Electroweak Baryogenesis and Sphaleron at LHC

Eibun Senaha (National Taiwan U)
Jan. 11, 2017@U of Tokyo

based on
[1] C.-W. Chiang (Natl Taiwan U), K. Fuyuto (UMass-Amherst), E.S., 1607.07316 [PLB]
[2] K. Funakubo (Saga U), K. Fuyuto, E.S., 1612.05431

Outline

- Motivation
- Electroweak baryogenesis (EWBG) in a nutshell
- EWBG with lepton flavor violation
- Does a band structure affect ($B+L$)-changing processes?
- $(B+L)$-changing process in high- E collisions
- $(B+L)$-changing process at high-T
- Summary

Introduction

problems after the Higgs discovery

Does the 125 GeV boson alone do the following jobs?

- mass generation
- EW symmetry breaking

Experiments will answer those grand questions in the near future.
Most importantly, those experiments may also shed light on unsolved problems.

Introduction

problems after the Higgs discovery

Does the 125 GeV boson alone do the following jobs?

- mass generation
- EW symmetry breaking

Experiments will answer those grand questions in the near future.
Most importantly, those experiments may also shed light on unsolved problems.

Higgs is a window to new physics.

Electroweak baryoqenesis

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

Sakharov's conditions

* B violation: anomalous (sphaleron) process $0 \leftrightarrow \sum_{i=1,2,3}\left(3 q_{L}^{i}+l_{\text {(LH fermions) }}^{i}\right)$
- C violation: chiral gauge interaction
* CP violation: KM phase and/or other sources in beyond the SM
* Out of equilibrium: $1^{\text {st }}$ order EW phase transition (EWPT) with expanding bubble walls

BAU can arise by the growing bubbles.

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

(1) Asymmetries arise ($\because \mathrm{CPV}$) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{n}^{R}-n_{b}^{R}}_{\neq 0}=0$

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{b}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU $\quad n_{B}=\underbrace{n_{b}^{L}-n_{\bar{b}}^{L}}_{\text {changed }}+n_{b}^{R}-n_{\bar{b}}^{R} \rightarrow n_{B} \neq 0$

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{\frac{L}{b}}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{b}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU $\quad n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}+n_{b}^{R}-n_{b}^{R} \rightarrow n_{B} \neq 0$
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)] symmetric phase

How do we test this scenario?

(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{\frac{L}{b}}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{\frac{R}{b}}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU $\quad n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}+n_{b}^{R}-n_{b}^{R} \rightarrow n_{B} \neq 0$
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

How do we test this scenario?
-> cannot redo EWPT in lab. exp. So, test Sakharov'criteria instead.
(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{b}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU $\quad n_{B}=\underbrace{n_{b}^{L}-n_{\frac{L}{b}}^{L}}+n_{b}^{R}-n_{b}^{R} \rightarrow n_{B} \neq 0$
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

How do we test this scenario?
-> cannot redo EWPT in lab. exp. So, test Sakharov'criteria instead.
(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{b}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU $\quad n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}+n_{b}^{R}-n_{b}^{R} \rightarrow n_{B} \neq 0$
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{b}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

How do we test this scenario? -> cannot redo EWPT in lab. exp. $n_{B}=\underbrace{n_{b}^{L}-n_{\bar{b}}^{L}}+n_{b}^{R}-n_{\bar{b}}^{\neq 0} \rightarrow n_{B} \neq 0$

EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

How do we test this scenario?
-> cannot redo EWPT in lab. exp. So, test Sakharov'criteria instead.
(1) Asymmetries arise (\because CPV) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{\bar{b}}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

probe by collider physics Higgs physics etc

 $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}+n_{b}^{R}-n_{\bar{b}}^{\neq 0} \rightarrow n_{B} \neq 0$
EWBG in a nutshell

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]
symmetric phase

How do we test this scenario?
-> cannot redo EWPT in lab. exp. So, test Sakharov'criteria instead.
(1) Asymmetries arise ($\because C P V$) but no BAU. $n_{B}=\underbrace{n_{b}^{L}-n_{b}^{L}}_{\neq 0}+\underbrace{n_{b}^{R}-n_{b}^{R}}_{\neq 0}=0$
(2) LH part changes (\because sphaleron) \rightarrow BAU
(3) If $\Gamma_{B}^{(b)}<H$ the BAU can survive.

$$
\Gamma_{B}^{(b)}<H
$$

B-changing rate in the broken phase is

$$
\Gamma_{B}^{(b)} \simeq(\text { prefactor }) e^{-E_{\mathrm{sph}} / T}
$$

$\mathrm{E}_{\text {sph }}$ is proportional to the Higgs VEV

$$
E_{\mathrm{sph}} \propto v(T)
$$

what we need is

large Higgs VEV after the EWPT
\Longrightarrow EWPT has to be "strong" $1^{\text {st }}$ order!!

$$
\Gamma_{B}^{(b)}\left(T_{C}\right)<H\left(T_{C}\right) \rightarrow \frac{v_{C}}{T_{C}} \gtrsim 1
$$

$$
\Gamma_{B}^{(b)}<H
$$

B-changing rate in the broken phase is

$$
\Gamma_{B}^{(b)} \simeq(\text { prefactor }) e^{-E_{\mathrm{sph}} / T}
$$

$\mathrm{E}_{\text {sph }}$ is proportional to the Higgs VEV
Energy

$$
E_{\mathrm{sph}} \propto v(T)
$$

what we need is

large Higgs VEV after the EWPT
\Longrightarrow EWPT has to be "strong" $1^{\text {st }}$ order!!

$$
\Gamma_{B}^{(b)}\left(T_{C}\right)<H\left(T_{C}\right) \rightarrow \frac{v_{C}}{T_{C}} \gtrsim 1
$$

Current status of EWBG

Current status of EWBG

- SM EWBG was excluded.
\because No $1^{\text {st }}$-order PT for $m_{h}=125 \mathrm{GeV}$.
[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

Current status of EWBG

- SM EWBG was excluded.
\because No $1^{\text {st }}$-order PT for $m_{h}=125 \mathrm{GeV}$. $\frac{v_{C}}{T_{C}} \gtrsim 1$ not satisfied
[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

Current status of EWBG

- SM EWBG was excluded.

\because No $1^{\text {st }}$-order PT for $m_{h}=125 \mathrm{GeV}$.

$$
\frac{v_{C}}{T_{C}} \gtrsim 1 \text { not satisfied }
$$

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.
\because light stop scenario is
inconsistent with LHC data
[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]

Current status of EWBG

- SM EWBG was excluded.

\because No $1^{\text {st }}$-order PT for $m_{h}=125 \mathrm{GeV}$.

$$
\frac{v_{C}}{T_{C}} \gtrsim 1 \text { not satisfied }
$$

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.
\because light stop scenario is
inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]

Current status of EWBG

- SM EWBG was excluded.

