijcβ−α − 1√

2
ρijsβ−α

]
ejRH

+
i√
2
ēiLρijejRA+ h.c. , (4)

where i, j are flavor indices, Y1,2 are general 3-by-3 com-
plex matrices, and

ρij = −tβyiδij +
1

cβ
(V e†

L Y2V
e
R)ij , (5)

with V e
L,R defined as the unitary matrices such that di-

agonalize the charged lepton Yukawa couplings Y SM =
(Y1cβ + Y2sβ), i.e., V

e†
L Y SMV e

R = YD = diag(ye, yµ, yτ ).
By this diagonalization, the mass terms of the charged
leptons are given by mi = yiv/

√
2 with i = e, µ, τ .

Non-diagonal elements of ρij are the sources of tree-
level FCNH processes. In the literature, the so-called
Chen-Sher ansatz [20] for ρij is adopted in order to avoid
experimental constraints. In our analysis, however, we
will not assume it to obtain a parameter space that can
accommodate both h → µτ and g − 2 anomalies. In
general, Y1,2 cannot be uniquely determined even though
YD is known. In our analysis, we make some working
assumption on Y1,2 for baryogenesis, and determine the
structure of FCNH couplings ρ at T = 0. For later use,
we define ρij = |ρij |eiφij .

III. h → µτ , (g − 2)µ AND EDM

Here we outline some important consequences of
Ref. [17] to make this paper self-contained.

The Higgs decay to µ and τ in the current model occurs
at tree level through µ-τ interactions (for earlier studies,
see Refs. [21]), and its branching ratio takes the form

Br(h → µτ) =
mh(|ρµτ |2 + |ρτµ|2)c2β−α

16πΓh
, (6)

where mh = 125 GeV and Γh = 4.1 MeV. It is easy to
accommodate Br(h → µτ) ≃ 0.84% by taking |ρµτ | ∼
|ρτµ| ∼ O(0.1) and cβ−α ∼ O(0.01). It had been shown
that such parameter choices did not violate the current
experimental bounds on other LFV processes such as τ →
µγ and τ → µνν̄, etc [17]. Note that it is sufficient for
either ρµτ or ρτµ to be nonzero to explain the h → µτ
excess only. If both couplings coexist, on the other hand,
we can have a one-loop diagram that induces g − 2 and
electric dipole moment (EDM) of muon, denoted by δaµ
and dµ, respectively. Contributions of the neutral Higgs

h->μτ and muon g-2

B. The muon anomalous magnetic
moment (muon g − 2)

We have shown that the μ − τ flavor violating Yukawa
couplings in the general 2HDM explain the CMS excess in
the h → μτ decay mode. Here we consider the contribution
of the μ − τ flavor violating interaction to the muon
anomalous magnetic moment (muon g − 2).
The discrepancy between the measured value (aExpμ ) and

the standard model prediction (aSMμ ) of the muon g − 2 has
been reported in Ref. [48]. For example, Ref. [57] suggests
the following result:

aExpμ − aSMμ ¼ ð26.1# 8.0Þ × 10−10: ð13Þ

Here we consider whether the extra contributions induced
by the μ − τ flavor violating interactions can accommodate
this muon g − 2 anomaly. The effective operator for the
muon g − 2 is expressed by

L ¼ v
Λ2

μ̄LσμνμRFμν þ H:c: ð14Þ

We note that the chirality of muon is flipped in the operator.
Therefore, if there is a large chirality flip induced by the
new physics, it can enhance the extra contributions to the
muon g − 2 [58]. Feynman diagrams for the one-loop
corrections involving the neutral Higgs bosons and the μ −
τ flavor violating Yukawa couplings are described in Fig. 1.
As shown in Fig. 1, the chirality is flipped in the internal
line of τ lepton in the diagram. Therefore, it induces the
Oðmτ=mμÞ enhancement in the extra contributions to the
muon g − 2, compared with the one generated by the
flavor-diagonal Yukawa coupling. We stress that the μ −
τ flavor violating interaction is essential to obtain such an
enhancement. Note that both couplings ρμτe and ρτμe should
be nonzero to flip the chirality in the internal τ lepton line.
Finally, the expression of the enhanced extra contribution
δaμ is given by

δaμ ¼
mμmτρ

μτ
e ρ

τμ
e

16π2

×
!c2βαðlog

m2
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τ
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2
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"
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ð15Þ

where we have assumed that ρμτe ρτμe is real, for simplicity.
We will discuss the effect of an imaginary part of these
Yukawa couplings later. We note that a degeneracy of all
neutral Higgs bosons suppresses the extra contribution to
the muon g − 2, as seen in Eq. (15).
The so-called Barr-Zee–type two-loop diagrams can

contribute to the muon g − 2 if diagonal elements of ρf
are nonzero. In the parameter space we are considering
here, such contributions are always subdominant and
numerically unimportant. In the cases of the flavor-
changing muon or tau decays, however, they can compete
with the one-loop contributions and can play a significant
role. Details will be discussed below.
In Fig. 2, we show numerical results for the extra

contribution to muon g − 2 (δaμ) as a function of cβα

FIG. 1. A Feynman diagram for neutral Higgs boson contri-
butions to the muon g − 2. A photon is attached somewhere in the
charged lepton line.

