Telescope Precision Studies

A.F.Żarnecki Warsaw University

Status report

- Introduction
- Analysis method
- Main Results
- Conclusions and Plans

Motivation

The main aims of this study

- understand the position measurement in the telescope
- optimize the performance by suggesting the best plane setup

Approach

Use analytical method for track fitting including multiple scattering (!!!)

Simplifying assumptions:

- small scattering angles (Gaussian approximation)
- Gaussian position measurement errors
- perfect alignment (could be taken into account !)
- no additional material (windows, etc.) (could be taken into account as well !)

Geometry can be specified by giving:

- N number of detector planes (including DUT)
- x_i position of each plane $(i = 1 \dots N)$
- σ_i position resolution in each plane $(i \neq i_{DUT})$
- $\Delta \theta_i$ average scattering angle in each plane

For given telescope parameters $(N, \sigma_i, \Delta \theta_i)$ we can look for configuration (plane ordering, values of x_i) resulting in best determination of particle position at DUT

Analysis method

Multiple scattering

Distances between planes $\sim 0(10 \text{ mm}) + \text{scattering angles} \sim 0(0.1 \text{ mrad})$

 \Rightarrow track displacement due to scattering $\sim 0(1 \ \mu m)$ (for beam energy of few GeV)

Displacement comparable with position resolution $(1 - 2 \mu m)$!

 \Rightarrow significantly influences the measurement, can not be neglected !

Straight line fit is not sufficient...

Analysis method

Track fitting

We want to determine track positions in each plane (including DUT), i.e. N parameters $(p_i, i = 1 \dots N)$, from N - 1 measured positions in telescope planes $(y_i, i \neq i_{DUT})$.

However, we can use constraints on multiple scattering!

 χ^2 minimum can be found by solving the matrix equation.

As a by-product we get also an error on the position reconstructed at DUT.

Analysis method

Realistic telescope geometry thanks to W.Dulinski

The minimum distance between DUT and **one** of the telescope planes, d_{min} , is 5 mm (easy, realistic) or even 2 mm (hard, optimistic).

However, other distances can not be smaller than 15 or 20 mm:

In addition to standard sensor planes with 2 μm resolution we can consider adding one or two high resolution planes ($\sigma_{HR}\sim 1\mu m$)

4 (1+3) telescope planes

Simplest case: 1 high resolution (HR) and 3 standard sensor planes (120 μm each)

Expected position error at DUT, σ_{DUT} , as a function of the HR plane resolution, σ_{HR} , for different telescope configurations: 6 GeV e^- beam, DUT thickness of 500 μm

$\begin{array}{ll} \begin{array}{l} \begin{array}{l} 4 \ (1+3) \ \text{telescope planes} \\ \hline \text{Assuming HR plane resolution is not better than 1 μm and DUT is thiner than 1 m:} \\ \hline \text{Best precision for thick DUT, $\Delta_{DUT} \geq 200 \mu m$, is obtained for WN- configuration} \end{array}$

N–N configuration gives best precision for very thin DUT, $\Delta_{DUT} \leq 200 \mu m$

not to scale !

4 (1+3) telescope planes 6 GeV e^- beam

High resolution plane should be put as close to DUT as possible. (for $\sigma_{HR} \sim 1 \mu m$) Expected position error at DUT, σ_{DUT} , as a function of the HR plane resolution, σ_{HR} , for optimum telescope configuration:

4 (2+2) telescope planes

Two high resolution + two standard planes: more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

2 HR layer + 2 standard layers, d_{min} = 5 mm

A.F.Żarnecki

Telescope Precision Studies

4 telescope planes

Configuration with two HR planes always gives better precision than with one HR plane.

2 HR planes

 $d_{min} = 5 \text{ mm}$

Expected statistical precision of position reconstruction at DUT [μm]:

1 HR plane 6 GeV e^- beam

Telescope Precision Studies

<u>4 telescope planes</u> 100 GeV π^- beam Multiple scattering much smaller, much less important!

Best precision obtained for detector planes put close to each other (N–N configuration) With one HR plane DUT should be placed in $\sim \frac{1}{3}$ of the distance between sensors

With two HR planes DUT should be placed in the middle between HR planes.

No need to minimize HR–DUT distance !

A.F.Żarnecki

_>.....

6 (1+5) telescope planes

One high resolution and 5 standard telescope planes

For low energy beam (eg. 6 GeV e^-) best measurement in WN–NW configuration

For high energy beam (eg. 100 GeV π^-) best measurement in NN–NN configuration

6 (2+4) telescope planes

Two high resolution + four standard planes: even more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

2 HR layer + 4 standard layers, d_{min} = 5 mm

6 (2+4) telescope planes

Assuming HR plane resolution is of the order of 1 μm , $d_{min} = 5mm$

For low energy beam (eg. 6 GeV e^-) best measurement in WN–WW configuration (except for very thin DUT)

For high energy beam (eg. 100 GeV π^-) best measurement in NN–NN configuration

6 vs 4 telescope planes

Configuration with 6 planes planes always gives better precision than 4 planes. Expected position error at DUT, σ_{DUT} , as a function σ_{HR}

6 vs 4 telescope planes

Configuration with 6 planes planes always gives better precision than 4 planes. Expected position error at DUT, σ_{DUT} , as a function σ_{HR}

Conclusions and Plans

- Analytical method used to describe the performance of the telescope with realistic geometry constraints.
- The optimum telescope setup is not uniquely defined
 ⇒ few configurations, for different telescope parameters, suggested.
- To achieve error on the reconstructed particle position at DUT of $1\mu m$ at least one high resolution plane is needed
- Significant improvement expected from second HR plane.
- 6 sensor planes always give better position resolution than 4 planes

Our current aim is to confirm obtained results with GEANT 4 simulation, we hope to have first results for EUDET annual meeting.

For detailed description of the analysis and current results see: http://hep.fuw.edu.pl/u/zarnecki/talks/afz_jra1_apr06.pdf http://hep.fuw.edu.pl/u/zarnecki/talks/afz_jra1_jul06.pdf