\because No $1^{\text {st }}$-order PT for $m_{\mathrm{h}}=125 \mathrm{GeV} . \quad \frac{v_{C}}{T_{C}} \gtrsim 1$ not satisfied
[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.
\because light stop scenario is
inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]
- No enough data to exclude other models (2HDM, NMSSM etc). Anyway, collider test of EWBG will be done based on the B-preservation criteria:

Current status of EWBG

- SM EWBG was excluded.

\because No $1^{\text {st }}$-order PT for $m_{\mathrm{h}}=125 \mathrm{GeV} . \quad \frac{v_{C}}{T_{C}} \gtrsim 1$ not satisfied
[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.
\because light stop scenario is
inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]
- No enough data to exclude other models (2HDM, NMSSM etc). Anyway, collider test of EWBG will be done based on the B-preservation criteria:

$$
\frac{v_{C}}{T_{C}} \gtrsim 1
$$

Recent papers on EWBG

Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited 1612.04086
P. Basler ${ }^{1 *}$, M. Krause ${ }^{1 \dagger}$, M. Mühlleitner ${ }^{1 \ddagger}$, J. Wittbrodt ${ }^{1,2 \xi}$ and A. Wlotzka ${ }^{1 /}{ }^{\boldsymbol{q}}$

Effective field theory, electric dipole moments and electroweak baryogenesis
Csaba Balazs ${ }^{a}$, Graham White ${ }^{a}$ and Jason Yue ${ }^{b, c} \quad 1612.01270 \quad$ David Curtin ${ }^{a}$ Patrick Meade b Harikrishnan Ramani $\quad 1612.00466$

Lepton-Flavored Electroweak Baryogenesis Huai-Ke Guo, ${ }^{1,2}$ Ying-Ying Li, ${ }^{3}$ Tao Liu, ${ }^{3}$ Michael Ramsey-Musolf, ${ }^{1,4}$ and Jing Shu ${ }^{2,5} 1609.09849$

Electroweak baryogenesis and gravitational waves from a real scalar singlet
1601.01681

Ville Vaskonen*
National Institute of Chemical Physics and Biophysics, 1611.02073
Rävala 10, 10143 Tallinn, Estonia
Ville Vaskonen*
National Institute of Chemical Physics and Biophysics, 1611.02073
Rävala 10, 10143 Tallinn, Estonia

Enabling Electroweak Baryogenesis through Dark

 MatterDisfavouring Electroweak Baryogenesis and a hidden Higgs in a $C P$-violating Two-Higgs-Doublet Model
1611.05757

Anders Haarr, ${ }^{a}$ Anders Kuellestad, ${ }^{b}$ Troels C. Petersen ${ }^{c}$

Thermal Resummation and Phase Transitions

David Curtin ${ }^{a}$ Patrick Meade ${ }^{b}$ Harikrishnan Ramani ${ }^{b}$

Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology
\qquad
Michat Artymowski ${ }^{1}$ Marek Lewicki ${ }^{2,3}$ James D. Wells ${ }^{3,4} \quad$ 1609.07143
Sorry, this is incomplete list.

Electroweak baryogenesis with lepton flavor violation

 Cheng-Wei Chiang ${ }^{\text {a,b,c,d }}$, Kaori Fuyuto ${ }^{e}$, Eibun Senaha ${ }^{\text {a,b,* }}$C.-W. Chiang (Natl Taiwan U), K. Fuyuto (UMass-Amherst), E.S., 1607.07316 [PLB]

Higgs decay with LFV

CMS: $\operatorname{Br}(h \rightarrow \mu \tau)=\left(0.84_{-0.37}^{+0.39}\right) \% \quad 1502.07400$ [PLB] 2.4σ excess Atlas: $\operatorname{Br}(h \rightarrow \mu \tau)=(0.53 \pm 0.51) \% 1604.07730$

What does lepton flavor-violating (LFV) Higgs tell us?
2 Higgs doublets model (2HDM) is one of the simplest solutions.

$$
\begin{aligned}
& -\mathcal{L}_{Y} \ni \bar{e}_{i L}\left[\frac{y_{i}}{\sqrt{2}} \delta_{i j} s_{\beta-\alpha}+\frac{1}{\sqrt{2}} \rho_{i j} c_{\beta-\alpha}\right] e_{j R} h \\
& +\bar{e}_{i L}\left[\frac{y_{i}}{\sqrt{2}} \delta_{i j} c_{\beta-\alpha}-\frac{1}{\sqrt{2}} \rho_{i j} s_{\beta-\alpha}\right] e_{j R} H+\frac{i}{\sqrt{2}} \bar{e}_{i L} \rho_{i j} e_{j R} A+\text { h.c. },
\end{aligned}
$$

- LFV comes from the off-diagonal entries of $\rho_{i j} . \quad \rho_{i j} \in \mathbb{C} \Rightarrow C P V$
- μ-t flavor violation can explain $h->\mu \mathrm{T}$ and $\mathrm{g}-2$.
[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

Higgs decay with LFV

CMS: $\operatorname{Br}(h \rightarrow \mu \tau)=\left(0.84_{-0.37}^{+0.39}\right) \% \quad 1502.07400$ [PLB] 2.4σ excess Atlas: $\operatorname{Br}(h \rightarrow \mu \tau)=(0.53 \pm 0.51) \% 1604.07730$

What does lepton flavor-violating (LFV) Higgs tell us?
2 Higgs doublets model (2HDM) is one of the simplest solutions.

$$
\left(\begin{array}{rl}
-\mathcal{L}_{Y} \ni & \bar{e}_{i L}[
\end{array} \quad\left[\begin{array}{l}
{\left[\frac{y_{i}}{\sqrt{2}} \delta_{i j} s_{\beta-\alpha}+\frac{1}{\sqrt{2}} \rho_{i j} c_{\beta-\alpha}\right] e_{j R} h} \\
\\
\\
+\bar{e}_{i L}\left[\frac{y_{i}}{\sqrt{2}} \delta_{i j} c_{\beta-\alpha}-\frac{1}{\sqrt{2}} \rho_{i j} s_{\beta-\alpha}\right] e_{j R} H+\frac{i}{\sqrt{2}} \bar{e}_{i L} \rho_{i j} e_{j R} A+\text { h.c. },
\end{array}\right)\right.
$$

- LFV comes from the off-diagonal entries of $\rho_{i j} . \quad \rho_{i j} \in \mathbb{C} \Rightarrow C P V$
- μ-t flavor violation can explain $h->\mu \mathrm{T}$ and $\mathrm{g}-2$.
[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

Higgs decay with LFV

CMS: $\operatorname{Br}(h \rightarrow \mu \tau)=\left(0.84_{-0.37}^{+0.39}\right) \% \quad 1502.07400$ [PLB] 2.4σ excess Atlas: $\operatorname{Br}(h \rightarrow \mu \tau)=(0.53 \pm 0.51) \% 1604.07730$

