Tracker simulation and reconstruction

Rosa Simoniello

Outline

- Overview of the status of tracker in simulation
 - CLIC_03_v06: last up-to date model with engineer layout
 - CLIC_o2_v04: frozen model to develop tracking
- News about tracking
 - New directions and ideas

Size and number of hits

Inner barrels	IB1	IB2	IB3
R [mm]	127	340	554

Inner disks	ID1	ID2	ID3	ID4	ID5	ID6	ID7
z [mm]	524	808	1093	1377	1661	1946	2190

Outer barrels	OB1	OB2	OB3
R [mm]	819	1153	1486

Outer disks	OD1	OD2	OD3	OD4
z [mm]	1310	1617	1883	2190

Number of hits

• Good coverage, few missing hits in transition between barrels and disks

Hit map

- N of hits investigated as a function of particle energy (in case at low momentum the particle "curles" into holes
 - To be study also as a function of pT
- Dependence on phi due to spiral vertex geometry in the disks

Material budget

- Total material budget per layer for barrels (w/o st): **1.19% 1.145%**
- Total material budget per layer for disks: 1.35% 1.385%
- 0.3% 0.5% for take out of services

Dark Blue– Carbon fiber supports

Work is ongoing

Material budget

- Inner tracker barrel includes also the support tube
- Beam pipe gives peak of material ~5-6° due to its conical shape

Summary of nhits and mb

 The region with more material budget is also the region with more hits

Pattern recognition I – Reminder

- For tracks traversing the vertex barrel
 - 1. Compute *mini vectors* (MV) exploiting the double layer structure of the vertex barrel
 - Run *Cellular Automaton on MV* → obtain vertex tracks
 - Use vertex tracks as seed for track *extrapolation* to Inner and Outer Tracker in Barrel and Disks
- To be combined with *independent Cellular Automaton in the forward*

Mini Vectors:

Create a mini vector out of 2 hits on adjacent layers (d < 5 mm) with $\delta\theta$ < 1°

Pattern recognition II – Reminder

- Conformal mapping: coordinate transformation that preserves local angles
 - (x,y)-plane in the (u,v)-plane
 - Tracks are straight lines
- Run CA sequentially on all hit collections
 - same approach in the full tracker system
 - no sub-track combination needed
- Track ambiguity resolved with linear fit

 $\begin{cases} u = x/(x^2 + y^2) \\ v = y/(x^2 + y^2) \end{cases}$

Tracking

- For both methods, good efficiency shown at CLICdp August workshop
 Now Conformal mapping tested also with background overlay
- Decision to merge the 2 methods:
 - Seed vertex track with conformal mapping + Cellular Automaton
 - Extrapolate the tracks in the tracker → better fit propagation including material effects
 - Saved not used hits and try something else on these hits to recover late decays → few ideas available

Very model independent, hopefully easy transition between detector models

→ Test just started, more checks need to make sure that everything is working properly (n hits in the track, purity, fakes, etc...)

• Time spent mostly in track fit \rightarrow few improvements in AIDATT to test

Conclusion

- The tracker model in the full simulation is up-to-date
- The track reconstruction is being finalised
 - New idea to combine Conformal Mapping with Tracker Extrapolator is under test → potentially very flexible to run on different detector models
 - More metric plots need to be added
- Coming soon: results by Emilia Leogrande
 - Initial task: validation with single μ (at the moment low stat)
 - Run for the first time on new tracker model in CLIC_03_v06
 - Results to be investigated: some inefficiency in fit

Pattern recognition I – Reminder

- For tracks traversing the vertex barrel
 - 1. Compute *mini vectors* (MV) exploiting the double layer structure of the vertex barrel
 - Run *Cellular Automaton on MV* → obtain vertex tracks
 - Use vertex tracks as seed for track *extrapolation* to Inner and Outer Tracker in Barrel and Disks
- To be combined with *independent Cellular Automaton in the forward*

Mini Vectors:

Create a mini vector out of 2 hits on adjacent layers (d < 5 mm) with $\delta\theta$ < 1°

Pattern recognition I – Results

- 3 TeV ttbar sample with 60BX overlayed
 - For new samples: 30BX vs the 60BX?
- Reoptimisation necessary
- Purity ok but room for improvement
- Not run any profiler yet to optmise timing (anyway no longer of current tracking)
 - Optimised loop in hits
 - Extrapolation procedure takes time

Pattern recognition II – Reminder

- Conformal mapping: coordinate transformation that preserves local angles
 - (x,y)-plane in the (u,v)-plane
 - Tracks are straight lines
- Run CA sequentially on all hit collections
 - same approach in the full tracker system
 - no sub-track combination needed
- Track ambiguity resolved with linear fit

 $\begin{cases} u = x/(x^2 + y^2) \\ v = y/(x^2 + y^2) \end{cases}$

Pattern recognition II – Results

- 3 TeV ttbar sample without overlay
- Cell following logic revised, keep more tracks candidate till the end
- Added fit in sz-fit to gain 3D-info
- Timing improved \rightarrow 0.3 s/event (no Marlin track fit)
 - Linear regression implemented instead of chi2 for fit
 - Code profiled to find hotspot
- Good purity, numbers to be computed