FIG. 2. Numerical result for δaμ as a function of cβα and
BRðh → μτÞ for mA ¼ 250 GeV (upper figure) and 350 GeV
(lower figure). Regions where the muon g − 2 anomaly in
Eq. (13) is explained within #1σ, #2σ, and #3σ are shown.
Here we determine the mass spectrum of heavy Higgs bosons
assuming λ4 ¼ λ5 ¼ 0.5 in Eq. (10). We have assumed ρμτe ρτμe <
0 with ρμτe ¼ −ρτμe to obtain the positive contribution to δaμ.
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bosons to δaµ and dµ are given by

δaµ =
mµmτRe(ρµτρτµ)

16π2

×

[

c2β−αf(rh)

m2
h

+
s2β−αf(rH)

m2
H

−
f(rA)

m2
A

]

, (7)

dµ
|e|

= −
1

2mµ
Arg(ρµτρτµ)δaµ , (8)

where

f(rφ) =
−1

2(1− rφ)2

[

2 ln rφ
1− rφ

+ 3− rφ

]

≃
rφ≪1

ln r−1
φ −

3

2
, (9)

with rφ = m2
τ/m

2
φ. Non-degeneracy of the neutral Higgs

masses and proper choice of the overall sign are essential
for obtaining a sufficient δaµ. In Ref. [22], the discrep-
ancy of (g− 2)µ between the experimental value and the
SM prediction was estimated as

δaµ = aEXP
µ − aSMµ = (26.1± 8.0)× 10−10 . (10)

As demonstrated in Ref. [17], this deviation could be ac-
commodated for mH,A,H± ∈ [200, 500] GeV with an ap-
propriate mass hierarchy. From EWBG point of view,
this mass range of the heavy Higgs bosons has the right
scale for realizing the first-order EWPT, though the LFV
interactions by themselves do not play a central role in
the realization, as will be shown in the following sections.
The current limit on dµ is [23]

|dµ| < 1.9× 10−19 e cm , (11)

which is about three orders of magnitude larger than dµ
estimated with Arg(ρµτρτµ) = 1 and δaµ = 3.0×10−9 in
Eq. (8). In what follows, we will clarify the relationship
between CP violation appearing in dµ and that relevant
to BAU.

IV. BARYON NUMBER PRESERVATION

The baryon number is generated via the sphaleron pro-
cess outside the bubble (symmetric phase), and it can
survive if the sphaleron process is sufficiently quenched
inside the bubble (broken phase). To this end, the

sphaleron rate in the broken phase, denoted as Γ(b)
B (T ),

must be smaller than the Hubble constant, H(T ). More
explicitly,

Γ(b)
B (T ) ≃ (prefactor)e−Esph(T )/T

< H(T ) ≃ 1.66
√

g∗(T )T
2/mP , (12)

where Esph stands for the sphaleron energy, g∗ is the de-
grees of freedom of relativistic particles in the plasma
(g∗ = 110.75 in the 2HDM) and mP = 1.22× 1019 GeV.

We parametrize the sphaleron energy as Esph(T ) =
4πv(T )E(T )/g2 with g2 being the SU(2)L gauge coupling
constant. Eq. (12) is then rewritten as

v(T )

T
>

g2
4πE(T )

[

42.97 + log terms
]

≡ ζsph(T ) . (13)

One can see that ζsph(T ) is mostly controlled by E(T ).
The logarithmic corrections in the bracket come from

the prefactor of Γ(b)
B . To our best knowledge, an exten-

sive study on the prefactor in the 2HDM is still missing.
In the minimal supersymmetric SM case, on the other
hand, the zero mode factors of the fluctuations about
the sphaleron typically amount to about 10% [24]. This
is subdominant and, therefore, we will neglect them in
our numerical analysis for simplicity.
We impose Eq. (13) at a critical temperature TC at

which the effective potential has two degenerate minima.
In our analysis, TC and vC ≡ v(TC) are determined us-
ing finite-temperature one-loop effective potential with
thermal resummation. As mentioned in Sec. III, sβ−α

is close to 1 in the region of interest to us. In such a
case, we may simplify the analysis of EWPT to a one-
dimensional problem with a single order parameter as
discussed in Refs. [10, 12].
As is well-known, the extra heavy Higgs bosons can

play a major role in enhancing vC/TC in the 2HDM.
In this case, M2 ≡ m2

3/(sβcβ) must not exceed cer-
tain values, depending on the magnitude of quartic cou-
plings; otherwise, the so-called non-decoupling effects
would diminish, rendering a suppressed vC/TC . Phe-
nomenological consequences of the non-decoupling effects
at T = 0 include significant deviations in the h → γγ de-
cay width [25] and the triple Higgs coupling [26].
For the evaluation of E , we solve the equations of mo-

tion for the sphaleron with appropriate boundary condi-
tions [27, 28]. Here, we use the tree-level Higgs potential
for simplicity. In this case, ζsph may be underestimated
by O(10)% since E(0) > E(TC). As will be shown be-
low, this approximation does not affect our conclusion.
A detailed analysis of ζsph(T ) will be given elsewhere.
In passing, recent studies show that ζsph(TC) = 1.1 −

1.2 in the real singlet-extended SM [29] and ζsph(TC) =
1.23 in the scale-invariant 2HDM [13] for typical param-
eter sets.
In Fig. 1, vC/TC and δaµ are shown in the (mH ,mA)

plane. Here, we takemA = mH± to avoid the electroweak
ρ parameter constraint, and choose cβ−α = 0.006, |ρτµ| =
|ρµτ |, and φτµ + φµτ = π/4, as favored by the solution
of (g − 2)µ anomaly. For the remaining parameters, we
set M = 100 GeV, tan β = 1 and λ6 = λ7 = 0 as an
example. Contours of vC/TC are plotted with the solid
curves in gray with values of 1.0, 1.17, 1.5, 2.0, 2.5, 3.0
from bottom to top, where 1.17 corresponds to ζsph. Al-
lowed 1σ, 2σ and 3σ regions of δaµ are shown by the
areas colored in green, blue and pink, respectively. One
can see that the regions satisfying the baryon number
preservation condition (vC/TC > ζsph) and favored by
(g − 2)µ have an overlap if mA > mH . We note that

Appropriate mass differences among (mh, mH, mA) are needed.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

3

bosons to δaµ and dµ are given by

δaµ =
mµmτRe(ρµτρτµ)

