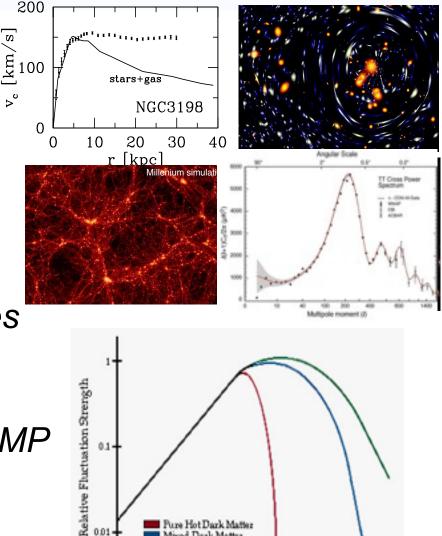
Interacting Dark Matter and Radiation in Cosmology

Yong TANG(湯勇) University of Tokyo

Physics in LHC and the Early Universe, Jan 9-11, 2017

based on P.Ko&YT,1608.01083(PLB),1609.02307; YT,1603.00165(PLB)

Outline


- Introduction & Motivation
 - Dark Matter evidence
 - Hubble constant and structure growth
- Interacting Dark Matter&Dark Radiation
 - U(1) dark photon
 - Residual Yang-Mills Dark Matter
- Summary

Dark Matter Evidence

- Rotation Curves of Galaxies •
- Gravitational Lensing •
- Large Scale Structure
- CMB anisotropies, ...

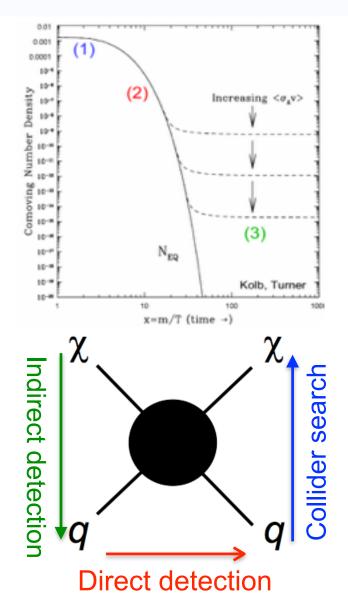
All confirmed evidence comes from gravitational interaction

CDM: negligible velocity, WIMP WDM: keV sterile neutrino HDM: active neutrino

ed Dark Matter

Length scale (Mega parsecs)

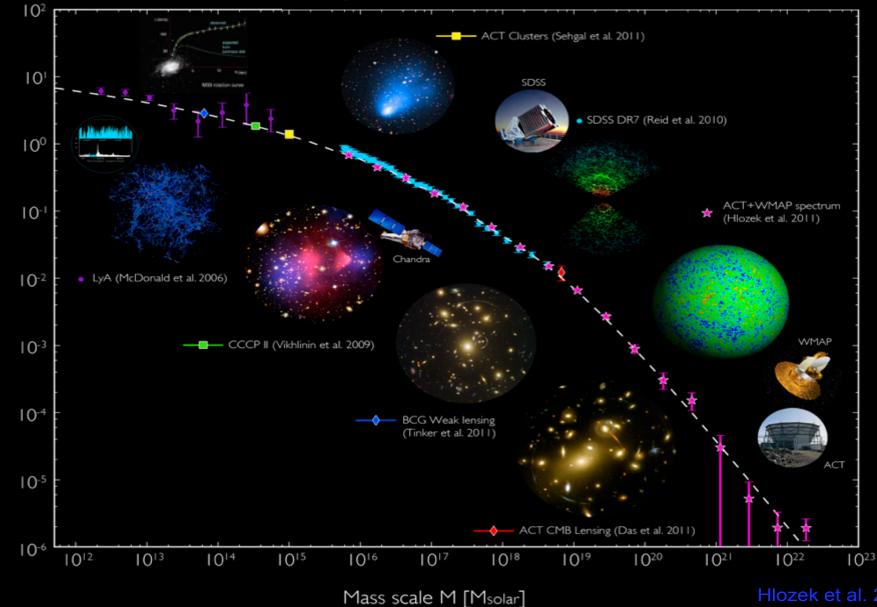
Yong TANG(U.Tokyo)


