

Cross-Validation

TOM STEVENSON

16 SEPTEMBER 2016

MOTIVATION AND THE ISSUE

- Need confidence that the trained MVA is robust:
 - Performance on unseen samples accurately predicted.
- Validation techniques required for:
 - Model Selection:
 - Methods have at least one free parameter e.g.
 - BDT #trees, min node size, etc.
 - SVM kernel function, kernel parameters, cost, etc.
 - How are these parameters of models "optimally" selected?
 - Performance Estimation:
 - How does the chosen model perform?
 - Usually true error rate is used (misclassification rate for the entire dataset).

MOTIVATION AND THE ISSUE

- For an unlimited dataset these issues are trivial, simply iterate through parameters and find model with lowest error rate.
- In reality datasets are smaller than we would like.
- Naïvely use whole dataset to select and train classifier and to estimate error.
 - Leads to overfitting/overtraining as classifier learns fluctuations in the dataset and performs worse on unseen data.
 - Overfitting more distinct for classifiers with large number of tuneable parameters.
 - > Also gives overly optimistic estimation of error rate.

K-FOLD CROSS-VALIDATION

- May not be able to reserve a large portion of data for testing:
 Hold-out method may not be viable.
- Use k-fold cross-validation:

Dataset						
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		Fold k

- Split dataset into k randomly sampled independent subsets (folds).
- Train classifier with k-1 folds and test with remaining fold.
- Repeat k times.
- Advantage of using the whole dataset for testing and training.
- True error rate is then estimated using average error rate:

$$E = \frac{1}{k} \sum_{i=1}^{k} E_i.$$

IMPLEMENTATION IN TMVA

Hyper parameter tuning simply set up and called with:
TMVA::HyperParameterOptimisation * hyper = new
 TMVA::HyperParameterOptimisation(dataloader,"ROCIntegral","Minuit");
TMVA::HyperParameterOptimisationResult * hresult = hyper->Optimise(mva,mva,"",folds);

- > Data splitting done behind scenes in dataloader.
 - Specify number of sig/background events first in usual way.
- Runs OptimiseTuningParameters for each combination of folds.
- Returns one set of hyper parameters per fold.
 - Working on splitting the training sample so validation set can be used to test performance.
- Looking at integrating CV into OptimiseTuningParameters.

IMPLEMENTATION IN TMVA

Cross Validation set up and called with:

```
TMVA::CrossValidation * cv = new TMVA::CrossValidation(dataloader);
TMVA::CrossValidationResult * result = cv->CrossValidate(mva,mva,"",folds);
```

- CrossValidationResult currently contains some of metrics in EvaluateAllMethods metric in Factory.
 - ROC Integral
 - Separation
 - Significance
 - Efficiencies at different working points.
 - Working on adding more.

EXAMPLE

- Dataset:
 - Higgs example set
 - > 20000 sig & bkg events.
 - 4 variables:
 - m_bb, m_wwbb, m_wbb, m_jj
- "Out-of-the-box" BDT
- 100 fold cross-validation.

Cross-Validation in TMVA

Cross-Validation in TMVA

ROC Integrals for 100 fold CV BDT

SUMMARY

- Basic functionality for cross-validation and hyper-parameter optimisation integrated into TMVA.
- Adding more metrics.
- Investigating other ways to compare performance of classifiers.
- Currently not running in parallel but this will be a welcome improvement.

BACKUP