16π2

×

[

c2β−αf(rh)

m2
h

+
s2β−αf(rH)

m2
H

−
f(rA)

m2
A

]

, (7)

dµ
|e|

= −
1

2mµ
Arg(ρµτρτµ)δaµ , (8)

where

f(rφ) =
−1

2(1− rφ)2

[

2 ln rφ
1− rφ

+ 3− rφ

]

≃
rφ≪1

ln r−1
φ −

3

2
, (9)

with rφ = m2
τ/m

2
φ. Non-degeneracy of the neutral Higgs

masses and proper choice of the overall sign are essential
for obtaining a sufficient δaµ. In Ref. [22], the discrep-
ancy of (g− 2)µ between the experimental value and the
SM prediction was estimated as

δaµ = aEXP
µ − aSMµ = (26.1± 8.0)× 10−10 . (10)

As demonstrated in Ref. [17], this deviation could be ac-
commodated for mH,A,H± ∈ [200, 500] GeV with an ap-
propriate mass hierarchy. From EWBG point of view,
this mass range of the heavy Higgs bosons has the right
scale for realizing the first-order EWPT, though the LFV
interactions by themselves do not play a central role in
the realization, as will be shown in the following sections.
The current limit on dµ is [23]

|dµ| < 1.9× 10−19 e cm , (11)

which is about three orders of magnitude larger than dµ
estimated with Arg(ρµτρτµ) = 1 and δaµ = 3.0×10−9 in
Eq. (8). In what follows, we will clarify the relationship
between CP violation appearing in dµ and that relevant
to BAU.

IV. BARYON NUMBER PRESERVATION

The baryon number is generated via the sphaleron pro-
cess outside the bubble (symmetric phase), and it can
survive if the sphaleron process is sufficiently quenched
inside the bubble (broken phase). To this end, the

sphaleron rate in the broken phase, denoted as Γ(b)
B (T ),

must be smaller than the Hubble constant, H(T ). More
explicitly,

Γ(b)
B (T ) ≃ (prefactor)e−Esph(T )/T

< H(T ) ≃ 1.66
√

g∗(T )T
2/mP , (12)

where Esph stands for the sphaleron energy, g∗ is the de-
grees of freedom of relativistic particles in the plasma
(g∗ = 110.75 in the 2HDM) and mP = 1.22× 1019 GeV.

We parametrize the sphaleron energy as Esph(T ) =
4πv(T )E(T )/g2 with g2 being the SU(2)L gauge coupling
constant. Eq. (12) is then rewritten as

v(T )

T
>

g2
4πE(T )

[

42.97 + log terms
]

≡ ζsph(T ) . (13)

One can see that ζsph(T ) is mostly controlled by E(T ).
The logarithmic corrections in the bracket come from

the prefactor of Γ(b)
B . To our best knowledge, an exten-

sive study on the prefactor in the 2HDM is still missing.
In the minimal supersymmetric SM case, on the other
hand, the zero mode factors of the fluctuations about
the sphaleron typically amount to about 10% [24]. This
is subdominant and, therefore, we will neglect them in
our numerical analysis for simplicity.
We impose Eq. (13) at a critical temperature TC at

which the effective potential has two degenerate minima.
In our analysis, TC and vC ≡ v(TC) are determined us-
ing finite-temperature one-loop effective potential with
thermal resummation. As mentioned in Sec. III, sβ−α

is close to 1 in the region of interest to us. In such a
case, we may simplify the analysis of EWPT to a one-
dimensional problem with a single order parameter as
discussed in Refs. [10, 12].
As is well-known, the extra heavy Higgs bosons can

play a major role in enhancing vC/TC in the 2HDM.
In this case, M2 ≡ m2

3/(sβcβ) must not exceed cer-
tain values, depending on the magnitude of quartic cou-
plings; otherwise, the so-called non-decoupling effects
would diminish, rendering a suppressed vC/TC . Phe-
nomenological consequences of the non-decoupling effects
at T = 0 include significant deviations in the h → γγ de-
cay width [25] and the triple Higgs coupling [26].
For the evaluation of E , we solve the equations of mo-

tion for the sphaleron with appropriate boundary condi-
tions [27, 28]. Here, we use the tree-level Higgs potential
for simplicity. In this case, ζsph may be underestimated
by O(10)% since E(0) > E(TC). As will be shown be-
low, this approximation does not affect our conclusion.
A detailed analysis of ζsph(T ) will be given elsewhere.
In passing, recent studies show that ζsph(TC) = 1.1 −

1.2 in the real singlet-extended SM [29] and ζsph(TC) =
1.23 in the scale-invariant 2HDM [13] for typical param-
eter sets.
In Fig. 1, vC/TC and δaµ are shown in the (mH ,mA)

plane. Here, we takemA = mH± to avoid the electroweak
ρ parameter constraint, and choose cβ−α = 0.006, |ρτµ| =
|ρµτ |, and φτµ + φµτ = π/4, as favored by the solution
of (g − 2)µ anomaly. For the remaining parameters, we
set M = 100 GeV, tan β = 1 and λ6 = λ7 = 0 as an
example. Contours of vC/TC are plotted with the solid
curves in gray with values of 1.0, 1.17, 1.5, 2.0, 2.5, 3.0
from bottom to top, where 1.17 corresponds to ζsph. Al-
lowed 1σ, 2σ and 3σ regions of δaµ are shown by the
areas colored in green, blue and pink, respectively. One
can see that the regions satisfying the baryon number
preservation condition (vC/TC > ζsph) and favored by
(g − 2)µ have an overlap if mA > mH . We note that



In 2HDM, it is easy to accommodate not only h->μτ but 
muon g-2.

