Electroweak Baryogenesis and Sphaleron at LHC

Eibun Senaha (National Taiwan U) Jan. 11, 2017@U of Tokyo

based on

[1] C.-W. Chiang (Natl Taiwan U), K. Fuyuto (UMass-Amherst), E.S., 1607.07316 [PLB]
 [2] K. Funakubo (Saga U), K. Fuyuto, E.S., 1612.05431

Outline

- Motivation
- Electroweak baryogenesis (EWBG) in a nutshell
- EWBG with lepton flavor violation
- Does a band structure affect (B+L)-changing processes?
 - (B+L)-changing process in high-E collisions
 - (B+L)-changing process at high-T
- Summary

Introduction

problems after the Higgs discovery

Does the 125 GeV boson alone do the following jobs?

- mass generation

Multi-Higgs

If

- EW symmetry breaking

Experiments will answer those grand questions in the near future.

Most importantly, those experiments may also shed light on unsolved problems. (dark matter)

baryogenesis

Higgs is a window to new physics.

Let us open the window!!

Introduction

problems after the Higgs discovery

Does the 125 GeV boson alone do the following jobs?

- mass generation
- EW symmetry breaking

Experiments will answer those grand questions in the near future.

Most importantly, those experiments may also shed light on unsolved problems.

If Multi-Higgs baryogenesis Let us open the window!!

Electroweak baryogenesis

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 (`85)]

Sakharov's conditions

* B violation: anomalous (sphaleron) process

$$0 \leftrightarrow \sum_{i=1,2,3} (3q_L^i + l_L^i)$$
(LH fermions)

- * C violation: chiral gauge interaction
- * CP violation: KM phase and/or other sources in beyond the SM
- Out of equilibrium: 1st order EW phase transition (EWPT) with expanding bubble walls

BAU can arise by the growing bubbles.

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)] symmetric phase $\langle \Phi \rangle =$ $\mathbf{0}$ H: Hubble constant $\Gamma_B^{(s)} > H$ broken phase $\langle \Phi \rangle \neq 0 \not \sim P$ $\Gamma_B^{(b)} < H$

(1) Asymmetries arise (:: CPV) but no BAU. $n_B = \underbrace{n_b^L - n_{\overline{b}}^L}_{\neq 0} + \underbrace{n_b^R - n_{\overline{b}}^R}_{\neq 0} = 0$

(1) Asymmetries arise (:: CPV) but no BAU. $n_B = \underbrace{n_b^L - n_{\overline{b}}^L}_{\neq 0} + \underbrace{n_b^R - n_{\overline{b}}^R}_{\neq 0} = 0$ (2) LH part changes (:: sphaleron) -> BAU $n_B = \underbrace{n_b^L - n_{\overline{b}}^L}_{\text{changed}} + n_b^R - n_{\overline{b}}^R \rightarrow n_B \neq 0$

(1) Asymmetries arise (: CPV) but no BAU. $n_B = \underbrace{n_b^L - n_b^L}_{\neq 0} + \underbrace{n_b^R - n_b^R}_{\neq 0} = 0$ (2) LH part changes (: sphaleron) -> BAU $n_B = \underbrace{n_b^L - n_b^L}_{\text{changed}} + n_b^R - n_b^R \rightarrow n_B \neq 0$ (3) If $\Gamma_B^{(b)} < H$ the BAU can survive.

(1) Asymmetries arise (: CPV) but no BAU. $n_B = \underbrace{n_b^L - n_b^L}_{\neq 0} + \underbrace{n_b^R - n_b^R}_{\neq 0} = 0$ (2) LH part changes (: sphaleron) -> BAU $n_B = \underbrace{n_b^L - n_b^L}_{\text{changed}} + n_b^R - n_b^R \rightarrow n_B \neq 0$ (3) If $\Gamma_B^{(b)} < H$ the BAU can survive.

How do we test this scenario?

- -> cannot redo EWPT in lab. exp.
- So, test Sakharov'criteria instead.

(1) Asymmetries arise (: CPV) but no BAU. $n_B = \underbrace{n_b^L - n_b^L}_{\neq 0} + \underbrace{n_b^R - n_b^R}_{\neq 0} = 0$ (2) LH part changes (: sphaleron) -> BAU $n_B = \underbrace{n_b^L - n_b^L}_{\text{changed}} + n_b^R - n_b^R \rightarrow n_B \neq 0$ (3) If $\Gamma_B^{(b)} < H$ the BAU can survive.

- SM EWBG was excluded.

 \therefore No 1st-order PT for m_h=125 GeV.

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- SM EWBG was excluded.

 \therefore No 1st-order PT for m_h=125 GeV.

 $rac{v_C}{T_C}\gtrsim 1$ not satisfied

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- SM EWBG was excluded.

 \therefore No 1st-order PT for m_h=125 GeV.

 $rac{v_C}{T_C}\gtrsim 1$ not satisfied

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.

: light stop scenario is inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]

- SM EWBG was excluded.

 \therefore No 1st-order PT for m_h=125 GeV.

 $\frac{v_C}{T_C} \gtrsim 1$ not satisfied

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.

∵ light stop scenario is
 inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]

- SM EWBG was excluded.

