
1/ 37

GPU-Accelerated Deep Neural Networks in
TMVA

Simon Pfreundschuh
Supervisors: Sergei V. Gleyzer, Lorenzo Moneta



2/ 37

Outline

Introduction

Implementation

Verification and Testing

Performance

Application to the Higgs Dataset

Summary and Future Outlook

Acknowledgments



3/ 37

Introduction



4/ 37

Motivation

• Deep learning techniques have been revolutionizing the field of
machine learning.

• Their success is closely related to the development of
massively parallel accelerator devices, which allow for efficient
training of machine learning models.

• Deep learning techniques have successfully been applied to
problems in HEP1.

Aim
Provide an efficient and easy-to-use implementation of deep neural
networks for the HEP community.

1http://arxiv.org/pdf/1402.4735v2.pdf

http://arxiv.org/pdf/1402.4735v2.pdf


5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x ŷ



5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x

u1 = f (W1x+ θ1)

ŷ



5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x

u1 = f (W1x+ θ1)

ŷ



5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x

u1 = f (W1x+ θ1)

ŷ

u2 = f (W2u1 + θ2)



5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x

u1 = f (W1x+ θ1) u2 = f (W2u1 + θ2)

ŷ

u3 = f (W3u3 + θ3)



5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x

u1 = f (W1x+ θ1) u2 = f (W2u1 + θ2) u3 = f (W3u2 + θ3)

ŷ

u4 = f (W4u4 + θ4)



5/ 37

Feed Forward Neural Networks

x1

x2

x3

x4

x

u1 = f (W1x+ θ1) u2 = f (W2u1 + θ2) u3 = f (W3u2 + θ3)

ŷ

u4 = f (W4u4 + θ4)



6/ 37

Feed Forward Neural Networks

• A feed forward neural network is defined by a set of layers
l = 1, . . . , n, each with an associated weight matrix Wl , bias
terms θl and activation function fl .

• Feed forward: Neurons of a given layer l are only connected
to neurons of the layer l + 1

• A neural network may be viewed as a function

F (x,W,θ) = fn
(
fn−1(· · · )WT

n−1 + θn−2

)
WT

n + θn (1)

• Machine Learning: Find parameters Ŵ, θ̂ so that
F (x) = F (x, Ŵ, θ̂) approximates either a target function G (x)
(Regression) or a likelihood measure for a given class
(Classification).



6/ 37

Feed Forward Neural Networks

• A feed forward neural network is defined by a set of layers
l = 1, . . . , n, each with an associated weight matrix Wl , bias
terms θl and activation function fl .

• Feed forward: Neurons of a given layer l are only connected
to neurons of the layer l + 1

• A neural network may be viewed as a function

F (x,W,θ) = fn
(
fn−1(· · · )WT

n−1 + θn−2

)
WT

n + θn (1)

• Machine Learning: Find parameters Ŵ, θ̂ so that
F (x) = F (x, Ŵ, θ̂) approximates either a target function G (x)
(Regression) or a likelihood measure for a given class
(Classification).



7/ 37

Neural Network Training

• Supervised learning: The network is trained using a training
set consisting of inputs X = x0, . . . , xn and outputs
Y = y0, . . . , yn.

• The loss function or error function J(y , ŷ) quantifies the
quality of a prediction ŷ with respect to the expected output
y .

• Learning as a minimization problem:

minimize
W,θ

JX =
1

n

∑

x

J(y , ŷ) (2)



8/ 37

Neural Network Training (Contd.)

• Use gradient-based minimization methods to minimize the
error

∑
x∈X J(y , ŷ) over the training set:

W←W − αdJX
dW

(3)

θ ← θ − αdJX
dθ

(4)

• Batch gradient descent: Instead of the whole training set,
compute the gradient only for a small subset of it.

• Crucial for scalable training on large data sets.