2

II. MODEL

The 2HDM is an extension of the SM by adding one ad-
ditional Higgs doublet. Such a two-Higgs doublets struc-
ture is motivated by some UV theories such as supersym-
metric theories. The most general Higgs potential at the
renormalizable level is

V0(Φ1,Φ2)
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Hermiticity of V0 requires that m2
1, m

2
2, λ1, λ2, λ3 and

λ4 are all real while m2
3, λ5, λ6 and λ7 are generally

complex, with one of them being possibly made real by a
field redefinition of either Higgs doublet. We parametrize
Φi (i = 1, 2) as

Φi(x) = eiθi

(
φ+
i (x)

1√
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vi + hi(x) + iai(x)
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, (2)

where vieiθi are the VEV’s. For simplicity, we assume
that CP is not violated by the Higgs potential and the
VEV’s, leading to θi = 0. Here we express v1,2 in terms
of polar coordinates, v1 = v cosβ and v2 = v sinβ with
v ≃ 246 GeV. In the following, we will use the shorthand
notation sβ = sinβ, cβ = cosβ and tβ = tanβ.

When discussing phenomenology, it is useful to use the
Higgs (Georgi) basis [19] in which only one Higgs dou-
blet develops the VEV and the Nambu-Goldstone bosons
(G0, G±) are decoupled from the physical states:

Φ′
1 = cβΦ1 + sβΦ2 =

(
G+

1√
2

(
v + h′

1 + iG0
)
)

,

Φ′
2 = −sβΦ1 + cβΦ2 =

(
H+

1√
2

(
h′
2 + iA

)
)

,

(3)

where h′
1 = cβ−αH + sβ−αh and h′

2 = −sβ−αH + cβ−αh
with α being a mixing angle between the two CP-even
Higgs fields (h1,2). In this paper, h is the 125 GeV Higgs
boson and assumed to be the lightest of them all.

Without any symmetries, both Higgs doublets can cou-
ple to fermions. The relevant Yukawa interactions in the

lepton sector are
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where i, j are flavor indices, Y1,2 are general 3-by-3 com-
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agonalize the charged lepton Yukawa couplings Y SM =
(Y1cβ + Y2sβ), i.e., V
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R = YD = diag(ye, yµ, yτ ).
By this diagonalization, the mass terms of the charged
leptons are given by mi = yiv/
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2 with i = e, µ, τ .

Non-diagonal elements of ρij are the sources of tree-
level FCNH processes. In the literature, the so-called
Chen-Sher ansatz [20] for ρij is adopted in order to avoid
experimental constraints. In our analysis, however, we
will not assume it to obtain a parameter space that can
accommodate both h → µτ and g − 2 anomalies. In
general, Y1,2 cannot be uniquely determined even though
YD is known. In our analysis, we make some working
assumption on Y1,2 for baryogenesis, and determine the
structure of FCNH couplings ρ at T = 0. For later use,
we define ρij = |ρij |eiφij .
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Here we outline some important consequences of
Ref. [17] to make this paper self-contained.

The Higgs decay to µ and τ in the current model occurs
at tree level through µ-τ interactions (for earlier studies,
see Refs. [21]), and its branching ratio takes the form

Br(h → µτ) =
mh(|ρµτ |2 + |ρτµ|2)c2β−α

16πΓh
, (6)

where mh = 125 GeV and Γh = 4.1 MeV. It is easy to
accommodate Br(h → µτ) ≃ 0.84% by taking |ρµτ | ∼
|ρτµ| ∼ O(0.1) and cβ−α ∼ O(0.01). It had been shown
that such parameter choices did not violate the current
experimental bounds on other LFV processes such as τ →
µγ and τ → µνν̄, etc [17]. Note that it is sufficient for
either ρµτ or ρτµ to be nonzero to explain the h → µτ
excess only. If both couplings coexist, on the other hand,
we can have a one-loop diagram that induces g − 2 and
electric dipole moment (EDM) of muon, denoted by δaµ
and dµ, respectively. Contributions of the neutral Higgs
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B. The muon anomalous magnetic
moment (muon g − 2)

We have shown that the μ − τ flavor violating Yukawa
couplings in the general 2HDM explain the CMS excess in
the h → μτ decay mode. Here we consider the contribution
of the μ − τ flavor violating interaction to the muon
anomalous magnetic moment (muon g − 2).
The discrepancy between the measured value (aExpμ ) and

the standard model prediction (aSMμ ) of the muon g − 2 has
been reported in Ref. [48]. For example, Ref. [57] suggests
the following result:

aExpμ − aSMμ ¼ ð26.1# 8.0Þ × 10−10: ð13Þ

Here we consider whether the extra contributions induced
by the μ − τ flavor violating interactions can accommodate
this muon g − 2 anomaly. The effective operator for the
muon g − 2 is expressed by

L ¼ v
Λ2

μ̄LσμνμRFμν þ H:c: ð14Þ

We note that the chirality of muon is flipped in the operator.
Therefore, if there is a large chirality flip induced by the
new physics, it can enhance the extra contributions to the
muon g − 2 [58]. Feynman diagrams for the one-loop
corrections involving the neutral Higgs bosons and the μ −
τ flavor violating Yukawa couplings are described in Fig. 1.
As shown in Fig. 1, the chirality is flipped in the internal
line of τ lepton in the diagram. Therefore, it induces the
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where we have assumed that ρμτe ρτμe is real, for simplicity.
We will discuss the effect of an imaginary part of these
Yukawa couplings later. We note that a degeneracy of all
neutral Higgs bosons suppresses the extra contribution to
the muon g − 2, as seen in Eq. (15).
The so-called Barr-Zee–type two-loop diagrams can

contribute to the muon g − 2 if diagonal elements of ρf
are nonzero. In the parameter space we are considering
here, such contributions are always subdominant and
numerically unimportant. In the cases of the flavor-
changing muon or tau decays, however, they can compete
with the one-loop contributions and can play a significant
role. Details will be discussed below.
In Fig. 2, we show numerical results for the extra

contribution to muon g − 2 (δaμ) as a function of cβα

FIG. 1. A Feynman diagram for neutral Higgs boson contri-
butions to the muon g − 2. A photon is attached somewhere in the
charged lepton line.