 \therefore No 1st-order PT for m_h=125 GeV.

 $\frac{v_C}{T_C} \gtrsim 1$ not satisfied

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.

: light stop scenario is inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]

No enough data to exclude other models (2HDM, NMSSM etc).
 Anyway, collider test of EWBG will be done based on the
 B-preservation criteria:

- SM EWBG was excluded.

 \therefore No 1st-order PT for m_h=125 GeV.

 $\frac{v_C}{T_C} \gtrsim 1$ not satisfied

[Kajantie at al, PRL77,2887 ('96); Rummukainen et al, NPB532,283 ('98); Csikor et al, PRL82, 21 ('99); Aoki et al, PRD60,013001 ('99). Laine et al, NPB73,180('99)]

- MSSM EWBG was excluded.

∵ light stop scenario is
 inconsistent with LHC data

[D. Curtin, P. Jaiswall, P. Meade., JHEP08(2012)005; T. Cohen, D. E. Morrissey, A. Pierce, PRD86, 013009 (2012); K. Krizka, A. Kumar, D. E. Morrissey, PRD87, 095016 (2013)]

- No enough data to exclude other models (2HDM, NMSSM etc). Anyway, collider test of EWBG will be done based on the B-preservation criteria: $\frac{v_C}{T_C} \gtrsim 1$

Recent papers on EWBG

Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited

1612.04086

1612.01270

P. Basler¹ M. Krause¹ M. Mühlleitner¹ J. Wittbrodt^{1,2} and A. Wlotzka¹

Effective field theory, electric dipole moments and electroweak baryogenesis

Csaba Balazs^a, Graham White^a and Jason Yue^{b,c}

Disfavouring Electroweak Baryogenesis and a hidden Higgs in a *CP*-violating Two-Higgs-Doublet Model

1611.05757

Anders Haarr,^a Anders Kvellestad,^b Troels C. Petersen^c

Thermal Resummation and Phase Transitions

David Curtin^a Patrick Meade^b Harikrishnan Ramani^b

1612.00466

Lepton-Flavored Electroweak Baryogenesis

Huai-Ke Guo,^{1, 2} Ying-Ying Li,³ Tao Liu,³ Michael Ramsey-Musolf,^{1, 4} and Jing Shu^{2, 5}

1609.09849

Electroweak baryogenesis and gravitational waves from a real scalar singlet

Ville Vaskonen^{*} National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn, Estonia 1611.02073

Enabling Electroweak Baryogenesis through Dark Matter Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

Michał Artymowski¹ Marek Lewicki^{2,3} James D. Wells^{3,4}

1609.07143

1601.01681

Sorry, this is incomplete list.

Electroweak baryogenesis with lepton flavor violation Cheng-Wei Chiang^{a,b,c,d}, Kaori Fuyuto^e, Eibun Senaha^{a,b,*}

C.-W. Chiang (Natl Taiwan U), K. Fuyuto (UMass-Amherst), E.S., 1607.07316 [PLB]

Higgs decay with LFV

CMS:
$$Br(h \to \mu \tau) = (0.84^{+0.39}_{-0.37})\%$$
 1502.07400 [PLB] 2.4 σ excess

Atlas: $Br(h \to \mu \tau) = (0.53 \pm 0.51)\%$ 1604.07730

What does lepton flavor-violating (LFV) Higgs tell us?

2 Higgs doublets model (2HDM) is one of the simplest solutions.

$$-\mathcal{L}_{Y} \ni \bar{e}_{iL} \left[\frac{y_{i}}{\sqrt{2}} \delta_{ij} s_{\beta-\alpha} + \frac{1}{\sqrt{2}} \rho_{ij} c_{\beta-\alpha} \right] e_{jR} h + \bar{e}_{iL} \left[\frac{y_{i}}{\sqrt{2}} \delta_{ij} c_{\beta-\alpha} - \frac{1}{\sqrt{2}} \rho_{ij} s_{\beta-\alpha} \right] e_{jR} H + \frac{i}{\sqrt{2}} \bar{e}_{iL} \rho_{ij} e_{jR} A + \text{h.c.} ,$$

- LFV comes from the off-diagonal entries of ρ_{ij} . $\rho_{ij} \in \mathbb{C} \Rightarrow CPV$

- μ -T flavor violation can explain h-> μ T and g-2.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

Higgs decay with LFV

CMS:
$$Br(h \to \mu \tau) = (0.84^{+0.39}_{-0.37})\%$$
 1502.07400 [PLB] 2.4 σ excess

Atlas: $Br(h \to \mu \tau) = (0.53 \pm 0.51)\%$ 1604.07730

What does lepton flavor-violating (LFV) Higgs tell us?

