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Introduction



4/ 37

Motivation

• Deep learning techniques have been revolutionizing the field of
machine learning.

• Their success is closely related to the development of
massively parallel accelerator devices, which allow for efficient
training of machine learning models.

• Deep learning techniques have successfully been applied to
problems in HEP1.

Aim
Provide an efficient and easy-to-use implementation of deep neural
networks for the HEP community.

1http://arxiv.org/pdf/1402.4735v2.pdf

http://arxiv.org/pdf/1402.4735v2.pdf
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Feed Forward Neural Networks

• A feed forward neural network is defined by a set of layers
l = 1, . . . , n, each with an associated weight matrix Wl , bias
terms θl and activation function fl .

• Feed forward: Neurons of a given layer l are only connected
to neurons of the layer l + 1

• A neural network may be viewed as a function

F (x,W,θ) = fn
(
fn−1(· · · )WT

n−1 + θn−2

)
WT

n + θn (1)

• Machine Learning: Find parameters Ŵ, θ̂ so that
F (x) = F (x, Ŵ, θ̂) approximates either a target function G (x)
(Regression) or a likelihood measure for a given class
(Classification).
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Neural Network Training

• Supervised learning: The network is trained using a training
set consisting of inputs X = x0, . . . , xn and outputs
Y = y0, . . . , yn.

• The loss function or error function J(y , ŷ) quantifies the
quality of a prediction ŷ with respect to the expected output
y .

• Learning as a minimization problem:

minimize
W,θ

JX =
1

n

∑

x

J(y , ŷ) (2)
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Neural Network Training (Contd.)

• Use gradient-based minimization methods to minimize the
error

∑
x∈X J(y , ŷ) over the training set:

W←W − αdJX
dW

(3)

θ ← θ − αdJX
dθ

(4)

• Batch gradient descent: Instead of the whole training set,
compute the gradient only for a small subset of it.

• Crucial for scalable training on large data sets.
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Forward and Backward Propagation

Forward Propagation:

Un = fn
(

Un−1Wn + θT
)

(5)

f ′n = f ′n

(
Un−1Wn + θT

)
(6)

Backward Propagation:

dJX
dWn

=

(
f ′n �

dJX
dUn

)T

Un−1 (7)

dJX
dθn

=

(
f ′n �

dJX
dUn

)T

1 (8)

dJX
dUn−1

=

(
f ′n �

dJX
dUn

)
Wn (9)
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Implementation



12/ 37

Design

• The backpropagation algorithm can be decomposed into
primitive operations on matrices:

• Matrix multiplication and addition
• Application of activation functions
• Computation of loss and regularization functionals and their

gradients

• General formulation of the backpropagation algorithm using
those primitive matrix operations

• Optimized matrix operations provided by specialized low-level
implementations
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Design

TrainGPU(...)

TrainCPU(...)TGradientDescent
O
O

M
o
d
el

TBatch

TDataLoader

TLayer

TNet

L
ow

-l
ev
el

In
te
rf
a
ce

TCuda

TCudaMatrix

cuBLAS curand

TCpu

TCpuMatrix

BLAS TBB

TOpenCL

TCpuMatrix

clBLAS clRNG



14/ 37

Design

The Low-Level Interface:

• Implemented by architecture classes: TCuda, TCpu, TOpenCL

• Architecture classes provide matrix and scalar types as well
as host and device buffer types

The Object Oriented Model:

• Generic neural network implementation: Classes are templated
by architecture class.

• The TNet class provides a general implementation of the
backpropagation algorithm.

• The TDataLoader takes care of the streaming of data to the
device.
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Dependencies

CPU Implementation:

• BLAS: quasi-standard, various optimized open source
implementations available, possibility to link against vendor
provided implementations when available

• TBB: To be replaced by Root’s ThreadPool class

CUDA Implementation:

• cuBLAS and cuRAND freely available as part of the CUDA
Toolkit

OpenCL Implementation:

• clBLAS and clRNG: Part of the clMath libraries
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Verification and Testing
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Verification

• The code includes a reference implementation of the low-level
interface based on Root’s TMatrix class.

• Generic unit test for all routines in the low-level interface
based on the reference implementation.