What does lepton flavor-violating (LFV) Higgs tell us?
2 Higgs doublets model (2HDM) is one of the simplest solutions.

$$
\begin{aligned}
& -\mathcal{L}_{Y} \ni \bar{e}_{i L}\left[\left[\frac{y_{i}}{\sqrt{2}} \delta_{i j} s_{\beta-\alpha}+\frac{1}{\sqrt{2}} \rho_{i j} \beta_{\beta-\alpha}\right] e_{j R} h\right. \\
& +\bar{e}_{i L}\left[\frac{y_{i}}{\sqrt{2}} \delta_{i j} c_{\beta-\alpha}-\frac{1}{\sqrt{2}} \rho_{i j} s_{\beta-\alpha}\right] e_{j R} H+\frac{i}{\sqrt{2}} \bar{e}_{i}\left[\rho_{i j} e_{j R} A+\right.\text { h.c. }
\end{aligned}
$$

- LFV comes from the off-diagonal entries of $\rho_{i j} . \quad \rho_{i j} \in \mathbb{C} \Rightarrow C P V$
- μ-t flavor violation can explain $h->\mu \mathrm{T}$ and $\mathrm{g}-2$.
[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

EWBG with LFV

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]
benchmark point. $m_{A}=m_{H^{ \pm}}, M=100 \mathrm{GeV}, \tan \beta=1, c_{\beta-\alpha}=0.006$
benchmark point: $\quad\left|\rho_{\tau \mu}\right|=\left|\rho_{\mu \tau}\right|, \phi_{\tau \mu}+\phi_{\mu \tau}=\pi / 4, \lambda_{6,7}=0 \operatorname{Br}(h \rightarrow \mu \tau)=0.84 \%$
$-\operatorname{Br}(h->\mu \mathrm{T})=0.84 \%$

- g-2 favored region $m_{A} \gtrsim m_{H}$
for $\operatorname{Re}\left(\varrho_{\tau \mu}{ }_{\mu \tau}\right)>0$.
- EWBG-viable region
$v_{C} / T_{C}>1.17$

EWBG with LFV

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]
benchmark point: $\quad \begin{aligned} & m_{A}=m_{H^{ \pm}}, M=100 \mathrm{GeV}, \tan \beta=1, c_{\beta-\alpha}=0.006 \\ & \left|\rho_{\tau \mu}\right|=\left|\rho_{\mu \tau}\right|, \phi_{\tau \mu}+\phi_{\mu \tau}=\pi / 4, \lambda_{6,7}=0 \operatorname{Br}(h \rightarrow \mu \tau)=0.84 \%\end{aligned}$
$-\operatorname{Br}(h->\mu \mathrm{T})=0.84 \%$

- g-2 favored region $m_{A} \gtrsim m_{H}$
for $\operatorname{Re}\left(\varrho_{\tau \mu} \varrho_{\mu \tau}\right)>0$.
- EWBG-viable region
$\mathrm{v}_{C} / \mathrm{T}_{C}>1.17$

EWBG with LFV

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]
benchmark point: $\quad \frac{m_{A}=m_{H^{ \pm}}, M=100 \mathrm{GeV}, \tan \beta=1, \left.\frac{c_{\beta-\alpha}=0.006}{\left|\rho_{\tau \mu}\right|=\left|\rho_{\mu \tau}\right|} \right\rvert\,, \phi_{\tau \mu}+\phi_{\mu \tau}=\pi / 4, \lambda_{6,7}=0 \operatorname{Br}(h \rightarrow \mu \tau)=0.84 \%}{0}$
$-\operatorname{Br}(h->\mu \mathrm{T})=0.84 \%$

- g-2 favored region $m_{A} \gtrsim m_{H}$
for $\operatorname{Re}\left(\varrho_{\tau \mu} \varrho_{\mu \tau}\right)>0$.
- EWBG-viable region
$\mathrm{v}_{C} / \mathrm{T}_{C}>1.17$

EWBG with LFV

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]
benchmark point: $\quad \frac{m_{A}=m_{H^{ \pm}}}{\left.\left|\rho_{\tau \mu}\right|=\left|\rho_{\mu \tau}\right|, \phi_{\tau \mu}+\phi_{\mu \tau}=\pi / 4, \lambda_{6,7}=\frac{c_{\beta-\alpha}=0.006}{0 \operatorname{Br}(k)} \rightarrow \mu \tau\right)}=0.84 \%$
$-\operatorname{Br}(h->\mu \mathrm{T})=0.84 \%$

- g-2 favored region $m_{A} \gtrsim m_{H}$
for $\operatorname{Re}\left(\varrho_{\tau \mu} \Omega_{\mu \tau}\right)>0$.
- EWBG-viable region $\mathrm{v}_{\mathrm{C}} / \mathrm{T}_{\mathrm{C}}>1.17$

Combined: $300 \mathrm{GeV} \approx m_{H} \approx m_{A} \approx 450 \mathrm{GeV}$

$A \rightarrow \tau \tau$

ATLAS-CONF-2016-085

In our scenario:

For BAU

$-\left|\varrho_{\tau \mu}\right|=\left|\varrho_{\mu \tau}\right|=0.1-0.6$,

- $\left|\varrho_{\tau \tau}\right|=0.8-0.9$.
-> probed by A->TT.
- $\operatorname{Br}(A->T T)$ also depends on other ϱ couplings. (model dependent)

$A \rightarrow \tau \tau$

ATLAS-CONF-2016-085

In our scenario:

For BAU

$-\left|\varrho_{\tau \mu}\right|=\left|\varrho_{\mu \tau}\right|=0.1-0.6$,

- $\left|\varrho_{\tau \tau}\right|=0.8-0.9$.
-> probed by A->TT.
- $\operatorname{Br}(A->T T)$ also depends on other ϱ couplings. (model dependent)

$(B+L)$-changing process and a band structure

$B+L$ violation

- $(B+L)$ is violated by a chiral anomaly in EW theories.