Interacting Dark Matter and Radiation

0.03

U.Tokyo

Weakly Interacting Massive Particle


- Mass around ~100GeV
- Coupling ~ 0.5
- abundance $\Omega \sim 0.3$
- Thermal History
 - Equilibrium XX<>ff
 - Equilibrium XX >ff
 - Freeze-out
- Cold Dark Matter (CDM)

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

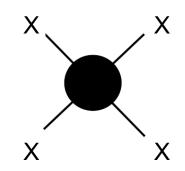
ACDM: successful on large scales

Mass Variance ∆M/M

Theoretical Scenarios

Supersymmetry Extra-dimension Sterile Neutrino Axion Wimpzilla Dark atom/pion/glueball **Bose-Einstein condensate** Primordial black hole

Yong TANG(U.Tokyo)

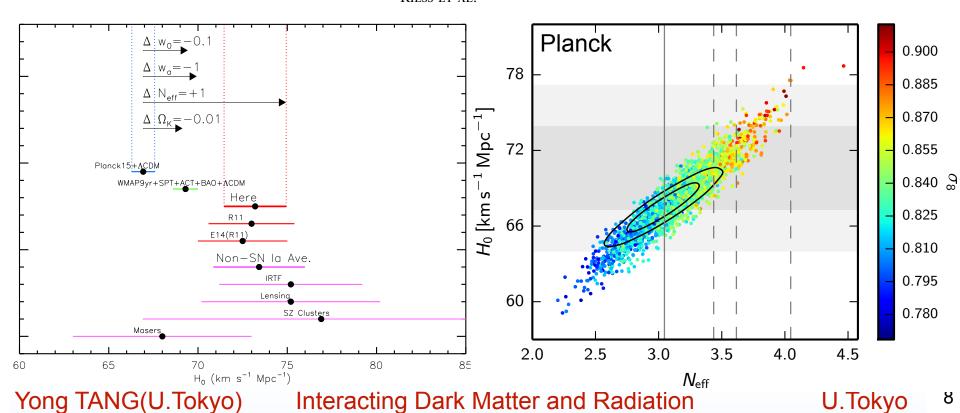

Interacting Dark Matter and Radiation

Why Interacting DM

- Theoretically motivated
 - Atomic DM, Mirror DM, Composite DM,...
 - Eventually, all DM is *interacting* in some way, the question is how strongly?
 - Self-Interacting DM $\frac{\sigma}{M_X} \sim \text{cm}^2/\text{g} \sim \text{barn/GeV}$ Spergel, Sigurdson, Boehm, Kaplinghat Loeb, Feng, Tulin, Yu, Bringmann,...
- Possible new testable signatures
 - CMB, LSS, BBN
 - Other astrophysical effects,...
- Solution of CDM controversies
 - Cusp-vs-Core, Too-big-to-fail, missing satellite,...
 - H_{0} , σ_8 ? 2-3 σ , systematic uncertainty

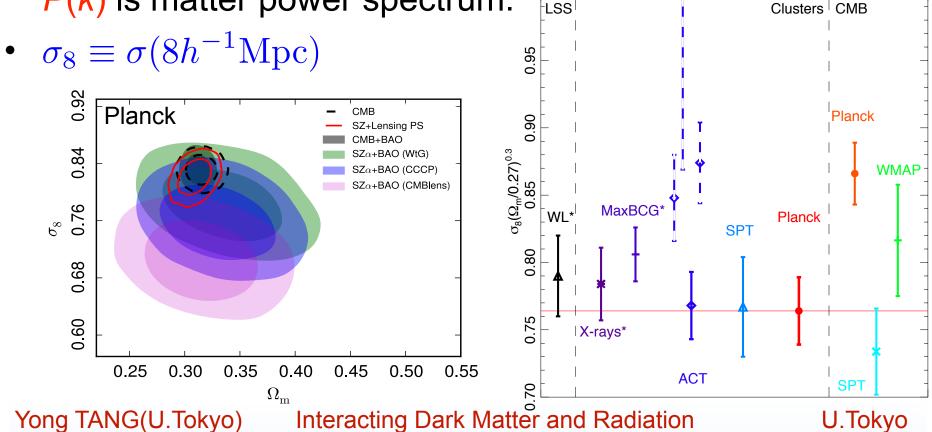
Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation



Tension in Hubble Constant?

