

Loss Functions for BDTs in TMVA

By Andrew Carnes

1

Intro 2

● Wrote a Boosted Decision Tree (BDT) package, BDTLib
https://github.com/acarnes/bdt

● Multiple loss functions
● Consensus to integrate this functionality into TMVA

● Would also like to parallelize the BDTs
● Done with multiple loss function implementation

This Time
● Message of this talk: Implemented multiple Loss Functions into TMVA

● Huber, Least Squares, Absolute Deviation
● Present new functionality on an available dataset
● Then future plans

https://github.com/acarnes/bdt

Benchmarking on CSC Pt Assignment 3

● TMVA Huber Loss Function before and after work the same
● Loss functions for Huber, and Absolute deviation match almost exactly b/w TMVA/BDTLib
● Least Squares differs between TMVA and BDTLib

● Why? BDTLib and TMVA choose split points differently
● BDTLib doesn't work based on max depth, just max terminal nodes

● Anyways, loss functions trend as expected

Access New Functionality
4

● Simply choose the loss function in the options string
● factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDTG",

"!H:V:NTrees=64::BoostType=Grad:Shrinkage=0.3:nCuts=99999:MaxDepth=4:
MinNodeSize=0.001:NegWeightTreatment=IgnoreNegWeightsInTraining:
PruneMethod=NoPruning:RegressionLossFunctionBDTG=AbsoluteDeviation"
);

● Choose AbsoluteDeviation, LeastSquares, or Huber
● Huber is default as before

● Huber has a parameter that you can set that determines the cutoff for the core
and the tails of the distribution

● Use option “HuberQuantile=0.8”, default value is 0.7 as before
● For 0.8, the first 80% of the residuals will be the “core” and the last 20% will be

the tails

Future Plans 5

● Need to run further unit tests
● Will make a notebook exemplifying the new capabilities
● Plans to parallelize the BDTs in TMVA

● Can search for the best cuts along each feature in parallel
● Can reduce the BDT training time by a factor of the number of

features
● Can also parallelize the evaluation since the contribution from each

tree doesn't depend on any of the others

Backup Slides 6

● BDT Algorithm Overview
● References

Brief BDT Algorithm Overview 7

A Single Decision Tree
● Breaks up feature space into

discrete regions using
hyperplanes

● Fits a constant to each region
● The regions are greedily chosen

to minimize a given Loss
Function (a differentiable
measure of the error)

● May be viewed as a series of
decisions (shown below)

Fig 1. A decision tree with 3 terminal nodes

Fig 2. The same tree represented as a series of decisions

Boosting
● Make one tree, add another tree that

corrects the predictions of the first
● Add another tree that corrects the net

prediction of the first and second
● Continue the process
● End up with a collection of trees (Forest)

and a net prediction
● F(x) = T

0
(x) + T

1
(x) + T

2
(x) + … + T

N
(x)

References 8

● Friedman, Jerome H. "Greedy function approximation: a
gradient boosting machine." Annals of statistics (2001):
1189-1232.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