FIG. 2. Numerical result for δaμ as a function of cβα and
BRðh → μτÞ for mA ¼ 250 GeV (upper figure) and 350 GeV
(lower figure). Regions where the muon g − 2 anomaly in
Eq. (13) is explained within #1σ, #2σ, and #3σ are shown.
Here we determine the mass spectrum of heavy Higgs bosons
assuming λ4 ¼ λ5 ¼ 0.5 in Eq. (10). We have assumed ρμτe ρτμe <
0 with ρμτe ¼ −ρτμe to obtain the positive contribution to δaμ.
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bosons to δaµ and dµ are given by

δaµ =
mµmτRe(ρµτρτµ)

16π2

×
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c2β−αf(rh)

m2
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+
s2β−αf(rH)

m2
H

−
f(rA)

m2
A

]

, (7)

dµ
|e|

= −
1

2mµ
Arg(ρµτρτµ)δaµ , (8)

where

f(rφ) =
−1

2(1− rφ)2

[

2 ln rφ
1− rφ

+ 3− rφ

]

≃
rφ≪1

ln r−1
φ −

3

2
, (9)

with rφ = m2
τ/m

2
φ. Non-degeneracy of the neutral Higgs

masses and proper choice of the overall sign are essential
for obtaining a sufficient δaµ. In Ref. [22], the discrep-
ancy of (g− 2)µ between the experimental value and the
SM prediction was estimated as

δaµ = aEXP
µ − aSMµ = (26.1± 8.0)× 10−10 . (10)

As demonstrated in Ref. [17], this deviation could be ac-
commodated for mH,A,H± ∈ [200, 500] GeV with an ap-
propriate mass hierarchy. From EWBG point of view,
this mass range of the heavy Higgs bosons has the right
scale for realizing the first-order EWPT, though the LFV
interactions by themselves do not play a central role in
the realization, as will be shown in the following sections.
The current limit on dµ is [23]

|dµ| < 1.9× 10−19 e cm , (11)

which is about three orders of magnitude larger than dµ
estimated with Arg(ρµτρτµ) = 1 and δaµ = 3.0×10−9 in
Eq. (8). In what follows, we will clarify the relationship
between CP violation appearing in dµ and that relevant
to BAU.

IV. BARYON NUMBER PRESERVATION

The baryon number is generated via the sphaleron pro-
cess outside the bubble (symmetric phase), and it can
survive if the sphaleron process is sufficiently quenched
inside the bubble (broken phase). To this end, the

sphaleron rate in the broken phase, denoted as Γ(b)
B (T ),

must be smaller than the Hubble constant, H(T ). More
explicitly,

Γ(b)
B (T ) ≃ (prefactor)e−Esph(T )/T

< H(T ) ≃ 1.66
√

g∗(T )T
2/mP , (12)

where Esph stands for the sphaleron energy, g∗ is the de-
grees of freedom of relativistic particles in the plasma
(g∗ = 110.75 in the 2HDM) and mP = 1.22× 1019 GeV.

We parametrize the sphaleron energy as Esph(T ) =
4πv(T )E(T )/g2 with g2 being the SU(2)L gauge coupling
constant. Eq. (12) is then rewritten as

v(T )

T
>

g2
4πE(T )

[

42.97 + log terms
]

≡ ζsph(T ) . (13)

One can see that ζsph(T ) is mostly controlled by E(T ).
The logarithmic corrections in the bracket come from

the prefactor of Γ(b)
B . To our best knowledge, an exten-

sive study on the prefactor in the 2HDM is still missing.
In the minimal supersymmetric SM case, on the other
hand, the zero mode factors of the fluctuations about
the sphaleron typically amount to about 10% [24]. This
is subdominant and, therefore, we will neglect them in
our numerical analysis for simplicity.
We impose Eq. (13) at a critical temperature TC at

which the effective potential has two degenerate minima.
In our analysis, TC and vC ≡ v(TC) are determined us-
ing finite-temperature one-loop effective potential with
thermal resummation. As mentioned in Sec. III, sβ−α

is close to 1 in the region of interest to us. In such a
case, we may simplify the analysis of EWPT to a one-
dimensional problem with a single order parameter as
discussed in Refs. [10, 12].
As is well-known, the extra heavy Higgs bosons can

play a major role in enhancing vC/TC in the 2HDM.
In this case, M2 ≡ m2

3/(sβcβ) must not exceed cer-
tain values, depending on the magnitude of quartic cou-
plings; otherwise, the so-called non-decoupling effects
would diminish, rendering a suppressed vC/TC . Phe-
nomenological consequences of the non-decoupling effects
at T = 0 include significant deviations in the h → γγ de-
cay width [25] and the triple Higgs coupling [26].
For the evaluation of E , we solve the equations of mo-

tion for the sphaleron with appropriate boundary condi-
tions [27, 28]. Here, we use the tree-level Higgs potential
for simplicity. In this case, ζsph may be underestimated
by O(10)% since E(0) > E(TC). As will be shown be-
low, this approximation does not affect our conclusion.
A detailed analysis of ζsph(T ) will be given elsewhere.
In passing, recent studies show that ζsph(TC) = 1.1 −

1.2 in the real singlet-extended SM [29] and ζsph(TC) =
1.23 in the scale-invariant 2HDM [13] for typical param-
eter sets.
In Fig. 1, vC/TC and δaµ are shown in the (mH ,mA)

plane. Here, we takemA = mH± to avoid the electroweak
ρ parameter constraint, and choose cβ−α = 0.006, |ρτµ| =
|ρµτ |, and φτµ + φµτ = π/4, as favored by the solution
of (g − 2)µ anomaly. For the remaining parameters, we
set M = 100 GeV, tan β = 1 and λ6 = λ7 = 0 as an
example. Contours of vC/TC are plotted with the solid
curves in gray with values of 1.0, 1.17, 1.5, 2.0, 2.5, 3.0
from bottom to top, where 1.17 corresponds to ζsph. Al-
lowed 1σ, 2σ and 3σ regions of δaµ are shown by the
areas colored in green, blue and pink, respectively. One
can see that the regions satisfying the baryon number
preservation condition (vC/TC > ζsph) and favored by
(g − 2)µ have an overlap if mA > mH . We note that

Appropriate mass differences among (mh, mH, mA) are needed.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]
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Figure 1: Contour plot of ∆λhhh/λhhh and ϕC/TC in the 2HDM.