• Hubble Constant H_0 defined as the present value of


$$H \equiv \frac{1}{a} \frac{da}{dt} = \frac{\sqrt{\rho_r + \rho_m + \rho_\Lambda}}{M_p}$$

- Planck(2015) gives $67.8 \pm 0.9 \text{ km s}^{-1} \text{Mpc}^{-1}$
- HST(2016) gives $73.24 \pm 1.74 \text{ km s}^{-1} \text{Mpc}^{-1}$

Tension in σ_8 ?

- Variance of perturbation field \rightarrow collapsed objects $\sigma^2(R) = \frac{1}{2\pi^2} \int W_R^2(k) P(k) k^2 dk,$
- where the filter function $W_R(k) = \frac{3}{(kR)^3} \left[\sin(kR) kR\cos(kR) \right]$, P(k) is matter power spectrum. LSS Clus

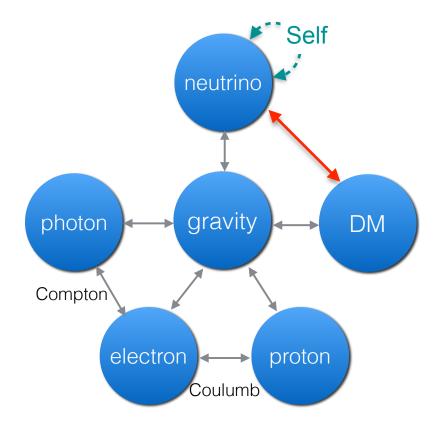
9

Tension in σ_8 ?

Planck2015, Sunyaev–Zeldovich cluster counts

Data	$\sigma_8 \left(\frac{\Omega_{\rm m}}{0.31}\right)^{0.3}$	$\Omega_{ m m}$	σ_8
WtG + BAO + BBN	0.806 ± 0.032	0.34 ± 0.03	0.78 ± 0.03
CCCP + BAO + BBN [Baseline]	0.774 ± 0.034	0.33 ± 0.03	0.76 ± 0.03
CMBlens + BAO + BBN	0.723 ± 0.038	0.32 ± 0.03	0.71 ± 0.03
$\overline{\text{CCCP} + H_0 + \text{BBN}}$	0.772 ± 0.034	0.31 ± 0.04	0.78 ± 0.04

Planck2015, Primary CMB


Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[9] P	<i>lanck</i> E	E+low	P [4] <i>Planck</i> TT,TE,EE+lowP
$\overline{\Omega_{ m b}h^2}$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0	240 ± 0	0013	0.02225 ± 0.00016 -
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1187 ± 0.0021	ω (1150^{+0}_{-0}	0048	0.1198 ± 0.0015
$100\theta_{MC}$	1.04085 ± 0.00047	1.04094 ± 0.00051 5	b 03	988 ± 0	.00094	
au	0.078 ± 0.019	0.053 ± 0.019		0.059^{+0}_{-0}	.022	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.031 ± 0.041 $\overleftarrow{0}$	G	3.066+	.046	3.094 ± 0.034
$n_{\rm s}$	0.9655 ± 0.0062	0.965 ± 0.012 >		973 ±	0.016	0.9645 ± 0.0049
H_0	67.31 ± 0.96	67.73 ± 0.92		70.2 ± 3	5.0	67.27 ± 0.66
$\Omega_{\rm m}$	0.315 ± 0.013	0.300 ± 0.012		0.286^{+0}_{-0}	.027	0.3156 ± 0.0091
$\sigma_8 \dots \dots$	0.829 ± 0.014	0.802 ± 0.018 O	N .0	.796 ± 0	0.024	0.831 ± 0.013
$10^9 A_8 e^{-2\tau} \ldots \ldots$	1.880 ± 0.014	1.865 ± 0.019 Q	\mathbf{U}_1	907 ± 0	0.027	1.882 ± 0.012
		L L	N		.1	
ng TANG(U.Tol	kyo) Interac	ting Dark Mat	0		<i>;</i> \	$I = \sum_{i=1}^{N} I_{i}$

Interacting Dark Matter and Radiation

all components are connected by Einstein's equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