Vacuum transition (instanton)

['t Hooft, PRL37,8 (1976), PRD14,3432 (1976)]
$\sigma_{\text {instanton }} \simeq e^{-2 S_{\text {instanton }}}=e^{-4 \pi / \alpha_{W}} \simeq 10^{-162}$

Transition rate at finite-E

instanton-based [Ringwald, NPB330,(1990)1, Espinosa, NPB343 (1990)310]

$$
\sigma(E) \sim \exp \left(\frac{4 \pi}{\alpha_{W}} F(E)\right) \quad E \jmath \Longrightarrow \sigma(E) \hat{\jmath}
$$

- But, instanton-based calculation is not valid at E>Esph

Bounce is more appropriate (transition between the finite-E states)
-> Reduced model.
[Aoyama, Goldberg, Ryzak, PRL60, 1902 ('88)]
[Funakubo, Otsuki, Takenaga, Toyoda, PTP87,663('92), PTP89,881('93)] [H. Tye, S. Wong, PRD92,045005 ('15)]

Tye-Wong's work

[H. Tye, S. Wong, PRD92,045005 (2015)]

$F(E)=-1+\frac{9}{8}\left(\frac{E}{E_{0}}\right)^{4 / 3}-\frac{9}{16}\left(\frac{E}{E_{0}}\right)^{2}+\cdots$ (instanton calculus) $E_{0} \simeq 15 \mathrm{TeV}$
$F(E)=0$ for $E>E_{\text {sph }}$ (Tye-Wong) $\because a$ band structure
Q1: Can we observe the sphaleron process at LHC?
Q2: Does the band affect sphaleron process at finite-T?

Reduced model

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (1988)]
[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)] [H. Tye, S. Wong, PRD92,045005 (2015)]
SU(2)-gauge Higgs system $\left(U(1)_{y}\right.$ can be neglected)

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\left(D_{\mu} \Phi\right)^{\dagger} D^{\mu} \Phi-\lambda\left(\Phi^{\dagger} \Phi-\frac{v^{2}}{2}\right)^{2} \quad D_{\mu}=\partial_{\mu}+i g A_{\mu}
$$

Let us promote μ to a dynamical variable:

$$
\begin{gathered}
\mu \Rightarrow \mu(t) \\
\mu(-\infty)=0, \mu(+\infty)=\pi: \text { vacuum }, \\
\mu\left(t_{\text {sph }}\right)=\pi / 2: \text { sphaleron }
\end{gathered}
$$

- We construct a reduced model by adopting a Manton's ansatz.

Non-contractible loop (least energy path)

Comparison with Tye-Wong's work

Some differences between our work and Tye-Wong's (TW's).

	A_{0}	Sphaleron mass	Method for band structure
this work	$A_{0} \neq 0$	μ-dependent	WKB w/ 3 connection formulas
Tye-Wong	$A_{0}=0$	μ-independent	Schroedinger eq. numerically

We use a Manton's ansatz with $A_{0}=\frac{i}{g_{2}} f(r) \partial_{0} U U^{-1}$. fully gauge inv. Classical action: $->$ no div. issue

$$
\begin{gathered}
S[\mu]=g_{2} v \int d t\left[\frac{M(\mu)}{2}\left(\frac{d}{d t} \frac{\mu(t)}{g_{2} v}\right)^{2}-V(\mu)\right], \\
M(\mu)=\frac{4 \pi}{g_{2}^{2}}\left(\alpha_{0}+\alpha_{1} \cos ^{2} \mu+\alpha_{2} \cos ^{4} \mu\right), \quad V(\mu)=\frac{4 \pi}{g_{2}^{2}} \sin ^{2} \mu\left(\beta_{1}+\beta_{2} \sin ^{2} \mu\right) . \\
M_{\text {sph }}=g_{2} v M\left(\frac{\pi}{2}\right) \simeq 92.01 \mathrm{TeV}, \quad E_{\text {sph }}=g_{2} v V\left(\frac{\pi}{2}\right) \simeq 9.08 \mathrm{TeV} .
\end{gathered}
$$

c.f., TW's: $M_{\text {sph }}=17.1 \mathrm{TeV}$. With same normalization, $M_{\text {sph }}$ (ours) $\rightarrow 23.0 \mathrm{TeV}$.

Band structure $E_{\text {sph }}=9.08 \mathrm{TeV} \quad E_{\text {sph }}=9.11 \mathrm{TeV}$

this work Units: TeV
Tye-Wong

Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	$?$	$?$
13.980	0.0741	$?$	$?$
\vdots	\vdots	\vdots	\vdots
9.072	0.0104	9.113	0.0156
9.044	4.85×10^{-3}	9.081	7.19×10^{-3}
9.012	1.61×10^{-3}	9.047	2.62×10^{-3}
\vdots	\vdots	\vdots	\vdots
0.1015	1.88×10^{-199}	0.1027	$\sim 10^{-177}$
0.03383	1.31×10^{-202}	0.03421	$\sim 10^{-180}$

Band gaps still exist E>Esph due to nonzero reflection rate.

Band structure $E_{\text {sph }}=9.08 \mathrm{TeV} \quad E_{\text {sph }}=9.11 \mathrm{TeV}$

this work Units: TeV
Tye-Wong

Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	$?$	$?$
13.980	0.0741	$?$	$?$
$E_{\text {sph }}$	\vdots	0.0104	\vdots
$\downarrow .072$	4.85×10^{-3}	9.081	\vdots
9.044	1.61×10^{-3}	9.047	7.19×10^{-3}
9.012	\vdots	\vdots	2.62×10^{-3}
\vdots	1.88×10^{-199}	0.1027	\vdots
0.1015	1.31×10^{-202}	0.03421	$\sim 10^{-177}$
0.03383			$\sim 10^{-180}$

Band gaps still exist E>E

Band structure $E_{\text {sph }}=9.08 \mathrm{TeV} \quad E_{\text {sph }}=9.11 \mathrm{TeV}$

 this work Units: TeVTye-Wong

Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	$?$	$?$
13.980	0.0741	\vdots	$?$
$E_{\text {sph }}$	\vdots	0.0104	9.113
$\square .072$	4.85×10^{-3}	9.081	\vdots
9.044	1.61×10^{-3}	9.047	0.0156
9.012	\vdots	\vdots	7.19×10^{-3}
\vdots	1.88×10^{-199}	0.1027	2.62×10^{-3}
0.1015	1.31×10^{-202}	0.03421	\vdots
0.03383	$\#$ of band $<E_{\text {sph }}=148$		
\# of band $<E_{\text {sph }}=158$	$\sim 10^{-177}$		

Band gaps still exist E>Esph due to nonzero reflection rate.