2 Higgs doublets model (2HDM) is one of the simplest solutions.

$$-\mathcal{L}_{Y} \ni \bar{e}_{iL} \begin{bmatrix} y_{i} \\ \sqrt{2} \delta_{ij} s_{\beta-\alpha} + \frac{1}{\sqrt{2}} \rho_{ij} c_{\beta-\alpha} \end{bmatrix} e_{jR} h + \bar{e}_{iL} \begin{bmatrix} y_{i} \\ \sqrt{2} \delta_{ij} c_{\beta-\alpha} - \frac{1}{\sqrt{2}} \rho_{ij} s_{\beta-\alpha} \end{bmatrix} e_{jR} H + \frac{i}{\sqrt{2}} \bar{e}_{iL} \rho_{ij} e_{jR} A + \text{h.c.} ,$$

- LFV comes from the off-diagonal entries of ρ_{ij} . $\rho_{ij} \in \mathbb{C} \Rightarrow CPV$

- μ -T flavor violation can explain h-> μ T and g-2.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

Higgs decay with LFV

CMS:
$$Br(h \to \mu \tau) = (0.84^{+0.39}_{-0.37})\%$$
 1502.07400 [PLB] 2.4 σ excess

Atlas: $Br(h \to \mu \tau) = (0.53 \pm 0.51)\%$ 1604.07730

What does lepton flavor-violating (LFV) Higgs tell us?

2 Higgs doublets model (2HDM) is one of the simplest solutions.

$$\begin{aligned} -\mathcal{L}_Y \ni \bar{e}_{iL} \begin{bmatrix} y_i \\ \sqrt{2} \delta_{ij} s_{\beta-\alpha} + \frac{1}{\sqrt{2}} \rho_{ij} c_{\beta-\alpha} \end{bmatrix} e_{jR} h \\ &+ \bar{e}_{iL} \begin{bmatrix} y_i \\ \sqrt{2} \delta_{ij} c_{\beta-\alpha} - \frac{1}{\sqrt{2}} \rho_{ij} s_{\beta-\alpha} \end{bmatrix} e_{jR} H + \frac{i}{\sqrt{2}} \bar{e}_{iL} \rho_{ij} e_{jR} A + \text{h.c.} , \end{aligned}$$

- LFV comes from the off-diagonal entries of ρ_{ij} . $\rho_{ij} \in \mathbb{C} \Rightarrow CPV$

- μ -T flavor violation can explain h-> μ T and g-2.

[Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]

benchmark point:

 $m_A = m_{H^{\pm}}, \ M = 100 \text{ GeV}, \ \tan \beta = 1, \ c_{\beta-\alpha} = 0.006$ $|\rho_{\tau\mu}| = |\rho_{\mu\tau}|, \ \phi_{\tau\mu} + \phi_{\mu\tau} = \pi/4, \ \lambda_{6,7} = 0 \text{ Br}(h \to \mu\tau) = 0.84 \ \%$

450 3.0 1σ 2030 - Br(h->μτ)=0.84% 400 - g-2 favored region 2.0 [/³⁵⁰ [∀] [Ge/] 300 $\mathbf{m}_{\mathsf{A}} \gtrsim \mathbf{m}_{\mathsf{H}}$ 1.5 for $Re(Q_{\tau\mu}Q_{\mu\tau})>0$. 1.17 250 1.0 - EWBG-viable region $\frac{v_C}{T_C}$ $v_{c}/T_{c} > 1.17$ 200 200 250 300 350 400 450

m_H [GeV]

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]

benchmark point:

 $\frac{m_A = m_{H^{\pm}}}{|\rho_{\tau\mu}| = |\rho_{\mu\tau}|}, M = 100 \text{ GeV}, \tan\beta = 1, c_{\beta-\alpha} = 0.006$ $\frac{|\rho_{\tau\mu}| = |\rho_{\mu\tau}|}{|\phi_{\tau\mu}| = |\rho_{\mu\tau}|}, \phi_{\tau\mu} + \phi_{\mu\tau} = \pi/4, \lambda_{6,7} = 0 \text{ Br}(h \to \mu\tau) = 0.84 \%$

- Br(h->μτ)=0.84% 400 - g-2 favored region [/³⁵⁰ [∀] [Ge/] 300 $\mathbf{m}_{\mathsf{A}} \gtrsim \mathbf{m}_{\mathsf{H}}$ for $Re(Q_{\tau\mu}Q_{\mu\tau})>0$. 250 - EWBG-viable region $v_{c}/T_{c} > 1.17$ 200

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)]

benchmark point:

 $\frac{m_A = m_{H^{\pm}}}{|\rho_{\tau\mu}| = |\rho_{\mu\tau}|}, M = 100 \text{ GeV}, \tan\beta = 1, c_{\beta-\alpha} = 0.006$ $|\rho_{\tau\mu}| = |\rho_{\mu\tau}|, \phi_{\tau\mu} + \phi_{\mu\tau} = \pi/4, \lambda_{6,7} = 0 \text{ Br}(h \to \mu\tau) = 0.84 \%$

- Br(h->μτ)=0.84%
- g-2 favored region
 - $m_A \gtrsim m_H$ for Re(ϱ_{τμ}ϱ_{μτ})>0.
- EWBG-viable region
 v_c/T_c > 1.17