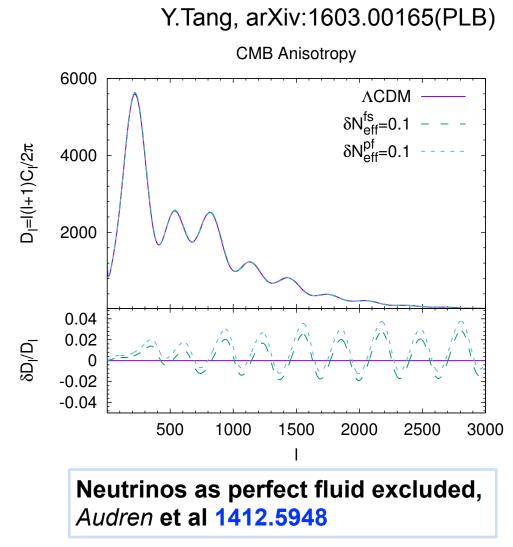
- first-order perturbation of Boltzmann equation
 - anisotropy in CMB
 - matter power spectrum for LSS
- (Self-)Interaction sometimes also matters

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo¹¹

Interacting Radiation

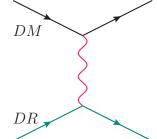

,

free-streaming

$$\begin{split} \dot{\delta}_{\nu} &= -\frac{4}{3} \,\theta_{\nu} + 4\dot{\phi} \ ,\\ \dot{\theta}_{\nu} &= k^2 \bigg(\frac{1}{4} \,\delta_{\nu} - \sigma_{\nu} \bigg) + k^2 \psi \ ,\\ \dot{F}_{\nu l} &= \frac{k}{2l+1} \left[l F_{\nu (l-1)} - (l+1) F_{\nu (l+1)} \right] \end{split}$$

• perfect fluid $\Gamma \gg \mathcal{H}$

 $\dot{\delta}_{v} = -\frac{4}{3} \theta_{v} + 4\dot{\phi} ,$ $\dot{\theta}_{v} = k^{2} \left(\frac{1}{4} \delta_{v} - \sigma_{v} \right) + k^{2} \psi ,$ $\boldsymbol{\sigma}_{v} = \mathbf{0}$


Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo¹²

Relation to Particle Physics

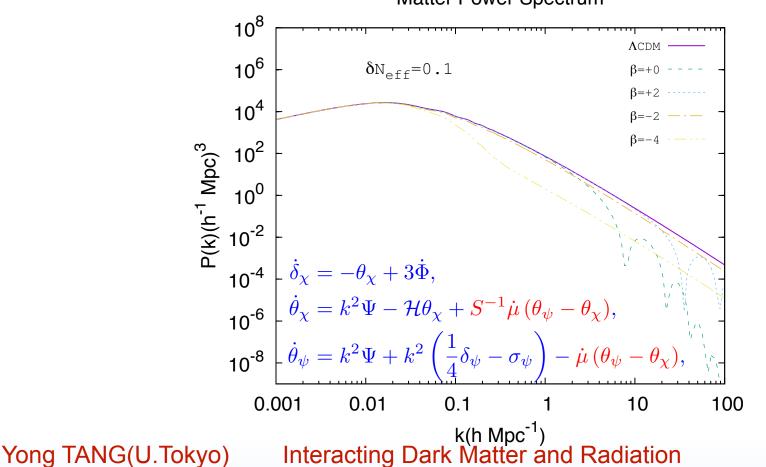
- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²
 Thomson scattering
 - DM-radiation with massive mediator, <σc>~T²/m⁴ Boehm *et al*(astro-ph/0410591,1309.7588)

Relation to Particle Physics

- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²
 Thomson scattering
 - DM-radiation with massive mediator, <σc>~T²/m⁴ Boehm *et al*(astro-ph/0410591,1309.7588)
 - non-Abelian radiation, <σc>~1/T²
 Schmaltz et al(2015), 1507.04351,1505.03542

Relation to Particle Physics

- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²
 Thomson scattering
 - DM-radiation with massive mediator, <σc>~T²/m⁴ Boehm *et al*(astro-ph/0410591,1309.7588)
 - non-Abelian radiation, <σc>~1/T²
 Schmaltz et al(2015), 1507.04351,1505.03542
 - (pseudo-)scalar radiation, <σc>~1/T², μ²/T⁴, T²/μ⁴
 Y.Tang,1603.00165(PLB)


Effects on LSS

Parametrize the cross section ratio

Y.Tang,1603.00165(PLB)

$$u_0 \equiv \left[\frac{\sigma_{\chi\psi}}{\sigma_{\rm Th}}\right] \left[\frac{100{\rm GeV}}{m_{\chi}}\right], u_{\beta}(T) = u_0 \left(\frac{T}{T_0}\right)^{\beta},$$

where $\sigma_{\rm Th}$ is the Thomson cross section, $0.67 \times 10^{-24} {\rm cm}^{-2}$. Matter Power Spectrum