Band structure $E_{\text {sph }}=9.08 \mathrm{TeV} \quad E_{\text {sph }}=9.11 \mathrm{TeV}$

 this work Units: TeVTye-Wong

Band Centre E	Band Width	Band Centre E	Band Width	
14.054	0.0744	$?$	$?$	
13.980	0.0741	$?$	$?$	
$E_{\text {sph }}$	\vdots	\vdots	\vdots	\vdots
$\emptyset .072$	0.0104	9.113	0.0156	
9.044	4.85×10^{-3}	9.081	7.19×10^{-3}	
9.012	1.61×10^{-3}	9.047	2.62×10^{-3}	
\vdots	\vdots	\vdots	\vdots	
0.1015	1.88×10^{-199}	0.1027	$\sim 10^{-177}$	
0.03383	1.31×10^{-202}	0.03421	$\sim 10^{-180}$	
\# of band $<\mathrm{E}_{\text {sph }}=158$	\# of band $<\mathrm{E}_{\text {sph }}=148$			

Band gaps still exist E>E

Band structure $\mathrm{E}_{\text {sph }}=9.08 \mathrm{TeV} \quad \mathrm{E}_{\text {sph }}=9.11 \mathrm{TeV}$

this work Units: TeV

Tye-Wong

Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	$?$	$?$
13.980	0.0741	$?$	$?$
$E_{\text {sph }}$	\vdots	0.0104	9.113
9.072	4.85×10^{-3}	9.081	0.0156
9.044	1.61×10^{-3}	9.047	7.19×10^{-3}
9.012	\vdots	\vdots	2.62×10^{-3}
\vdots	1.88×10^{-199}	0.1027	\vdots
0.1015	1.31×10^{-202}	0.03421	$\sim 10^{-177}$
0.03383	$\#$	$\#$ of band $<E_{\text {sph }}=148$	
\# of band $<E_{\text {sph }}=158$			

Band gaps still exist E>Esph due to nonzero reflection rate.

Band structure $\mathrm{E}_{\text {sph }}=9.08 \mathrm{TeV}$

 $\mathrm{E}_{\text {sph }}=9.11 \mathrm{TeV}$

 $\mathrm{E}_{\text {sph }}=9.11 \mathrm{TeV}$}
this work Units: TeV
Tye-Wong

Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	$?$	$?$
13.980	0.0741	$?$	$?$
$E_{\text {sph }}$	\vdots	0.0104	\vdots
$\square 9.072$	4.85×10^{-3}	9.113	\vdots
9.044	1.61×10^{-3}	9.047	7.19×10^{-3}
9.012	\vdots	\vdots	2.62×10^{-3}
\vdots	1.88×10^{-199}	0.1027	\vdots
0.1015	1.31×10^{-202}	0.03421	$\sim 10^{-177}$
0.03383	$\#$ of band $<E_{\text {sph }}=148$		
\# band $<E_{\text {sph }}=158$	$\sim 10^{-180}$		

Band gaps still exist E>Esph due to nonzero reflection rate.

Transition factor

$$
\sigma_{\Delta(B+L)= \pm 1} \propto \begin{cases}1 \times \exp \left(\frac{4 \pi}{\alpha_{W}} F(E)\right)^{\text {tunneling factor }} & \text { instanton calculus } \\ \Delta(E) \times 1 & \text { band picture }\end{cases}
$$

sum of band widths up to E
$\Delta(E) \simeq$
Band picture:

- State of density is restricted.
- Exponential suppression at
$\mathrm{E}<\mathrm{E}_{\text {sph }}$ is due to the tiny band width.

N.B. $\Delta(E)$ is not exactly 1 at slightly above $E_{\text {sph }}$.
Q. Does the band structure affect the ($B+L$)-changing process in high-E collisions?

LHC analysis

[J.Ellis and K.Sakurai, JHEPO4(2016)086]
$\Delta(B+L) \neq 0$ process in the band picture:

$$
\sigma(\Delta n= \pm 1)=\frac{1}{m_{W}^{2}} \sum_{a b} \int d E \frac{d \mathcal{L}_{a b}}{d E} p \exp \left(c \frac{4 \pi}{\alpha_{W}} S(E)\right)
$$

$c=2, p$: unknown parameter Here, $S(E)$ is approximated by a fitting function.

$$
\begin{aligned}
& S(E)=(1-a) \hat{E}+a \hat{E}^{2}-1 \\
& \text { for } 0 \leq \hat{E} \leq 1 \\
& \hat{E} \equiv E / E_{\mathrm{Sph}}, a=-0.005
\end{aligned}
$$

LHC analysis

$\Delta \mathrm{n}=-1$ process: $\quad q q \rightarrow \bar{\ell} \bar{\ell} \bar{\ell} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q}$
$\Delta \mathrm{n}=+1$ process: $\quad q q \rightarrow \ell \ell \ell q q q q q q q q q q q$
$\Delta n=+1$ process
$@ E=E_{\text {sph }}=9 T e V:$

- current LHC data $p<0.2$
- LHC Run2 w/ 100fb-1 p<0.01

Q. Can $p=0.1-0.01$ be realized?

$\Delta(B+L) \neq 0$ process

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]

transition amplitude:

$$
S_{f i}=\langle f| \hat{S}|i\rangle \sim \iint\langle f \mid \phi(y), \pi(y)\rangle\langle\phi(y), \pi(y)| \hat{S}|\phi(x), \pi(x)\rangle\langle\phi(x), \pi(x) \mid i\rangle
$$

path integral using coherent state $|\phi, \pi\rangle$
\because appropriate for describing classical configuration

- tunneling suppression appears in the intermediate process.
- overlap issue: suppressions from $\langle f \mid \phi, \pi\rangle$ and $\langle\phi, \pi l i\rangle$.

This point is not properly discussed in the work of Tye and Wong.

$\Delta(B+L) \neq 0$ process

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]

transition amplitude:

$$
S_{f i}=\langle f| \hat{S}|i\rangle \sim \iint\langle f \mid \phi(y), \pi(y)\rangle\langle\phi(y), \pi(y)| \hat{S}|\phi(x), \pi(x)\rangle\langle\phi(x), \pi(x) \mid i\rangle
$$

path integral using coherent state $|\phi, \pi\rangle$
\because appropriate for describing classical configuration

- tunneling suppression appears in the intermediate process.
- overlap issue: suppressions from $\langle f \mid \phi, \pi\rangle$ and $\langle\phi, \pi l i\rangle$.

This point is not properly discussed in the work of Tye and Wong.

overlap factor

inner product between n particle state and coherent state:

$$
\begin{aligned}
& \langle 0| \hat{a}\left(\boldsymbol{k}_{1}\right) \hat{a}\left(\boldsymbol{k}_{2}\right) \cdots \hat{a}\left(\boldsymbol{k}_{n}\right)|\phi(x), \pi(x)\rangle=\exp \left[-\frac{1}{2} \int d \boldsymbol{k}|\alpha(\boldsymbol{k})|^{2}\right] \alpha\left(\boldsymbol{k}_{1}\right) \alpha\left(\boldsymbol{k}_{2}\right) \cdots \alpha\left(\boldsymbol{k}_{n}\right) \\
& \alpha(k)=\int \frac{d^{d-1} \boldsymbol{x}}{(2 \pi)^{d-1}} \frac{1}{\sqrt{2 \omega_{\boldsymbol{k}}}}\left[\omega_{\boldsymbol{k}} \phi(x)+i \pi(x)\right] e^{-i \boldsymbol{k} \cdot \boldsymbol{x}}
\end{aligned}
$$

- cross section $\propto\left|\alpha_{1}\right|^{2} \ldots\left|\alpha_{n}\right|^{2}$
- $|\alpha|^{2}$ has a peat at $k=m_{w}$.