• Backpropagation algorithm verified using numerical
differentiation.

• Training routines verified by learning full-rank linear mappings.
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Performance
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Performance Model

Consider a layer l with nl neurons, nl−1 input neurons and a batch
size of nb.

Forward Propagation:

• Multiplication of weight matrix Wl with activations of
previous layer:

nlnb(2nl−1 − 1) FLOP

• Addition of bias terms θl :

nlnb FLOP

• Application of activation function fl and its derivatives:

2nlnbcf FLOP, cf ≈ 1
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Performance Model

Consider a layer l with nl neurons, nl−1 input neurons and a batch
size of nb.

Backward Propagation

• Hadamard product:

nlnb FLOP

• Computation of previous layer activations:

nl−1nb(2nl − 1) FLOP

• Computation of weight and bias gradients:

nl−1nl(2nb − 1) + nl(nb − 1) FLOP
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Performance Model

Consider a layer l with nl neurons, nl−1 input neurons and a batch
size of nb.

Total:

∑

l

6nlnbnl−1 + 4nlnb − nl(nl−1 + 1)− nbnl−1

• Terms involving nlnbnl−1 dominate complexity for the hidden
layers.
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Benchmarks

• Training Data:
• Randomly generated data from a linear mapping R20 → R
• 105 input samples

• Network structure:
• 5 hidden layers with 256 neurons
• tanh activation functions
• Squared error loss

• Computation of the numerical throughput based on the time
elapsed for performing 10 training epochs.
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CPU Performance

Implementation: Multithreaded OpenBLAS and TBB
Hardware: Intel Xeon E5-2650, 8× 4 cores, 2 GHz , estimated

peak performance per core: 16 GFLOP/s
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GPU Performance

Network: 20 input nodes, 5 hidden layers with nh nodes each,
squared error loss
Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double precision)
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GPU Performance
Optimization:

• Use compute streams to expose more parallelism to the device.

• Compute gradients for multiple batches in parallel.

• Using 2 streams:
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GPU Performance
Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss
Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double)
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OpenCL Performance
Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss
Hardware: AMD FirePro W8100, 2.1 TFLOP/s peak performance
(double)
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Summary

Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss
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Application to the Higgs Dataset
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The Higgs Dataset

• Signal Process:

gg → H0 →W±H∓ →W±W∓h0 →W±W∓bb̄

• Background Process:

gg → tt̄ →W±W∓bb̄

• 21 low-level features: Momenta of one lepton and the four
jets, jet b-tagging information, missing transverse momentum

• 7 high-level features: Derived invariant masses of
intermediate decay products

• Dataset consisting of 11 million simulated collision events

1See http://arxiv.org/pdf/1402.4735v2.pdf

http://arxiv.org/pdf/1402.4735v2.pdf


29/ 37

Shallow vs. Deep Networks

• Shallow Network: 1 hidden layer with 256 neurons and tanh
activation function and cross entropy loss

• Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

• Both networks trained once using only low-level features and
once using both high-level and low-level features.
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Shallow vs. Deep Networks
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Deep Networks vs. BDT

• Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

• Boosted Decision Trees: 1000 Trees, maximum depth 3

• Both classifiers trained on low- and high-level features

Method Training Time [h] Area under ROC Curve

BDT 4.78 h 0.806
DNN 1.46 h 0.876
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Deep Networks vs. BDT
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Summary and Future Outlook
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Results

• Testing and verification of the prototype implementation of
deep neural networks in TMVA.

• Production-ready implementation of parallel training of deep
neural networks on CPUs and CUDA-capable GPUs.

• Reproduced Higgs benchmark results.

• Integrated CPU and CUDA implementations into Root master
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Future Outlook

• Near Future:
• Finish OpenCL implementation

• Analyze performance on different architectures

• Extend neural network functionality: batch normalization,
activation functions, AdaGrad, ...



36/ 37

Acknowledgments



37/ 37

Acknowledgments

• Project carried out at CERN within the Google Summer of
Code program

• Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Thank You!


	Introduction
	Implementation
	Verification and Testing
	Performance
	Application to the Higgs Dataset
	Summary and Future Outlook
	Acknowledgments