[C-W. Chiang, K.Fuyuto, E.S., arXiv:1607.07316 (PLB)] $m_A = m_{H^{\pm}}, M = 100 \text{ GeV}, \tan \beta = 1, c_{\beta-\alpha} = 0.006$ benchmark point: $|\rho_{\tau\mu}| = |\rho_{\mu\tau}|, \ \phi_{\tau\mu} + \phi_{\mu\tau} = \pi/4, \ \lambda_{6,7} = 0 \ \operatorname{Br}(h \to \mu\tau) = 0.84 \ \%$ 450 3.0 1σ 2030 $-Br(h->\mu T)=0.84\%$ 400 - g-2 favored region 2.0 [/³⁵⁰ [∀] [Ge/] 300 $\mathbf{m}_{\mathsf{A}} \gtrsim \mathbf{m}_{\mathsf{H}}$ 1.5 for Re(_{Qτµ}Q_{µτ})>0. 1.17 250 1.0 - EWBG-viable region v_C $\overline{T_C}$ $v_{c}/T_{c} > 1.17$ 200 200 250 300 350 400 450 m_H [GeV]

Combined: 300 GeV $\leq m_H \leq m_A \leq 450$ GeV

ATLAS-CONF-2016-085

 m_{A} [GeV]

In our scenario: ≁tt)[pb ATLAS Preliminary Observed Expected H/A $\rightarrow \tau \tau$, 95 % CL limits 10-±1σ $\sqrt{s} = 13 \text{ TeV}, \le 13.3 \text{ fb}^{-1}$ $\pm 2\sigma$ For BAU gluon-gluon fusion 2015, 3.2 fb⁻¹ (Obs.) BR(H/A $- |Q_{\tau\mu}| = |Q_{\mu\tau}| = 0.1 - 0.6,$ xb - |Q_{ττ}|=0.8-0.9. 10^{-1} -> probed by A->TT. $\tau_{had} \tau_{had}$ (Exp.) - Br(A->TT) also depends 10-2 $\tau_{lep} \tau_{had}$ (Exp.) on other *Q* couplings. 200 600 800 400 1000 1200 (model dependent)

ATLAS-CONF-2016-085

In our scenario:

For BAU

- $|Q_{\tau\mu}| = |Q_{\mu\tau}| = 0.1 0.6,$
- |Q_{ττ}|=0.8-0.9.
- -> probed by A->TT.

Br(A->TT) also depends
on other Q couplings.
(model dependent)

(B+L)-changing process and a band structure
B+L violation

- (B+L) is violated by a chiral anomaly in EW theories.

 $\sigma(E) \sim \exp\left(\frac{4\pi}{\alpha_W}F(E)\right) \qquad \qquad \mathbf{E} \searrow \quad \mathbf{\sigma}(\mathbf{E}) \oiint$

- But, instanton-based calculation is not valid at E>Esph

Bounce is more appropriate (transition between the finite-E states)

-> Reduced model.

[Aoyama, Goldberg, Ryzak, PRL60, 1902 ('88)] [Funakubo, Otsuki, Takenaga, Toyoda, PTP87,663('92), PTP89,881('93)] [H. Tye, S. Wong, PRD92,045005 ('15)]

Tye-Wong's work

[H. Tye, S. Wong, PRD92,045005 (2015)]

Reduced model

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (1988)] [Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)] [H. Tye, S. Wong, PRD92,045005 (2015)]

SU(2)-gauge Higgs system (U(1)_Y can be neglected)

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + (D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi - \lambda \left(\Phi^{\dagger}\Phi - \frac{v^{2}}{2}\right)^{2} \qquad D_{\mu} = \partial_{\mu} + igA_{\mu}$$
sphaleron
us promote μ to a dynamical variable:
$$\mu \Rightarrow \mu(\mathsf{t})$$

$$\mu(-\infty)=0, \ \mu(+\infty)=\pi: \text{ vacuum},$$

$$\mu(\mathsf{t}_{sph})=\pi/2: \text{ sphaleron}$$

$$\mu = n/2$$

$$\mu = \pi/2$$

- We construct a reduced model by adopting a Manton's ansatz.

Let

Non-contractible loop (least energy path)

Comparison with Tye-Wong's work

Some differences between our work and Tye-Wong's (TW's).

	A ₀	Sphaleron mass	Method for band structure
this work	A₀≠0	μ -dependent	WKB w/ 3 connection formulas
Tye-Wong	A ₀ =0	μ -independent	Schroedinger eq. numerically

We use a Manton's ansatz with $A_0 = \frac{i}{g_2} f(r) \partial_0 U U^{-1}$. fully gauge inv. Classical action:

$$S[\mu] = g_2 v \int dt \left[\frac{M(\mu)}{2} \left(\frac{d}{dt} \frac{\mu(t)}{g_2 v} \right)^2 - V(\mu) \right],$$

$$M(\mu) = \frac{4\pi}{g_2^2} \left(\alpha_0 + \alpha_1 \cos^2 \mu + \alpha_2 \cos^4 \mu \right), \quad V(\mu) = \frac{4\pi}{g_2^2} \sin^2 \mu \left(\beta_1 + \beta_2 \sin^2 \mu \right).$$

$$M_{\rm sph} = g_2 v M \left(\frac{\pi}{2} \right) \simeq 92.01 \text{ TeV}, \quad E_{\rm sph} = g_2 v V \left(\frac{\pi}{2} \right) \simeq 9.08 \text{ TeV}.$$

c.f., TW's: M_{sph} = 17.1 TeV. With same normalization, M_{sph}(ours) -> 23.0 TeV.