Sphaleron at LHC

Casel: 2 -> sphaleron

For $\left|p_{1}\right|=\left|p_{2}\right|=E_{\text {sph }} / 2$

$$
\begin{aligned}
& \left|\left\langle\phi(x), \pi(x) \mid \boldsymbol{p}_{1} \boldsymbol{p}_{2}\right\rangle\right|^{2} \ni\left|\alpha\left(\boldsymbol{p}_{1}\right)\right|^{2}\left|\alpha\left(\boldsymbol{p}_{2}\right)\right|^{2} \\
& \sim e^{-\pi E_{\mathrm{sph}} / m_{W}} \sim 10^{-155}
\end{aligned}
$$

Creation of sphaleron from the 2 energetic particles is difficult.

Sphaleron at LHC

Case: 2 -> sphaleron
For $\left|p_{1}\right|=\left|p_{2}\right|=E_{\text {shh }} / 2$

$$
\begin{aligned}
& \left|\left\langle\phi(x), \pi(x) \mid \boldsymbol{p}_{1} \boldsymbol{p}_{2}\right\rangle\right|^{2} \ni\left|\alpha\left(\boldsymbol{p}_{1}\right)\right|^{2}\left|\alpha\left(\boldsymbol{p}_{2}\right)\right|^{2} \\
& \sim e^{-\pi E_{\text {shh }} / m_{W}} \sim 10^{-155}
\end{aligned}
$$

Creation of sphaleron from the 2 energetic particles is difficult.

Case 2: 2 -> nW -> sphaleron $\mathrm{n}=80$ since $E_{\text {ssh }} / \sqrt{ } / 2 \mathrm{~m}_{\mathrm{w}}$ phase space factor:

$$
\sim\left(\frac{1}{(4 \pi)^{2}}\right)^{80} \sim 10^{-176}
$$

difficult to produce about 80 W bosons.

How about high-T?

At high temperatures, the overlap suppressions do not exist.

Particles with momenta $O\left(m_{w}\right)$ are abundant in thermal bath.
sizable overlap with the classical configuration

Q. Does the band structure affect electroweak baryogengesis?

B preservation criteria

$$
\Gamma_{B}^{(b)}\left(T_{C}\right)<H\left(T_{C}\right)
$$

|
modified?

B preservation criteria

$$
\Gamma_{B}^{(b)}\left(T_{C}\right)<M\left(T_{C}\right)
$$

modified?
If yes, $\quad \frac{v_{C}}{T_{C}} \gtrsim 1 \quad$ modified!

B preservation criteria

$$
\Gamma_{B}^{(b)}\left(T_{C}\right)<H\left(T_{C}\right)
$$

$$
\left.\right|_{\text {lified? }}
$$

If yes, $\quad \frac{v_{C}}{T_{C}} \gtrsim 1$ modified!
\longrightarrow EWBG-viable region must be re-analyzed!!

Vacuum decay rate at finite-T

Ordinary case: [Affleck, PRL46,388 (1981)]

$$
\left.\begin{array}{rl}
\Gamma_{A}(T) & =\frac{1}{Z_{0}(T)} \int_{0}^{\infty} d E J(E) e^{-E / T} \\
& \simeq \frac{1}{Z_{0}} \frac{\omega_{-}}{4 \pi \sin \left(\frac{\omega_{-}}{2 T}\right)} e^{-E_{\mathrm{sph}} / T} \quad \begin{array}{r}
\text { for } T>\frac{\omega_{-}}{2 \pi}, \\
\\
\approx 14 \mathrm{GeV}
\end{array}
\end{array}\right)
$$

Band case: $\quad J(E) \rightarrow \eta(E) / 2 \pi$

$$
\Gamma(T)=\frac{1}{Z_{0}(T)} \int_{0}^{\infty} d E \frac{\eta(E)}{2 \pi} e^{-E / T}
$$

$\eta(E)=1$ for the conducting band, $\eta(E)=0$ for the band gap

Impact of band

For simplicity, we use the band structure obtained before.

For $T=100 \mathrm{GeV}, \Gamma / \Gamma_{A}=1.06$.
How about B-number preservation criteria?

Impact of band

For simplicity, we use the band structure obtained before.

For $T=100 \mathrm{GeV}, \Gamma / \Gamma_{A}=1.06$.
How about B-number preservation criteria?

B preservation criteria

Γ with the band effect is

$$
\Gamma(T)<H(T)
$$

$\Gamma(T)=R(T) \Gamma_{A}(A)$

$$
E_{\mathrm{sph}}=\frac{4 \pi v \mathcal{E}_{\mathrm{sph}}}{g_{2}}
$$

$$
\frac{v(T)}{T}>\frac{g_{2}}{4 \pi \mathcal{E}_{\mathrm{sph}}}[42.97+\log \mathcal{N}+\log R(T)+\cdots]
$$

B preservation criteria

Γ with the band effect is

$$
\Gamma(T)<H(T)
$$

$\Gamma(T)=R(T) \Gamma_{A}(A)$

$$
E_{\mathrm{sph}}=\frac{4 \pi v \mathcal{E}_{\mathrm{sph}}}{g_{2}}
$$

$$
\frac{v(T)}{T}>\frac{g_{2}}{4 \pi \mathcal{E}_{\mathrm{sph}}}[42.97+\underset{\text { zero mode factor }}{\log \mathcal{N}}+\log R(T)+\cdots]
$$

B preservation criteria

Γ with the band effect is

$$
\Gamma(T)<H(T)
$$

$\Gamma(T)=R(T) \Gamma_{A}(A)$

$$
E_{\mathrm{sph}}=\frac{4 \pi v \mathcal{E}_{\mathrm{sph}}}{g_{2}}
$$

$$
\underbrace{\frac{v(T)}{T}>\frac{g_{2}}{4 \pi \mathcal{E}_{\mathrm{sph}}}[42.97+\log \mathcal{N}+\log R(T)+\cdots]} \text { zero mode factor }<(\mathrm{MSSM}) \ll]
$$

B preservation criteria

Γ with the band effect is

$$
\Gamma(T)<H(T)
$$

$$
\Gamma(T)=R(T) \Gamma_{A}(A) \quad \Downarrow \quad E_{\mathrm{sph}}=\frac{4 \pi v \mathcal{E}_{\mathrm{sph}}}{g_{2}}
$$

$$
\frac{v(T)}{T}>\frac{g_{2}}{4 \pi \mathcal{E}_{\mathrm{sph}}}[42.97+\underset{\text { zero mode factor }}{\log \mathcal{N}}+\stackrel{\text { band effect }}{\log R(T)}+\cdots]
$$

$$
=4.4(\mathrm{MSSM})
$$

B preservation criteria

Γ with the band effect is

$$
\Gamma(T)<H(T)
$$

$\Gamma(T)=R(T) \Gamma_{A}(A)$
\Downarrow

$$
E_{\mathrm{sph}}=\frac{4 \pi v \mathcal{E}_{\mathrm{sph}}}{g_{2}}
$$

$$
\underbrace{\frac{v(T)}{T}>\frac{g_{2}}{4 \pi \mathcal{E}_{\mathrm{sph}}}[42.97+\log \mathcal{N}+\log R(T)}+\cdots])
$$

