Soft Tracks - a probe of New Physics at LHC

Amit Chakraborty Theory Center, KEK

Physics in LHC and the Early Universe University of Tokyo January 10, 2017

Based on: AC, Sabyaschi Chakraborty and Tuhin S. Roy [PRD 94, 111703 (2016) (Rapid)]

Higgs update

- Confirmation of Higgs discovery
- Measurements are consistent with SM Higgs
- More detailed study, more luminosity

(comprehensive review by Djouadi)

Beyond Standard Model

Courtesy: Ian Low, ICTP 2016 talk

Interpretations

Where SUSY could be hiding?

1. Compressed spectra -

small mass differences, long decay chain, soft leptons/jets, fail analysis Cuts, <u>Limits are rather weak at</u> <u>LHC</u>

[Martin PRD 75 (115005); Fan et. al. JHEP 11, 012; Murayama et. al. PRD 86 (115014)]

2. <u>Long-lived particles</u> - cuts fail to identify jets or leptons. (similar to prompt limits) [Monteux JHEP 1603 (215), ...]

Numerous study, challenging scenarios ! Baer et. al., Martin

et. al., Bhattacherjee et. al., Nojiri et. al., Harigaya et al., ... many more

Goal:

Compressed SUSY, device a search strategy to improve sensitivity at LHC

Outline

• Compressed spectra

Mono-jet search

Traditional methodology

Soft Tracks variables

- Collider phenomenology
- Comparison (and improvements)
- Summary

Mono Jet search

Mono-jet event from ATLAS (credit: CERN courier)

Visible parts do not cross the threshold

Topology: An energetic Jet with large MET

6

Mono Jet search

- Extremely challenging !
- **Theory: Sensitive to NP models -** SUSY, Extradimension, DM searches, ...
- Expt. information:
 - I. <u>Reco level</u>: 4-momentum of the jet and MET.

II. <u>Detector level</u>: energy in caloremeters and/or trackers, muon chambers

==> More **information** at the detector level

• Can we study/utilize the complete Event information ??

Search strategy

- Look events with hard Initial State Radiation (ISR)
- Event selection (typical choices): Leading jet: $P_T > 100 \text{ GeV}, |\eta| < 3$ MET > 200 GeV $\Delta \Phi(j, MET) > 1.0$ $H_T > 500 \text{ GeV}$ [$H_T = MET + \text{ scalar } P_T \text{ sum}$]

• <u>Backgrounds</u>: Z(vv)+jets, $W(\ell v)$ +jets, QCD

These observables are highly correlated !!

Recent analysis by Dutta et. al. JHEP 1601, 051 (2016)

Our strategy

- A sample Compressed SUSY spectra
- Calculate S/B and S/ \sqrt{B} combining track based variables with conventional ones (P_T of visible objects).
- <u>Compare</u> the performance of an optimized MVA analysis.

A, B, C, D, E == squark, gluino, stop, chargino, neutralino

Assume,

 $(m_A - m_B) = (m_B - m_C) = (m_C - m_D) = (m_D - m_E) = 25 \text{ GeV},$ with $m_A = 1.5 \text{ TeV}$ Degree of compression $\Delta \equiv (m_A - m_E)/m_A = 1/15$

Most generic study, application in several extensions of SM !

Track observable

- Number of tracks that are
 - I. Associated to the Primary vertex
 - II. <u>NOT</u> part of any reconstructed object (AP(t i) > iot radius P)
 - $(\Delta R(t,j) > jet radius R)$
- Bin them according to P_T (IR safe)
 - $P_T > 5 \text{ GeV} \equiv \xi(5)$
 - $1 \text{ GeV} < P_{T} < 5 \text{ GeV} \equiv \xi(1)$
 - $0.5 \text{ GeV} < P_T < 1 \text{ GeV} \equiv \xi(0.5)$

Variable sets

- 4-momentum of single jet
- Large center-of-mass energy, many particles
- Large recoil again ISR jet, more jets and leptons fail to pass the threshold, large MET.

 $V_{C} = \{p_{T}(j_{1}), MET, H_{T}, M_{eff}\}$ $V_{all} = \{\xi(5), \xi(1), \xi(0.5), p_{T}(j_{1}), MET, H_{T}, M_{eff}\}$

 $H_T = P_T sum, M_{eff} = H_T + MET$

Phenomenology

- <u>Signal</u>: Pair produced 'A' with a hard 'j' at the ME level (AAj process) [MadGraph]
- <u>Backgrounds</u>:

Z(vv)+jets, $W(\ell v)$ +jets, QCD;

one hard 'j' at the ME level - MadGraph

- Parton Shower & Hadronization PYTHIA8.
- Pileup $\langle N \rangle = 20$ and 40, CMS card Delphes
- Jets: anti- $k_T R = 0.5$ with $p_T = 50$ GeV FastJet
- We count PU subtracted tracks with p_T bin

Distributions

 Pre-selection: Events with exactly ONE jet with p_T > 100 GeV with |η|<2

$$\vec{p}_T = -\sum_i \vec{p}_T^i, \qquad H_T = \sum_i \left| \vec{p}_T^i \right|,$$
$$M_{\text{eff}} = H_T + \left| \vec{p}_T \right|$$

A hard cut on these reduces SM bkgs

Number of Track distributions

 Good discriminating variable !
 Hard cut on track P_T, still effective
 <u>Super-compressed</u>: Δ = 1/75 with mass difference 5 GeV each. works well !!

Correlations

- Linear Correlation coeff. = $Cov(x,y)/\sigma_x\sigma_y$
- Conventional variables: Highly Correlated !!
- Lack of correlation with $\boldsymbol{\xi}$
- <u>Minimal set</u> $V_{sel} = \{\xi(5), \xi(1), \xi(0.5), M_{eff}\}$

MultiVariate Analysis

- BDT technique using TMVA framework.
- Pile up: PU = 40

 (solid), PU=20
 (dashed)
- Signal efficiency (ε_s)
 vs background efficiency (ε_B)

Lessons: 1. Our analysis is pileup robust
2. Significant bkg reduction using tracks as BDT input
3. V_{sel} (Blue): out-performs conventional set !

MultiVariate Analysis

Comparison: Cut based analysis

Red Cross: without soft tracks ; Green squa

Green square: with soft tracks

<u>For a fixed bkg. Efficiency</u> => around 50% or more improvement in signal effs even in a simple minded cut-based analysis

Different √s

It's NOT the initial COM energy, it's the cascade decay pattern !!!

MEPS matching

Distributions remain same -Predictions are rebust under MEPS matching !

Data Driven way

- **1.** Extremely good μ indentification
- 2. Use them for the track distri.
- 3. Easy to implement at the LHC !

Summary

- Compressed spectra (monojet + MET): challenging scenario at the LHC
- Conventional analysis fails to utilize the full event information
- We introduce a new variable ξ, a measure of "Soft tracks" in an event, can play a big role in probing the New Physics through mono-jet + MET channel.
- Our observations are Pileup robust.
- Looking forward for implementation with Real Data !