E_{sph}=9.08 TeV

E_{sph}=9.11 TeV

this	work Units:	TeV Tye-'	Wong
Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	?	?
13.980	0.0741	?	?
•	•	•	•
9.072	0.0104	9.113	0.0156
9.044	4.85x10 ⁻³	9.081	7.19x10 ⁻³
9.012	1.61×10 ⁻³	9.047	2.62x10 ⁻³
•	•	•	•
0.1015	1.88×10 ⁻¹⁹⁹	0.1027	~10 ⁻¹⁷⁷
0.03383	1.31×10 ⁻²⁰²	0.03421	~10 ⁻¹⁸⁰

E_{sph}=9.08 TeV

E_{sph}=9.11 TeV

this	work Units:	TeV Tye-	Wong
Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	?	?
13.980	0.0741	?	?
E _{sph} :	•	• • •	•
9.072	0.0104	9.113	0.0156
9.044	4.85x10 ⁻³	9.081	7.19×10 ⁻³
9.012	1.61×10 ⁻³	9.047	2.62x10 ⁻³
•	•	•	• • • •
0.1015	1.88×10 ⁻¹⁹⁹	0.1027	~10-177
0.03383	1.31×10 ⁻²⁰²	0.03421	~10 ⁻¹⁸⁰

E_{sph}=9.08 TeV

E_{sph}=9.11 TeV

this	work Units:	TeV Tye-	Wong
Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	?	?
13.980	0.0741	?	?
E _{sph}	•	• • •	•
9.072	0.0104	9.113	0.0156
9.044	4.85x10 ⁻³	9.081	7.19x10 ⁻³
9.012	1.61×10 ⁻³	9.047	2.62x10 ⁻³
•	•	•	• • •
0.1015	1.88×10 ⁻¹⁹⁹	0.1027	~10-177
0.03383	1.31×10 ⁻²⁰²	0.03421	~10 ⁻¹⁸⁰

of band $\langle E_{sph} = 158$ # of band $\langle E_{sph} = 148$ Band gaps still exist E>E_{sph} due to nonzero reflection rate.

E_{sph}=9.08 TeV

E_{sph}=9.11 TeV

this	work Units:	TeV Tye-	Wong
Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	?	?
13.980	0.0741	?	?
E _{sph} :	•	• • •	• • •
9.072	0.0104	9.113	0.0156
9.044	4.85x10 ⁻³	9.081	7.19×10 ⁻³
9.012	1.61×10 ⁻³	9.047	2.62x10 ⁻³
•	• • • • • • • • • • • • • • • • • • • •	• • •	• • • •
0.1015	1.88×10 ⁻¹⁹⁹	0.1027	~10-177
0.03383	1.31×10 ⁻²⁰²	0.03421	~10 ⁻¹⁸⁰

of band $\langle E_{sph} = 158$ # of band $\langle E_{sph} = 148$

E_{sph}=9.08 TeV

E_{sph}=9.11 TeV

this	work Units:	TeV Tye-	Wong
Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	?	?
13.980	0.0741	?	?
E _{sph}	•	• •	• • •
9.072	0.0104	9.113	0.0156
9.044	4.85x10 ⁻³	9.081	7.19x10 ⁻³
9.012	1.61×10 ⁻³	9.047	2.62x10 ⁻³
•	•	• •	• • • •
0.1015	1.88×10 ⁻¹⁹⁹	0.1027	~10-177
0.03383	1.31×10 ⁻²⁰²	0.03421	~10 ⁻¹⁸⁰

of band $\langle E_{sph} = 158$ # of band $\langle E_{sph} = 148$

E_{sph}=9.08 TeV

E_{sph}=9.11 TeV

this	work Units:	TeV Tye-	Wong
Band Centre E	Band Width	Band Centre E	Band Width
14.054	0.0744	?	?
13.980	0.0741	?	?
E _{sph}	•	• • •	• • •
9.072	0.0104	9.113	0.0156
9.044	4.85x10 ⁻³	9.081	7.19×10 ⁻³
9.012	1.61×10 ⁻³	9.047	2.62x10 ⁻³
•	•	•	• • •
0.1015	1.88×10 ⁻¹⁹⁹	0.1027	~10-177
0.03383	1.31×10 ⁻²⁰²	0.03421	~10 ⁻¹⁸⁰

of band $\langle E_{sph} = 158$ # of band $\langle E_{sph} = 148$

<u>N.B.</u> Δ (E) is not exactly 1 at slightly above E_{sph}.