B preservation criteria

Γ with the band effect is

$$
\Gamma(T)<H(T)
$$

$\Gamma(T)=R(T) \Gamma_{A}(A)$

$$
E_{\mathrm{sph}}=\frac{4 \pi v \mathcal{E}_{\mathrm{sph}}}{g_{2}}
$$

$$
\frac{v(T)}{T}>\frac{g_{2}}{4 \pi \mathcal{E}_{\mathrm{sph}}}\left[42.97+\log \mathcal{N}+\frac{\text { band effect }}{\text { zero mode factor }} \frac{\log R(T)}{\uparrow}+\cdots\right]
$$

Band effect has little effect on the B preservation criteria.

Summary

- We have discussed EWBG with LFV in 2HDM.
- some parameter space can explain $h->\mu \tau$, muon $g-2$, and BAU. $300 \mathrm{GeV} \leqslant m_{H} \leqslant m_{A}$ for $\operatorname{Re}\left(\mathrm{Q}_{\tau \mu} \mathrm{Q}_{\mu \tau}\right)>0$.
- We also discussed the band effect on the sphaleron processes at $\mathrm{T}=0$ and $\mathrm{T} \neq 0$.
- Even though the tunneling suppression disappears at $\mathrm{E} \approx \mathrm{E}_{\text {sph }}$, sphaleron process in high-E collisions suffers from the overlap suppression. \rightarrow the process is unlikely to occur.
- $\mathrm{T} \approx 100 \mathrm{GeV}$, sphaleron process is virtually unaffected. -> no impact on EWBG.

Backup

Baryon Asymmetry of the Universe (BAU)

\square Our Universe is baryon-asymmetric.

$$
\eta_{\mathrm{BBN}}=\frac{n_{B}}{n_{\gamma}}=(5.8-6.6) \times 10^{-10}(95 \% \mathrm{CL}) \text { [PDG2016] }
$$

\square Sakharov criteria ('67)

(1) Baryon number (B) violation (2) C and $C P$ violation (3) Out of equilibrium

BAU must arise

- After inflation
- Before Big-Bang Nucleosynthesis ($\mathrm{T} \simeq \mathrm{O}(1) \mathrm{MeV}$).

$h->\mu \tau$ and muon g-2

In $2 H D M$, it is easy to accommodate not only $h->\mu \tau$ but muon g-2.
[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]
$h->\mu \tau$

$$
\begin{aligned}
& \operatorname{Br}(h \rightarrow \mu \tau)=\frac{m_{h}\left(\left|\rho_{\mu \tau}\right|^{2}+\left|\rho_{\tau \mu}\right|^{2}\right) c_{\beta-\alpha}^{2}}{16 \pi \Gamma_{h}}, \Gamma_{h}=4.1 \mathrm{MeV} \\
& \sqrt{\frac{\left|\rho_{\mu \tau}\right|^{2}+\left|\rho_{\tau \mu}\right|^{2}}{2}} \simeq 0.26\left(\frac{0.01}{\left|c_{\beta-\alpha}\right|}\right) \sqrt{\frac{\operatorname{Br}(h \rightarrow \mu \tau)}{0.84 \times 10^{-2}}}
\end{aligned}
$$

muon g-2 $\delta a_{\mu}=a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}$

$$
\begin{aligned}
& \vdots \ddots_{m_{\tau}}^{n, H, A} \quad \delta a_{\mu}=\frac{m_{\mu} m_{\tau} \operatorname{Re}\left(\rho_{\mu \tau} \rho_{\tau \mu}\right)}{16 \pi^{2}} \quad f(r) \simeq \ln \frac{1}{r}-\frac{3}{2} \\
& \times\left[\frac{c_{\beta-\alpha}^{2} f\left(r_{h}\right)}{m_{h}^{2}}+\frac{s_{\beta-\alpha}^{2} f\left(r_{H}\right)}{m_{H}^{2}}-\frac{f\left(r_{A}\right)}{m_{A}^{2}}\right]
\end{aligned}
$$

Appropriate mass differences among $\left(m_{h}, m_{H}, m_{A}\right)$ are needed.

$h->\mu \tau$ and muon g-2

In 2HDM, it is easy to accommodate not only $h->\mu \tau$ but muon g-2.
[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]
$h->\mu \tau$

$$
\begin{aligned}
& \operatorname{Br}(h \rightarrow \mu \tau)=\frac{m_{h}\left(\left|\rho_{\mu \tau}\right|^{2}+\left|\rho_{\tau \mu}\right|^{2}\right) c_{\beta-\alpha}^{2}}{16 \pi \Gamma_{h}}, \quad \Gamma_{h}=4.1 \mathrm{MeV} \\
& \sqrt{\frac{\left|\rho_{\mu \tau}\right|^{2}+\left|\rho_{\tau \mu}\right|^{2}}{2}} \\
& 00\left(\frac{0.01}{\left|c_{\beta-\alpha}\right|}\right) \sqrt{\frac{\operatorname{Br}(h \rightarrow \mu \tau)}{0.84 \times 10^{-2}}}
\end{aligned}
$$

muon g-2 $\delta a_{\mu}=a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}$

$$
\begin{aligned}
& \vdots \ddots_{m_{\tau}}^{n, H, A} \quad \delta a_{\mu}=\frac{m_{\mu} m_{\tau} \operatorname{Re}\left(\rho_{\mu \tau} \rho_{\tau \mu}\right)}{16 \pi^{2}} \quad f(r) \simeq \ln \frac{1}{r}-\frac{3}{2} \\
& \times\left[\frac{c_{\beta-\alpha}^{2} f\left(r_{h}\right)}{m_{h}^{2}}+\frac{s_{\beta-\alpha}^{2} f\left(r_{H}\right)}{m_{H}^{2}}-\frac{f\left(r_{A}\right)}{m_{A}^{2}}\right]
\end{aligned}
$$

Appropriate mass differences among (m_{h}, m_{H}, m_{A}) are needed.