9/ 37

Forward and Backward Propagation

Forward Propagation:

Un = fn
(

Un−1Wn + θT
)

(5)

f ′n = f ′n

(
Un−1Wn + θT

)
(6)

Backward Propagation:

dJX
dWn

=

(
f ′n �

dJX
dUn

)T

Un−1 (7)

dJX
dθn

=

(
f ′n �

dJX
dUn

)T

1 (8)

dJX
dUn−1

=

(
f ′n �

dJX
dUn

)
Wn (9)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m
x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1
)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m
x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

JX (y, ŷ)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

JX (y, ŷ)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

dJX
dW2

=

(
f ′2 �

dJX
dU2

)T

U1

JX (y, ŷ)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

dJX
dθ2

=

(
f ′2 �

dJX
dU2

)T

1

JX (y, ŷ)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

dJX
dU1

=

(
f ′2 �

dJX
dU2

)
W2

JX (y, ŷ)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

dJX
dW1

=

(
f ′1 �

dJX
dU1

)T

X

JX (y, ŷ)



10/ 37

Forward and Backward Propagation

x0,0 . . . x0,m

x1,0 . . . x1,m

...
...

xn,0 . . . xn,m







U1 = f1
(
XWT

1 + θ1

)

dJX
dU1

U1

dJX
dW1

W1

dJX
dθ1

θ1

dJX
dU2

U2

dJX
dW2

W2

dJX
dθ2

θ2

U1 = f1
(
XWT

1 + θ1

)
U2 = f2

(
U1W

T
2 + θ2

)

dJX
dθ1

=

(
f ′1 �

dJX
dU1

)T

1

JX (y, ŷ)



11/ 37

Implementation



12/ 37

Design

• The backpropagation algorithm can be decomposed into
primitive operations on matrices:

• Matrix multiplication and addition
• Application of activation functions
• Computation of loss and regularization functionals and their

gradients

• General formulation of the backpropagation algorithm using
those primitive matrix operations

• Optimized matrix operations provided by specialized low-level
implementations



13/ 37

Design

L
ow

-l
ev
el

In
te
rf
a
ce

TCuda

TCudaMatrix

cuBLAS curand

TCpu

TCpuMatrix

BLAS TBB

TOpenCL

TCpuMatrix

clBLAS clRNG



13/ 37

Design

O
O

M
o
d
el

TBatch

TDataLoader

TLayer

TNet

L
ow

-l
ev
el

In
te
rf
a
ce

TCuda

TCudaMatrix

cuBLAS curand

TCpu

TCpuMatrix

BLAS TBB

TOpenCL

TCpuMatrix

clBLAS clRNG



13/ 37

Design

TrainGPU(...)

TrainCPU(...)TGradientDescent
O
O

M
o
d
el

TBatch

TDataLoader

TLayer

TNet

L
ow

-l
ev
el

In
te
rf
a
ce

TCuda

TCudaMatrix

cuBLAS curand

TCpu

TCpuMatrix

BLAS TBB

TOpenCL

TCpuMatrix

clBLAS clRNG



14/ 37

Design

The Low-Level Interface:

• Implemented by architecture classes: TCuda, TCpu, TOpenCL

• Architecture classes provide matrix and scalar types as well
as host and device buffer types

The Object Oriented Model:

• Generic neural network implementation: Classes are templated
by architecture class.

• The TNet class provides a general implementation of the
backpropagation algorithm.

• The TDataLoader takes care of the streaming of data to the
device.



15/ 37

Dependencies

CPU Implementation:

• BLAS: quasi-standard, various optimized open source
implementations available, possibility to link against vendor
provided implementations when available

• TBB: To be replaced by Root’s ThreadPool class

CUDA Implementation:

• cuBLAS and cuRAND freely available as part of the CUDA
Toolkit

OpenCL Implementation:

• clBLAS and clRNG: Part of the clMath libraries



16/ 37

Verification and Testing



17/ 37

Verification

• The code includes a reference implementation of the low-level
interface based on Root’s TMatrix class.

• Generic unit test for all routines in the low-level interface
based on the reference implementation.

• Backpropagation algorithm verified using numerical
differentiation.

• Training routines verified by learning full-rank linear mappings.



18/ 37

Performance



19/ 37

Performance Model

Consider a layer l with nl neurons, nl−1 input neurons and a batch
size of nb.