Q. Does the band structure affect the (B+L)-changing process in high-E collisions?

LHC analysis

[J.Ellis and K.Sakurai, JHEP04(2016)086]

 $\Delta(B+L)\neq 0$ process in the band picture:

$$\sigma(\Delta n = \pm 1) = \frac{1}{m_W^2} \sum_{ab} \int dE \frac{d\mathcal{L}_{ab}}{dE} p \exp\left(c\frac{4\pi}{\alpha_W}S(E)\right)$$

c=2, p: unknown parameter

Here, S(E) is approximated by a fitting function.

$$S(E) = (1-a)\hat{E} + a\hat{E}^2 - 1$$

for $0 \le \hat{E} \le 1$

 $\hat{E} \equiv E/E_{\rm Sph}, a = -0.005.$

Q. Can $p \approx 0.1 - 0.01$ be realized?

$\Delta(B+L)\neq 0$ process

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)] transition amplitude:

 $S_{fi} = \langle f | \hat{S} | i \rangle \sim \int \int \langle f | \phi(y), \pi(y) \rangle \langle \phi(y), \pi(y) | \hat{S} | \phi(x), \pi(x) \rangle \langle \phi(x), \pi(x) | i \rangle$

path integral using coherent state $|\phi, \pi\rangle$: appropriate for describing classical configuration

- tunneling suppression appears in the intermediate process.
- overlap issue: suppressions from $\langle f | \phi, \pi \rangle$ and $\langle \phi, \pi | i \rangle$.

This point is not properly discussed in the work of Tye and Wong.

$\Delta(B+L)\neq 0$ process

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)] transition amplitude:

$$S_{fi} = \langle f | \hat{S} | i \rangle \sim \int \int \langle f | \phi(y), \pi(y) \rangle \langle \phi(y), \pi(y) | \hat{S} | \phi(x), \pi(x) \rangle \langle \phi(x), \pi(x) | i \rangle$$

path integral using coherent state $|\phi, \pi\rangle$: appropriate for describing classical configuration

- tunneling suppression appears in the intermediate process.
- overlap issue: suppressions from $\langle f | \phi, \pi \rangle$ and $\langle \phi, \pi | i \rangle$.

This point is not properly discussed in the work of Tye and Wong.

overlap factor

inner product between n particle state and coherent state:

$$\langle 0|\hat{a}(\boldsymbol{k}_1)\hat{a}(\boldsymbol{k}_2)\cdots\hat{a}(\boldsymbol{k}_n)|\phi(x),\pi(x)\rangle = \exp\left[-\frac{1}{2}\int d\boldsymbol{k}|\alpha(\boldsymbol{k})|^2\right]\alpha(\boldsymbol{k}_1)\alpha(\boldsymbol{k}_2)\cdots\alpha(\boldsymbol{k}_n)$$

$$\alpha(k) = \int \frac{d^{d-1}\boldsymbol{x}}{(2\pi)^{d-1}} \frac{1}{\sqrt{2\omega_{\boldsymbol{k}}}} \Big[\omega_{\boldsymbol{k}} \phi(x) + i\pi(x) \Big] e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}$$

- cross section $\propto |\alpha_1|^2 ... |\alpha_n|^2$

- $|\alpha|^2$ has a peat at k=m_W.

Sphaleron at LHC

Creation of sphaleron from the 2 energetic particles is difficult.

Sphaleron at LHC

Creation of sphaleron from the 2 energetic particles is difficult.

How about high-T?

At high temperatures, the overlap suppressions do not exist.

Particles with momenta $O(m_W)$ are abundant in thermal bath.

sizable overlap with the classical configuration

Q. Does the band structure affect electroweak baryogengesis?

 $\Gamma_B^{(b)}(T_C) < H(T_C)$ modified?

 $\Gamma_B^{(b)}(T_C) < H(T_C)$ modified? If yes, $\frac{v_C}{T_C} \gtrsim 1$ modified!

 $\Gamma_R^{(b)}(T_C) < H(T_C)$ modified? If yes, $\frac{v_C}{T_C} \gtrsim 1$ modified! EWBG-viable region must be re-analyzed!!

Vacuum decay rate at finite-T

Ordinary case: [Affleck, PRL46,388 (1981)]

$$\begin{split} & \left(\Gamma_A(T) = \frac{1}{Z_0(T)} \int_0^\infty dE \ J(E) e^{-E/T} \\ & \simeq \frac{1}{Z_0} \frac{\omega_-}{4\pi \sin\left(\frac{\omega_-}{2T}\right)} e^{-E_{\rm sph}/T} \quad \text{for } T > \frac{\omega_-}{2\pi}, \\ & \simeq 14 \text{ GeV} \end{split} \right) \\ J(E) = \frac{T(E)}{2\pi}, \ Z_0(T) = \left[2 \sinh\left(\frac{\omega_0}{2T}\right) \right]^{-1}, \ \frac{\omega_0}{g_2 v} = \sqrt{\frac{V''(0)}{M(0)}}, \ \frac{\omega_-}{g_2 v} = \sqrt{\frac{V''(\pi/2)}{M(\pi/2)}} \\ & \simeq 0.42 \qquad \simeq 0.51 \end{split}$$

Band case: $J(E) \rightarrow \eta(E)/2\pi$

$$\Gamma(T) = \frac{1}{Z_0(T)} \int_0^\infty dE \ \frac{\eta(E)}{2\pi} e^{-E/T}$$

 $\eta(E) = 1$ for the conducting band, $\eta(E) = 0$ for the band gap

Impact of band

For simplicity, we use the band structure obtained before.

For T=100 GeV, $\Gamma / \Gamma_A = 1.06$.

How about B-number preservation criteria?

Impact of band

For simplicity, we use the band structure obtained before.

For T=100 GeV, $\Gamma / \Gamma_A = 1.06$.