U.Tokyo¹⁶

A Light Dark Photon

- Lagrangian
 - $\mathcal{L} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi + \bar{\chi} \left(i D m_{\chi} \right) \chi + \bar{\psi} i D \psi$ $\left(y_{\chi} \Phi^{\dagger} \bar{\chi}^{c} \chi + y_{\psi} \Phi \bar{\psi} N + h.c. \right) V(\Phi, H),$
- DM χ (+1), dark radiation ψ (+2), scalar(+2)
- U(1) symmetry (*unbroken*), massless dark photon V_{μ}
- Φ is responsible for the DM relic density $\Omega h^2 \simeq 0.1 \times \left(\frac{y_{\chi}}{0.7}\right)^{-4} \left(\frac{m_{\chi}}{\text{TeV}}\right)^2$.
- Φ can decay into ψ and N.

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo¹⁷

Dark Radiation δNeff

• Effective Number of Neutrinos, Neff

$$\rho_R = \left[1 + N_{\text{eff}} \times \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right] \rho_\gamma,$$
$$\rho_\gamma \propto T_\gamma^4$$

- In SM cosmology, *N_{eff}* =3.046, Neutrinos decouple around MeV, and then stream freely.
- Cosmological bounds

Joint CMB+BBN, 95% CL preferred ranges

$$N_{\rm eff} = \begin{cases} 3.11^{+0.59}_{-0.57} & \text{He}+Planck \text{TT}+\text{lowP}, \\ 3.14^{+0.44}_{-0.43} & \text{He}+Planck \text{TT}+\text{lowP}+\text{BAO}, \\ 2.99^{+0.39}_{-0.39} & \text{He}+Planck \text{TT}, \text{TE}, \text{EE}+\text{lowP}, \end{cases}$$

Planck 2015, arXiv:1502.01589

18

Constraint on New Physics

 $N_{\text{eff}} < 3.7$ $m_{\nu, \, \text{sterile}}^{\text{eff}} < 0.52 \text{ eV}$ Yong TANG(U.Tokyo) Interacting Dark Matter and Radiation U.Tokyo

Dark Radiation δNeff

Massless dark photon and fermion will contribute

$$\delta N_{\text{eff}} = \left(\frac{8}{7} + 2\right) \left[\frac{g_{*s}(T_{\nu})}{g_{*s}(T^{\text{dec}})} \frac{g_{*s}^{D}(T^{\text{dec}})}{g_{*s}^{D}(T_{D})}\right]^{\frac{4}{3}},$$

where T_{ν} is neutrino's temperature,

 g_{*s} counts the effective number of dof for entropy density in SM,

 g_{*s}^D denotes the effective number of dof being in kinetic equilibrium with V_{μ} .

For instance, when $T^{\text{dec}} \gg m_t \simeq 173 \text{GeV}$ for $|\lambda_{\Phi H}| \sim 10^{-6}$, we can estimate δN_{eff} at the BBN epoch as

$$\delta N_{\rm eff} = \frac{22}{7} \left[\frac{43/4}{427/4} \frac{11}{9/2} \right]^{\frac{4}{3}} \simeq 0.53,\tag{1}$$

 δN_{eff} =0.4~1 for relaxing tension in Hubble constant

Yong TANG(U.Tokyo) Interacting Dark Matter and Radiation

U.Tokyo¹⁹

Scattering Cross Section

The averaged cross section $\langle \sigma_{\chi\psi} \rangle$ can be estimated from the squared matrix element for $\chi\psi \to \chi\psi$:

$$\overline{|\mathcal{M}|^2} \equiv \frac{1}{4} \sum_{\text{pol}} |\mathcal{M}|^2 = \frac{2g_X^4}{t^2} \left[t^2 + 2st + 8m_\chi^2 E_\psi^2 \right], \quad (9)$$

where the Mandelstam variables are $t = 2E_{\psi}^2 (\cos \theta - 1)$ and $s = m_{\chi}^2 + 2m_{\chi}E_{\psi}$, where θ is the scattering angle, and E_{ψ} is the energy of incoming ψ in the rest frame of χ . Integrated with a temperature-dependent Fermi-Dirac distribution for E_{ψ} , we find that $\langle \sigma_{\chi\psi} \rangle$ goes roughly as $g_X^4/(4\pi T_D^2)$.