$h->\mu \tau$ and muon g-2

In $2 H D M$, it is easy to accommodate not only $h->\mu \tau$ but muon g-2.
[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]
$h->\mu \tau$

$$
\begin{aligned}
& \operatorname{Br}(h \rightarrow \mu \tau)=\frac{m_{h}\left(\left|\rho_{\mu \tau}\right|^{2}+\left|\rho_{\tau \mu}\right|^{2}\right) c_{\beta-\alpha}^{2}}{16 \pi \Gamma_{h}}, \quad \Gamma_{h}=4.1 \mathrm{MeV} \\
& \sqrt{\frac{\left|\rho_{\mu \tau}\right|^{2}+\left|\rho_{\tau \mu}\right|^{2}}{2}} \\
& 00\left(\frac{0.01}{\left|c_{\beta-\alpha}\right|}\right) \sqrt{\frac{\operatorname{Br}(h \rightarrow \mu \tau)}{0.84 \times 10^{-2}}}
\end{aligned}
$$

muon g-2 $\delta a_{\mu}=a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}$

Appropriate mass differences among $\left(m_{h}, m_{H}, m_{A}\right)$ are needed.

Baryon number density

$$
\begin{aligned}
& m_{H}=350 \mathrm{GeV}, m_{A}=m_{H^{ \pm}}=400 \mathrm{GeV}, c_{\beta-\alpha}=0.006,\left|\rho_{\mu \tau}\right|=\left|\rho_{\tau \mu}\right| \\
& \phi_{\tau \mu}+\phi_{\mu \tau}=\pi / 4, \phi_{\tau \tau}=\pi / 2
\end{aligned}
$$

$Y_{B} \propto \operatorname{Im}\left[\left(Y_{1}\right)_{32}\left(Y_{2}\right)_{32}^{*}\right]$
is a function of $\varrho_{\tau \tau}, \varrho_{\tau \mu}$ and $\varrho_{\mu \tau}$

- Leading effect: $\varrho_{\tau \tau}$
- Subheading effect: $\varrho_{\tau \mu}$ and $\varrho_{\mu \tau}$.

2HDM with LFV explains $h->\mu \tau$, muon $g-2$, and BAU.

Sphaleron

\square A static saddle point solution w/ finite energy of the gauge-Higgs system. [N.S. Manton, PRD28 ('83) 2019]

Energy

$\frac{\Delta B \neq 0}{\text { Instanton: quantum tunneling }}$

Sphaleron: thermal fluctuation

$B+L$ anomaly

$$
\begin{aligned}
& \partial_{\mu} j_{B+L}^{\mu}=\frac{3}{16 \pi^{2}}\left[g_{2}^{2} \operatorname{Tr}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)-g_{1}^{2} B_{\mu \nu} \tilde{B}^{\mu \nu}\right] \\
& \partial_{\mu} j_{B-L}^{\mu}=0
\end{aligned}
$$

$$
\Delta B=3 \Delta N_{C S} \quad N_{C S}=\frac{g_{2}^{2}}{32 \pi^{2}} \int d^{3} x \epsilon_{i j k} \operatorname{Tr}\left[F_{i j} A_{k}-\frac{2}{3} g_{2} A_{i} A_{j} A_{k}\right]
$$

Eigenvalue problem

Hamiltonian:

$$
\hat{H}(\mu, p)=g_{2} v\left[\hat{p} \frac{1}{2 M(\hat{\mu})} \hat{p}+V(\hat{\mu})\right], \quad[\hat{\mu}, \hat{p}]=i
$$

Band energy is determined by solving [N.L.Balazs, Ann.Phys.53,421 (1969)]

$$
\cos (\Phi(\mathcal{E}))= \pm \sqrt{T(\mathcal{E})}
$$

with 3 connection formulas depending on energy.

hhh coupling in the 2HDM

[update of Kanemura, Okada, E.S., PLB606,(2005)361]

- $1^{\text {st }}$-order EWPT is induced by heavy Higgs bosons.

hhh coupling at LHC

$H H \rightarrow b b \gamma \gamma$

$H H \rightarrow b b \tau \tau$
$\sigma / \sigma_{S M}$ as a function of $\lambda / \lambda_{S M}$

Access to $\lambda_{\text {hhh }}$ of $2 H D M$ at the LHC is challenging.

hhh coupling at LHC

$H H \rightarrow b b \gamma \gamma$

$H H \rightarrow b b \tau \tau$
$\sigma / \sigma_{S M}$ as a function of $\lambda / \lambda_{S M}$

Access to $\lambda_{\text {hhh }}$ of $2 H D M$ at the LHC is challenging.

Higgs couplings measurements@ILC

ILC white paper, 1310.0763

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
$\sqrt{s}(\mathrm{GeV})$	250	$250+500$	$250+500+1000$	$250+500+1000$
$\mathrm{~L}\left(\mathrm{fb}^{-1}\right)$	250	$250+500$	$250+500+1000$	$1150+1600+2500$
$\gamma \gamma$	18%	8.4%	4.0%	2.4%
$g g$	6.4%	2.3%	1.6%	0.9%
$W W$	4.8%	1.1%	1.1%	0.6%
$Z Z$	1.3%	1.0%	1.0%	0.5%
$t \bar{t}$	-	14%	3.1%	1.9%
$b \bar{b}$	5.3%	1.6%	1.3%	0.7%
$\tau^{+} \tau^{-}$	5.7%	2.3%	1.6%	0.9%
$c \bar{c}$	6.8%	2.8%	1.8%	1.0%
$\mu^{+} \mu^{-}$	91%	91%	16%	10%
$\Gamma_{T}(h)$	12%	4.9%	4.5%	2.3%
$h h h$	-	83%	21%	13%
$\mathrm{BR}($ invis. $)$	$<0.9 \%$	$<0.9 \%$	$<0.9 \%$	$<0.4 \%$

Higgs couplings measurements@ILC

ILC white paper, 1310.0763

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
$\sqrt{s}(\mathrm{GeV})$	250	$250+500$	$250+500+1000$	$250+500+1000$
$\mathrm{~L}\left(\mathrm{fb}^{-1}\right)$	250	$250+500$	$250+500+1000$	$1150+1600+2500$
$\gamma \gamma$	18%	8.4%	4.0%	2.4%
$g g$	6.4%	2.3%	1.6%	0.9%
$W W$	4.8%	1.1%	1.1%	0.6%
$Z Z$	1.3%	1.0%	1.0%	0.5%
$t \bar{t}$	-	14%	3.1%	1.9%
$b \bar{b}$	5.3%	1.6%	1.3%	0.7%
$\tau^{+} \tau^{-}$	5.7%	2.3%	1.6%	0.9%
$c \bar{c}$	6.8%	2.8%	1.8%	1.0%
$\mu^{+} \mu^{-}$	91%	91%	16%	10%
$\Gamma_{T}(h)$	12%	4.9%	4.5%	2.3%
$h h h$	-	83%	21%	13%
$\mathrm{BR}($ invis. $)$	$<0.9 \%$	$<0.9 \%$	$<0.9 \%$	$<0.4 \%$

BAU vs. electron EDM

Constraints in $(\cos (\beta-\alpha), \tan \beta)$ plane

 arXiv:1509.00672

(a) Type I
(b) Type II

Constraint on $\mu-\tau$ coupling

1502.07400