How about B-number preservation criteria?

$$\begin{split} \Gamma(T) &< H(T) \\ \Gamma(T) = R(T)\Gamma_A(A) & \Downarrow & E_{\rm sph} = \frac{4\pi v \mathcal{E}_{\rm sph}}{g_2} \\ \hline \frac{v(T)}{T} &> \frac{g_2}{4\pi \mathcal{E}_{\rm sph}} \Big[42.97 + \log \mathcal{N} + \log R(T) + \cdots \Big] \\ \text{zero mode factor} \end{split}$$

$$\begin{split} \Gamma(T) &< H(T) \\ \Gamma(T) = R(T)\Gamma_A(A) & \Downarrow & E_{\rm sph} = \frac{4\pi v \mathcal{E}_{\rm sph}}{g_2} \\ \hline \frac{v(T)}{T} &> \frac{g_2}{4\pi \mathcal{E}_{\rm sph}} \Big[42.97 + \log \mathcal{N} + \log R(T) + \cdots \Big] \\ = 4.4 \ (\text{MSSM}) \end{split}$$

$$\begin{split} \Gamma(T) &< H(T) \\ \Gamma(T) = R(T)\Gamma_A(A) & \Downarrow & E_{\rm sph} = \frac{4\pi v \mathcal{E}_{\rm sph}}{g_2} \\ \hline \frac{v(T)}{T} > \frac{g_2}{4\pi \mathcal{E}_{\rm sph}} \Big[42.97 + \log \mathcal{N} + \frac{\log R(T)}{\log R(T)} + \cdots \Big] \\ = 4.4 \text{ (MSSM)} \end{split}$$

 Γ with the band effect is

Band effect has little effect on the B preservation criteria.

Summary

- We have discussed EWBG with LFV in 2HDM.
 - some parameter space can explain h-> $\mu\tau$, muon g-2, and BAU.

300 GeV \leq m_H \leq m_A for Re($\varrho_{\tau\mu}\varrho_{\mu\tau}$)>0.

- We also discussed the band effect on the sphaleron processes at T=0 and T≠0.
 - Even though the tunneling suppression disappears at E≥E_{sph}, sphaleron process in high-E collisions suffers from the overlap suppression. -> the process is unlikely to occur.
 - T~100 GeV, sphaleron process is virtually unaffected.
 -> no impact on EWBG.

Backup

Baryon Asymmetry of the Universe (BAU)

Our Universe is baryon-asymmetric.

$$\eta_{\rm BBN} = \frac{n_B}{n_\gamma} = (5.8 - 6.6) \times 10^{-10} \ (95\% \ {\rm CL}) \ \text{[PDG2016]}$$

□ Sakharov criteria ('67)

(1) Baryon number (B) violation
(2) C and CP violation
(3) Out of equilibrium

BAU must arise

- After inflation
- Before Big-Bang Nucleosynthesis ($T \simeq O(1)$ MeV).

h->µt and muon g-2

In 2HDM, it is easy to accommodate not only h->μτ but muon g-2. [Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

h->
$$\mu\tau$$

Br $(h \to \mu\tau) = \frac{m_h(|\rho_{\mu\tau}|^2 + |\rho_{\tau\mu}|^2)c_{\beta-\alpha}^2}{16\pi\Gamma_h}, \ \Gamma_h = 4.1 \text{ MeV}$
 $\sqrt{\frac{|\rho_{\mu\tau}|^2 + |\rho_{\tau\mu}|^2}{2}} \simeq 0.26 \left(\frac{0.01}{|c_{\beta-\alpha}|}\right) \sqrt{\frac{\text{Br}(h \to \mu\tau)}{0.84 \times 10^{-2}}}$

$$\begin{array}{c} \text{muon } \mathbf{g-2} \quad \delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (26.1 \pm 8.0) \times 10^{-10} \\ & & & \\$$

Appropriate mass differences among (m_h, m_H, m_A) are needed.
h->µt and muon g-2

In 2HDM, it is easy to accommodate not only h->μτ but muon g-2. [Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

h->
$$\mu\tau$$

Br $(h \to \mu\tau) = \frac{m_h(|\rho_{\mu\tau}|^2 + |\rho_{\tau\mu}|^2)c_{\beta-\alpha}^2}{16\pi\Gamma_h}, \ \Gamma_h = 4.1 \text{ MeV}$
 $\sqrt{\frac{|\rho_{\mu\tau}|^2 + |\rho_{\tau\mu}|^2}{2}} \simeq 0.26 \left(\frac{0.01}{|c_{\beta-\alpha}|}\right) \sqrt{\frac{\text{Br}(h \to \mu\tau)}{0.84 \times 10^{-2}}}$

$$\begin{array}{c} \text{muon } \mathbf{g-2} \quad \delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (26.1 \pm 8.0) \times 10^{-10} \\ & & & \\$$

Appropriate mass differences among (m_h, m_H, m_A) are needed.

h->µt and muon g-2

In 2HDM, it is easy to accommodate not only h->μτ but muon g-2. [Y. Omura, E.S., K.Tobe, JHEP052015028, PRD94,055019(2016)]

h->
$$\mu\tau$$

Br $(h \to \mu\tau) = \frac{m_h(|\rho_{\mu\tau}|^2 + |\rho_{\tau\mu}|^2)c_{\beta-\alpha}^2}{16\pi\Gamma_h}, \ \Gamma_h = 4.1 \text{ MeV}$
 $\sqrt{\frac{|\rho_{\mu\tau}|^2 + |\rho_{\tau\mu}|^2}{2}} \simeq 0.26 \left(\frac{0.01}{|c_{\beta-\alpha}|}\right) \sqrt{\frac{\text{Br}(h \to \mu\tau)}{0.84 \times 10^{-2}}}$

Appropriate mass differences among (m_h, m_H, m_A) are needed.