• In general, the cross section could have different temperature dependence, depending on the underlying particle models.

20

Numerical Results

We take the central values of six parameters of ΛCDM from Planck,

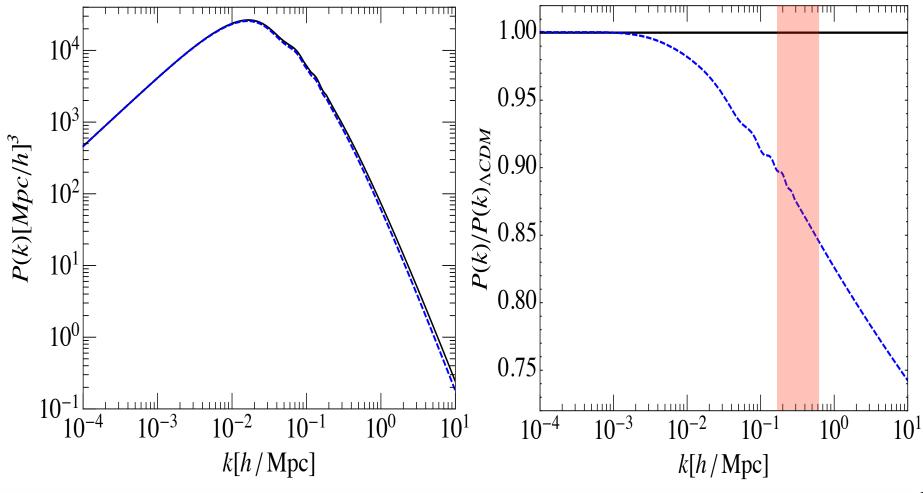
$$\begin{split} \Omega_b h^2 &= 0.02227, & \text{Baryon density today} \\ \Omega_c h^2 &= 0.1184, & \text{CDM density today} \\ 100\theta_{\text{MC}} &= 1.04106, & 100 \times \text{approximation to } r_*/D_A \\ \tau &= 0.067, & \text{Thomson scattering optical depth} \\ \ln \left(10^{10}A_s\right) &= 3.064, & \text{Log power of primordial curvature perturbations} \\ n_s &= 0.9681, & \text{Scalar Spectrum power-law index} \end{split}$$

which gives $\sigma_8 = 0.817$ in vanilla Λ CDM cosmology. With the same input as above, now take

 $\delta N_{\rm eff} \simeq 0.53, m_{\chi} \simeq 100 {\rm GeV} \text{ and } g_X^2 \simeq 10^{-8}$

in the interacting DM case, we have $\sigma_8 \simeq 0.744$.

Modified Boltzmann code CLASS(Blas&Lesgourgues&Tram)


Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo²¹

Matter Power Spectrum

DM-DR scattering causes diffuse damping at relevant scales, resolving σ_8 problem

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo²²

Residual Non-Abelian DM&DR P.Ko&YT, 1609.02307

- Consider SU(N) Yang-Mills gauge fields and a Dark Higgs field Φ $\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + (D_\mu \Phi)^{\dagger} (D^\mu \Phi) - \lambda_\phi \left(|\Phi|^2 - v_{\phi}^2/2 \right)^2,$
- Take SU(3) as an example,

$$A^{a}_{\mu}t^{a} = \frac{1}{2} \begin{pmatrix} A^{3}_{\mu} + \frac{1}{\sqrt{3}}A^{8}_{\mu} & A^{1}_{\mu} - iA^{2}_{\mu} & A^{4}_{\mu} - iA^{5}_{\mu} \\ A^{1}_{\mu} + iA^{2}_{\mu} & -A^{3}_{\mu} + \frac{1}{\sqrt{3}}A^{8}_{\mu} & A^{6}_{\mu} - iA^{7}_{\mu} \\ A^{4}_{\mu} + iA^{5}_{\mu} & A^{6}_{\mu} + iA^{7}_{\mu} & -\frac{2}{\sqrt{3}}A^{8}_{\mu} \end{pmatrix}$$

$$SU(3) \rightarrow SU(2)$$

$$\langle \Phi \rangle = \left(0 \ 0 \ \frac{v_{\phi}}{\sqrt{2}} \right)^{T}, \Phi = \left(0 \ 0 \ \frac{v_{\phi} + \phi(x)}{\sqrt{2}} \right)^{T},$$

The massive gauge bosons $A^{4,\dots,8}$ as dark matter obtain masses,

$$m_{A^{4,5,6,7}} = \frac{1}{2}gv_{\phi}, \ m_{A^8} = \frac{1}{\sqrt{3}}gv_{\phi},$$

and massless gauge bosons $A^{1,2,3}_{\mu}$. The physical scalar ϕ can couple to $A^{4,\cdots,8}_{\mu}$ at tree level and to $A^{1,2,3}$ at loop level.