1

- Δλhhh>(15-20)%

- 1st-order EWPT is induced 
by heavy Higgs bosons.

[update of Kanemura, Okada, E.S., PLB606,(2005)361]

strong 1st-order EWPT

- hVV and hff can be SM-like.
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violet lines show a fit of the expected number of events normalised by the SM number of events for di�erent �HHH
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8 Conclusions

Cut and count studies have been performed on Monte Carlo simulation under several e�ective assumptions
of the Higgs trilinear self-coupling constant �HHH for three di�erent channels on the HH ! bb⌧⌧ final
state. In each case, the selection has been optimised to maximise the signal to background ratio, considering
most of the reducible and irreducible backgrounds. A parametrisation of the ATLAS detector has been
used to estimate the impact of its performance in rejecting the backgrounds.

As a final result, the expected significance for detecting the signal has been calculated combining the
di�erent channels under a 3% luminosity uncertainty and a 3% background modelling uncertainty as-
sumption for the main backgrounds. Under such conditions, it is expected that the signal would have a
significance of 0.60�, while if the e�ective Higgs trilinear self-coupling �HHH is twice the SM prediction,
a significance of 0.40� could be reached and if it is zero, the significance would be 0.84�. Assuming we
have Standard Model data, we can also set an upper limit of 4.3⇥�(HH ! bb̄⌧+⌧�) at 95% Confidence
Level on the signal cross section. Finally, we can project an exclusion at 95% Confidence Level of BSM
HH production with �HHH/�SM  �4 and �HHH/�SM � 12.

17

2 Higgs Self-Coupling Phenomenology

Higgs boson pair production from gluon fusion can be described at leading order (LO) by the Feyn-

man diagrams shown in Figure 1. Only the diagram on the left hand side includes a contribution from

the triple Higgs coupling, whereas in the case of the diagram on the right hand side the self-coupling

constant does not play a role. Both diagrams contain fermionic loops and are dominated by the con-

tribution from the top quark. There is a relative minus sign between the two contributions, resulting

in destructive interference that effectively reduces the total Higgs pair production cross section in the

Standard Model.

Figure 1: Feynman diagrams describing Higgs pair production from gluon fusion at LO.
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√

s = 14 TeV on

λHHH , on the left with a linear y-scale and with a log y-scale on the right. The LO and NLO values are

obtained with the HPAIR program [9], and for NNLO the results from Ref. [4, 5] are used.

This effect can be seen in Figure 2 (left), where di-Higgs cross sections for different values of the

self-coupling λHHH are shown, at LO, next-to-leading order (NLO), and next-to-next-to-leading order

(NNLO). A value of λHHH = 0 corresponds to the case where there is no self-coupling of the Higgs

boson, and thus the amplitude of the left diagram in Figure 1 vanishes. For this case the cross section is

enhanced by approximately a factor of two compared to the Standard Model [10, 11]. The cross section

decreases with increasing values of the self-coupling up to a value of 2.44 times the Standard Model

value (λS M
HHH

) where the cross section is at its minimum. Figure 2 (right) shows that the cross-section

is never zero. For larger values of λHHH the cross-section increases again. Due to the (approximately)

parabolic shape of the cross-section, measuring only the total cross section for the pair production

process does not allow the value of the self coupling constant to be inferred but the degeneracy could

be removed by further measurements of its dependence on kinematical variables.

Figure 2 also shows that the differences between cross-section predictions at different order in

pQCD are large. The NNLO values are used in the remainder of this note.
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Access to λhhh of 2HDM at the LHC is challenging.
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(NNLO). A value of λHHH = 0 corresponds to the case where there is no self-coupling of the Higgs

boson, and thus the amplitude of the left diagram in Figure 1 vanishes. For this case the cross section is

enhanced by approximately a factor of two compared to the Standard Model [10, 11]. The cross section

decreases with increasing values of the self-coupling up to a value of 2.44 times the Standard Model

value (λS M
HHH

) where the cross section is at its minimum. Figure 2 (right) shows that the cross-section

is never zero. For larger values of λHHH the cross-section increases again. Due to the (approximately)

parabolic shape of the cross-section, measuring only the total cross section for the pair production

process does not allow the value of the self coupling constant to be inferred but the degeneracy could

be removed by further measurements of its dependence on kinematical variables.

Figure 2 also shows that the differences between cross-section predictions at different order in

pQCD are large. The NNLO values are used in the remainder of this note.
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Access to λhhh of 2HDM at the LHC is challenging.
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Chapter 9
Summary

A summary of all model independent coupling precisions is given in Table 9.1.

Table 9.1. Summary of expected accuracies �gi/gi for model independent determinations of the Higgs boson
couplings. The theory errors are �Fi/Fi = 0.1%. For the invisible branching ratio, the numbers quoted are 95%
confidence upper limits.