Baryon number density

 $m_{H} = 350 \text{ GeV}, \ m_{A} = m_{H^{\pm}} = 400 \text{ GeV}, \ c_{\beta-\alpha} = 0.006, \ |\rho_{\mu\tau}| = |\rho_{\tau\mu}|$ $\phi_{\tau\mu} + \phi_{\mu\tau} = \pi/4, \ \phi_{\tau\tau} = \pi/2$

$$Y_B \propto \text{Im}\left[(Y_1)_{32}(Y_2)_{32}^*\right]$$

is a function of $\varrho_{\tau\tau}, \varrho_{\tau\mu}$ and $\varrho_{\mu\tau}$

- Leading effect: $\varrho_{\tau\tau}$
- Subheading effect: $\varrho_{\tau\mu}$ and $\varrho_{\mu\tau}$.

2HDM with LFV explains $h \rightarrow \mu \tau$, muon g-2, and BAU.

Sphaleron

A static saddle point solution w/ finite energy of the gauge-Higgs system. [N.S. Manton, PRD28 ('83) 2019]

 $\Delta B \neq 0$

Instanton: quantum tunneling Sphaleron: thermal fluctuation

B+L anomaly

$$\partial_{\mu} j^{\mu}_{B+L} = \frac{3}{16\pi^2} \Big[g_2^2 \text{Tr}(F_{\mu\nu} \tilde{F}^{\mu\nu}) - g_1^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \Big], \\ \partial_{\mu} j^{\mu}_{B-L} = 0,$$

 $\Delta B = 3\Delta N_{CS} \quad N_{CS} = \frac{g_2^2}{32\pi^2} \int d^3x \ \epsilon_{ijk} \text{Tr} \left[F_{ij}A_k - \frac{2}{3}g_2A_iA_jA_k \right]$

Eigenvalue problem

Hamiltonian:

$$\hat{H}(\mu, p) = g_2 v \left[\hat{p} \frac{1}{2M(\hat{\mu})} \hat{p} + V(\hat{\mu}) \right], \quad [\hat{\mu}, \hat{p}] = i$$

Band energy is determined by solving [N.L.Balazs, Ann.Phys.53,421 (1969)]

$$\cos(\Phi(\mathcal{E})) = \pm \sqrt{T(\mathcal{E})}$$

$$\Phi(\mathcal{E}) = \begin{cases} \frac{1}{\hbar} \int_{b(\mathcal{E})}^{a(\mathcal{E})} d\mu \ p(\mu) & \text{for } \mathcal{E} < V_0, \\ \frac{1}{\hbar} \int_{-\pi/2}^{\pi/2} d\mu \ p(\mu) & \text{for } \mathcal{E} \ge V_0, \end{cases}$$

$$p(\mu) = \sqrt{M(\mu)(\mathcal{E} - V(\mu))}$$

with 3 connection formulas depending on energy.

hhh coupling in the 2HDM

[update of Kanemura, Okada, E.S., PLB606, (2005)361]

- 1st-order EWPT is induced
 by heavy Higgs bosons.

- hVV and hff can be SM-like.
- Δλ_{hhh}>(15-20)%

hhh coupling at LHC

 $HH \rightarrow bb\gamma\gamma$

40

Access to λ_{hhh} of 2HDM at the LHC is challenging.

hhh coupling at LHC

 $HH \rightarrow bb\gamma\gamma$

Access to λ_{hhh} of 2HDM at the LHC is challenging.

Higgs couplings measurements@ILC

ILC white paper, 1310.0763

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
$\sqrt{s}~({ m GeV})$	250	250 + 500	250 + 500 + 1000	250 + 500 + 1000
$L (fb^{-1})$	250	250 + 500	250 + 500 + 1000	$1150 {+} 1600 {+} 2500$
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
gg	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	$1.1 \ \%$	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\overline{t}$	—	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$ au^+ au^-$	5.7 %	2.3 %	1.6 %	0.9 %
$c\overline{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	—	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %

Higgs couplings measurements@ILC

ILC white paper, 1310.0763

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250+500	250 + 500 + 1000	250+500+1000
$L (fb^{-1})$	250	250 + 500	250 + 500 + 1000	$1150 {+} 1600 {+} 2500$
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
gg	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	$1.1 \ \%$	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\overline{t}$	—	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$ au^+ au^-$	5.7 %	2.3 %	1.6 %	0.9 %
$c\overline{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	—	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %

BAU vs. electron EDM

Constraints in $(\cos(\beta - \alpha), \tan\beta)$ plane

arXiv:1509.00672

Constraint on μ - τ coupling