Forward Propagation:

• Multiplication of weight matrix Wl with activations of
previous layer:

nlnb(2nl−1 − 1) FLOP

• Addition of bias terms θl :

nlnb FLOP

• Application of activation function fl and its derivatives:

2nlnbcf FLOP, cf ≈ 1



19/ 37

Performance Model

Consider a layer l with nl neurons, nl−1 input neurons and a batch
size of nb.

Backward Propagation

• Hadamard product:

nlnb FLOP

• Computation of previous layer activations:

nl−1nb(2nl − 1) FLOP

• Computation of weight and bias gradients:

nl−1nl(2nb − 1) + nl(nb − 1) FLOP



19/ 37

Performance Model

Consider a layer l with nl neurons, nl−1 input neurons and a batch
size of nb.

Total:

∑

l

6nlnbnl−1 + 4nlnb − nl(nl−1 + 1)− nbnl−1

• Terms involving nlnbnl−1 dominate complexity for the hidden
layers.



20/ 37

Benchmarks

• Training Data:
• Randomly generated data from a linear mapping R20 → R
• 105 input samples

• Network structure:
• 5 hidden layers with 256 neurons
• tanh activation functions
• Squared error loss

• Computation of the numerical throughput based on the time
elapsed for performing 10 training epochs.



21/ 37

CPU Performance

Implementation: Multithreaded OpenBLAS and TBB
Hardware: Intel Xeon E5-2650, 8× 4 cores, 2 GHz , estimated

peak performance per core: 16 GFLOP/s



22/ 37

GPU Performance

Network: 20 input nodes, 5 hidden layers with nh nodes each,
squared error loss
Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double precision)



23/ 37

GPU Performance
Optimization:

• Use compute streams to expose more parallelism to the device.

• Compute gradients for multiple batches in parallel.

• Using 2 streams:



23/ 37

GPU Performance
Optimization:

• Use compute streams to expose more parallelism to the device.

• Compute gradients for multiple batches in parallel.

• Using 4 streams:



24/ 37

GPU Performance
Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss
Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double)



25/ 37

OpenCL Performance
Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss
Hardware: AMD FirePro W8100, 2.1 TFLOP/s peak performance
(double)



26/ 37

Summary

Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss



27/ 37

Application to the Higgs Dataset



28/ 37

The Higgs Dataset

• Signal Process:

gg → H0 →W±H∓ →W±W∓h0 →W±W∓bb̄

• Background Process:

gg → tt̄ →W±W∓bb̄

• 21 low-level features: Momenta of one lepton and the four
jets, jet b-tagging information, missing transverse momentum

• 7 high-level features: Derived invariant masses of
intermediate decay products

• Dataset consisting of 11 million simulated collision events

1See http://arxiv.org/pdf/1402.4735v2.pdf

http://arxiv.org/pdf/1402.4735v2.pdf


29/ 37

Shallow vs. Deep Networks

• Shallow Network: 1 hidden layer with 256 neurons and tanh
activation function and cross entropy loss

• Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

• Both networks trained once using only low-level features and
once using both high-level and low-level features.



30/ 37

Shallow vs. Deep Networks



31/ 37

Deep Networks vs. BDT

• Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

• Boosted Decision Trees: 1000 Trees, maximum depth 3

• Both classifiers trained on low- and high-level features

Method Training Time [h] Area under ROC Curve

BDT 4.78 h 0.806
DNN 1.46 h 0.876



32/ 37

Deep Networks vs. BDT



33/ 37

Summary and Future Outlook



34/ 37

Results

• Testing and verification of the prototype implementation of
deep neural networks in TMVA.

• Production-ready implementation of parallel training of deep
neural networks on CPUs and CUDA-capable GPUs.

• Reproduced Higgs benchmark results.

• Integrated CPU and CUDA implementations into Root master



35/ 37

Future Outlook

• Near Future:
• Finish OpenCL implementation

• Analyze performance on different architectures

• Extend neural network functionality: batch normalization,
activation functions, AdaGrad, ...



36/ 37

Acknowledgments



37/ 37

Acknowledgments

• Project carried out at CERN within the Google Summer of
Code program

• Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Thank You!


	Introduction
	Implementation
	Verification and Testing
	Performance
	Application to the Higgs Dataset
	Summary and Future Outlook
	Acknowledgments