ILC(250) ILC(500) ILC(1000) ILC(LumUp)Ô
s (GeV) 250 250+500 250+500+1000 250+500+1000

L (fb≠1) 250 250+500 250+500+1000 1150+1600+2500
““ 18 % 8.4 % 4.0 % 2.4 %
gg 6.4 % 2.3 % 1.6 % 0.9 %
W W 4.8 % 1.1 % 1.1 % 0.6 %
ZZ 1.3 % 1.0 % 1.0 % 0.5 %
t¯t – 14 % 3.1 % 1.9 %
b¯b 5.3 % 1.6 % 1.3 % 0.7 %
·+·≠ 5.7 % 2.3 % 1.6 % 0.9 %
cc̄ 6.8 % 2.8 % 1.8 % 1.0 %
µ+µ≠ 91% 91% 16 % 10 %
�T (h) 12 % 4.9 % 4.5 % 2.3 %
hhh – 83 % 21 % 13 %
BR(invis.) < 0.9 % < 0.9 % < 0.9 % < 0.4 %

For the purpose of comparing ILC coupling precisions with those of other facilities we present
the coupling errors in Table 9.2.

Table 9.2. Summary of expected accuracies �gi/gi of Higgs boson couplings using, for each coupling, the fitting
technique that most closely matches that used by LHC experiments. For gg , g“ , gW , gZ , gb, gt, g· , �T (h) the seven
parameter HXSWG benchmark parameterization described in Section 10.3.7 of Ref. [206] is used. For the couplings
gµ, ghhh and the limit on invisible branching ratio independent analyses are used. The charm coupling gc comes
from our 10 parameter model independent fit. All theory errors are 0.1%. For the invisible branching ratio, the
numbers quoted are 95% confidence upper limits.

ILC(250) ILC(500) ILC(1000) ILC(LumUp)Ô
s (GeV) 250 250+500 250+500+1000 250+500+1000

L (fb≠1) 250 250+500 250+500+1000 1150+1600+2500
““ 17 % 8.3 % 3.8 % 2.3 %
gg 6.1 % 2.0 % 1.1 % 0.7 %
W W 4.7 % 0.4 % 0.3 % 0.2 %
ZZ 0.7 % 0.5 % 0.5 % 0.3 %
t¯t 6.4 % 2.5 % 1.3 % 0.9 %
b¯b 4.7 % 1.0 % 0.6 % 0.4 %
·+·≠ 5.2 % 1.9 % 1.3 % 0.7 %
�T (h) 9.0 % 1.7 % 1.1 % 0.8 %
µ+µ≠ 91 % 91 % 16 % 10 %
hhh – 83 % 21 % 13 %
BR(invis.) < 0.9 % < 0.9 % < 0.9 % < 0.4 %
cc̄ 6.8 % 2.8 % 1.8 % 1.0 %

In the energy and luminosity scenarios discussed in this paper it was assumed that the luminosity
upgrades at 250 and 500 GeV center of mass energy occurred after the energy upgrade at 1000 GeV.
It is of interest to consider a scenario where the 250 GeV and 500 GeV luminosity upgrade running
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in Fig. 1 and the heavy Higgs boson masses mH = 350 GeV and 
mA = mH± = 400 GeV, leading to vC /TC = 214.9 GeV/99.2 GeV =
2.17. As an ansatz for Y SM, we consider

Y SM =

⎛

⎝

√
2me/v 0 0

0 3.31 × 10−3 −6.81i × 10−4

0 8.91i × 10−3 3.70 × 10−3

⎞

⎠ , (18)

which is diagonalized by

V e
R =

⎛

⎝
1 0 0
0 −0.365i −0.931i
0 −0.931 0.365

⎞

⎠ , (19)

V e
L =

⎛

⎝
1 0 0
0 −0.945i −0.327i
0 −0.327 0.945

⎞

⎠ . (20)

Also, we take φττ = π/2. Note that each of Y1,2 is fixed by 
V e†

L Y SM V e
R = Y D and Eq. (5) once ρi j are given.

The solid lines represent the contours of Y B/Y obs
B = 0.5 (left) 

and 1.0 (right). The dashed lines in black and red represent Br(h →
µτ ) = 1.43% and 0.84%, respectively. The colored regions with the 
same color scheme as in Fig. 1 explain the (g − 2)µ anomaly. In 
our setup, the dominant contribution to the CP-violating source 
term comes from SτLµR which is induced by the 32 elements of 
Y1 and Y2. We find that these off-diagonal elements have stronger 
dependences on |ρττ | than |ρτµ| and |ρµτ |. Under rather generous 
assumptions for the bubble wall profile, the generated BAU can 
reach its observed value for |ρτµ| ≃ 0.1 − 0.6 and |ρττ | ≃ 0.8 −
0.9. Our main conclusion is that there is a parameter space that 
is consistent with both experimental anomalies of h → µτ and 
(g − 2)µ as well as the observed BAU.

Some comments on the theoretical uncertainties are in order. 
(1) We take the same size of |%β| as in Ref. [9] as a reference 
value. However, quantitative studies of it in the 2HDM are still ab-
sent. In the MSSM, %β = O(10−2 − 10−4) depending on mA [42]. 
In the next-to-MSSM, %β can reach O(0.1) in some parameter 
space [43]. We should note that Y B is mostly subject to the un-
certainties of %β among others since it is linearly proportional 
to %β . (2) Studies on v w can be found in Refs. [44–47], which 
suggest that 0.1 ! v w ! 0.6 in non-SUSY models. For stronger first-
order EWPT, v w tends to be large and may reduce Y B to some 
extent. In our analysis, we simply adopt the lowest value as the 
most generous choice. A more precise determination of v w us-
ing our input parameters is definitely indispensable to obtaining 
more precise Y B . (3) As mentioned above, the treatment of 'h is 
somewhat tricky. It is found that Y B may change by a factor of 
a few or more, depending on at which scale the k-dependent 'h

is put in. (4) The VEV-insertion method used here is vulnerable 
to theoretical uncertainties (see, e.g., Refs. [5,48]) and may lead 
to an overestimated BAU compared to an all-order VEV resumma-
tion method [49–51]. However, a satisfactory formalism of the Y B
calculation beyond that is still not available, and hence the error 
associated with the approximation cannot be properly quantified.