Yong TANG(U.Tokyo) Interacting Dark Matter and Radiation

23 U.Tokyo

$$SU(N) \to SU(N-1)$$

- 2N-1 massive gauge bosons: Dark Matter
- (N-1)²-1 massless gauge bosons: Dark Radiation
- mass spectrum

$$m_{A^{(N-1)^2,...,N^2-2}} = \frac{1}{2}gv_\phi, \ m_{A^{N^2-1}} = \frac{\sqrt{N-1}}{\sqrt{2N}}gv_\phi,$$

This can be proved by looking at the structure of f^{abc} . Divide the generators t^a into two subset,

$$a \subset [1, 2, ..., (N-1)^2 - 1], a \subset [(N-1)^2, ..., N^2 - 1].$$

Since $[t^a, t^b] = i f^{abc} t^c$ for the first subset forms closed SU(N-1) algebra, we have $f^{abc} = 0$ when only one of a, b and c is from the second subset. If one index is $N^2 - 1$, then other two must be among the second subset to give no vanishing f^{abc} , because t^{N^2-1} commutes with t^a from SU(N-1).

24 U.Tokyo

Phenomenology

Scattering and decay processes

Constraints

$$\delta N_{\text{eff}} = \frac{8}{7} \left[(N-1)^2 - 1 \right] \times 0.055,$$

$$g^2 \lesssim \frac{T_{\gamma}}{T_A} \left(\frac{m_A}{M_P} \right)^{1/2} \sim 10^{-7},$$

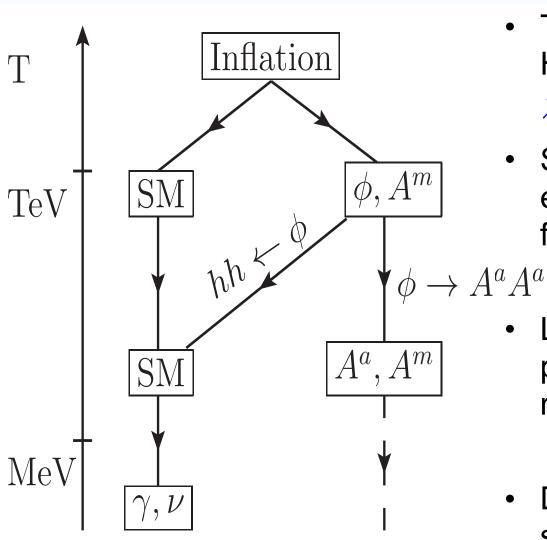
$$n_A$$

$$M_B = \left[\Omega_b M_P g^4 \right]$$

 $\frac{1}{T_{\rm reh}} \sim \ln \left| \frac{1}{\Omega_X m_p \eta} \right| \sim \mathcal{O}(30).$

- N<6 if thermal
- small coupling,
- non-thermal production,
- low reheating temperature

P.Ko&YT, 1609.02307


Schmaltz et al(2015) EW charged DM

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo²⁵

Thermal History

- The minimal setup with Higgs portal interaction $\lambda_{\phi H} \Phi^{\dagger} \Phi H^{\dagger} H$
- SM and DS are decoupled early, DM is produced by freeze-in mechanism
- Late time decay, entropy production due to nonrelativistic decay, DR(δN_{eff})
- DM and DS scattering suppress the matter power spectrum

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo²⁶

Summary

- We discussed some cosmological effects with interacting Dark Matter and Dark Radiation
- This scenario is motivated theoretically and also from observational tensions for CDM, H_0 and σ_8
- We present two particle physics models:
 - A massless dark photon with unbroken U(1) gauge symmetry
 - Residual non-Abelian Dark Matter and Dark Radiation
- It is possible to resolve tensions simultaneously

Yong TANG(U.Tokyo)

Interacting Dark Matter and Radiation

U.Tokyo²⁷

Thanks for your attention.

Yong TANG(U.Tokyo) Interacting Dark Matter and Radiation

U.Tokyo²⁸