In summary, the observed Y B can be marginally produced with 
the generous choice of the input parameters. However, a defini-
tive statement cannot be made until the above-mentioned various 
theoretical uncertainties are fully under control.

We now turn to another experimental constraint. As |ρττ |
increases, Br(τ → µγ ) gets enhanced and, for |ρττ | " 0.1, ex-
ceeds the current experimental upper bound, Br(τ → µγ ) < 4.4 ×
10−8 [52]. However, as demonstrated in Ref. [17], an acciden-
tal cancellation between the one-loop and two-loop contributions 
could occur in Br(τ → µγ ) if the new top Yukawa coupling (de-
noted as ρtt ) took a nonzero value. In the current case, |ρtt | ≃ 0.5

Fig. 3. Correlations between BAU and electron EDM in the (|ρττ |, φττ ) plane. The 
contours shown in white are |de | = 2.0 × 10−29 e cm (left) and 3.0 × 10−29 e cm
(right). On the other hand, Y B/Y obs

B = 0.5 (left) and 1.0 (right) are denoted by the 
contours in black.

with φtt ≃ φττ gives Br(τ → µγ ) ≃ 2 ×10−8 for |ρττ | ≃ 1. The im-
pact of φtt on Y B highly depends on the Yukawa structure of the 
top quark. With our assumption, the top quark does not provide 
dominant CP violation for the baryogenesis.

Since ρττ and ρtt are complex, they may induce an elec-
tron EDM through two-loop Barr–Zee diagrams, among which one 
Higgs-photon mediated loop diagram is dominant. In Fig. 3, |de|
and Y B/Y obs

B are plotted as functions of |ρττ | and φττ . The con-
tours in white represent |de| = 2.0 × 10−29 e cm (left) and 3.0 ×
10−29 e cm (right). |de| with |ρττ | = 1 and φττ = π/2 reaches a 
maximal value of 3.5 × 10−29 e cm which is slightly smaller than 
the current bound on electron EDM, |de| < 8.7 × 10−29 e cm [53]. 
This is due to the facts that the heavy Higgs boson couplings to the 
electron is suppressed by cβ−α and that the extra Yukawa coupling 
ρee is absent. It should be noted that the complex phases of ρτµ

and ρµτ do not contribute to de via the Higgs-photon mediated 
Barr–Zee diagrams since the internal photon line cannot change 
the fermion flavors. As discussed in Sec. 3, on the other hand, the 
muon EDM is induced by those FCNH couplings at one-loop level, 
giving rise to |dµ| ≃ 3 × 10−22 e cm for the current parameter set.

We also find that τ → µνν̄ can give some constraints on |ρτµ|
and |ρµτ | as well as mH± and can be similar to the constraint 
coming from Br(h → τµ) < 1.43.

6. Conclusion

We have studied electroweak baryogenesis in the general 
framework of the two-Higgs doublet model in light of the h → µτ
and (g − 2)µ anomalies. In this model, the heavy Higgs bosons 
with the appropriate µ-τ flavor violation can accommodate the 
above two anomalies. At the same time, these extra Higgs bosons 
can induce a strong first-order electroweak phase transition as re-
quired for successful electroweak baryogenesis.

It is found that the µ-τ flavor-violating lepton sector has a 
great potential to generate sufficient baryon asymmetry of the 
Universe within the theoretical uncertainties. In this scenario, 
the interplay between ρτµ/ρµτ and ρττ is crucially important. 
Our analysis suggests that Y B/Y obs

B ≃ 1 for |ρτµ| ≃ 0.1 − 0.6
and |ρττ | ≃ 0.8 − 0.9 with O(1) CP-violating phases. To sup-
press Br(τ → µγ ), a cancellation mechanism has to be at work, 
which additionally predicts |ρtt | ≃ 0.5 and φtt ≃ φττ . Since fu-

BAU vs. electron EDM
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Figure 5: Regions of the [cos(�� ↵), tan �] plane of four types of 2HDMs excluded by fits to the measured rates of
Higgs boson production and decays. The likelihood contours where �2 ln⇤ = 6.0, corresponding approximately to
the 95% CL (2 std. dev.), are indicated for both the data and the expectation for the SM Higgs sector. The cross in
each plot marks the observed best-fit value. The light shaded and hashed regions indicate the observed and expected
exclusions, respectively. The ↵ and � parameters are taken to satisfy 0  �  ⇡/2 and 0  � � ↵  ⇡ without loss
of generality.
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Figure 6: Constraints on the flavour-violating Yukawa couplings, |Yµt| and |Ytµ|. The black
dashed lines are contours of B(H ! µt) for reference. The expected limit (red solid line)
with one sigma (yellow) and two sigma (green) bands, and observed limit (black solid line)
are derived from the limit on B(H ! µt) from the present analysis. The shaded regions are
derived constraints from null searches for t ! 3µ (dark green) and t ! µg (lighter green). The
yellow line is the limit from a theoretical reinterpretation of an ATLAS H ! tt search [4]. The
light blue region indicates the additional parameter space excluded by our result. The purple
diagonal line is the theoretical naturalness limit YijYji  mimj/v2.

significance of 2.4 s is observed, corresponding to a p-value of 0.010. The best fit branching
fraction is B(H ! µt) = (0.84+0.39

�0.37)%. A constraint of B(H ! µt) < 1.51% at 95% confidence
level is set. The limit is used to constrain the Yukawa couplings,

p
|Yµt|2 + |Ytµ|2 < 3.6 ⇥ 10�3.

It improves the current bound by an order of magnitude.
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