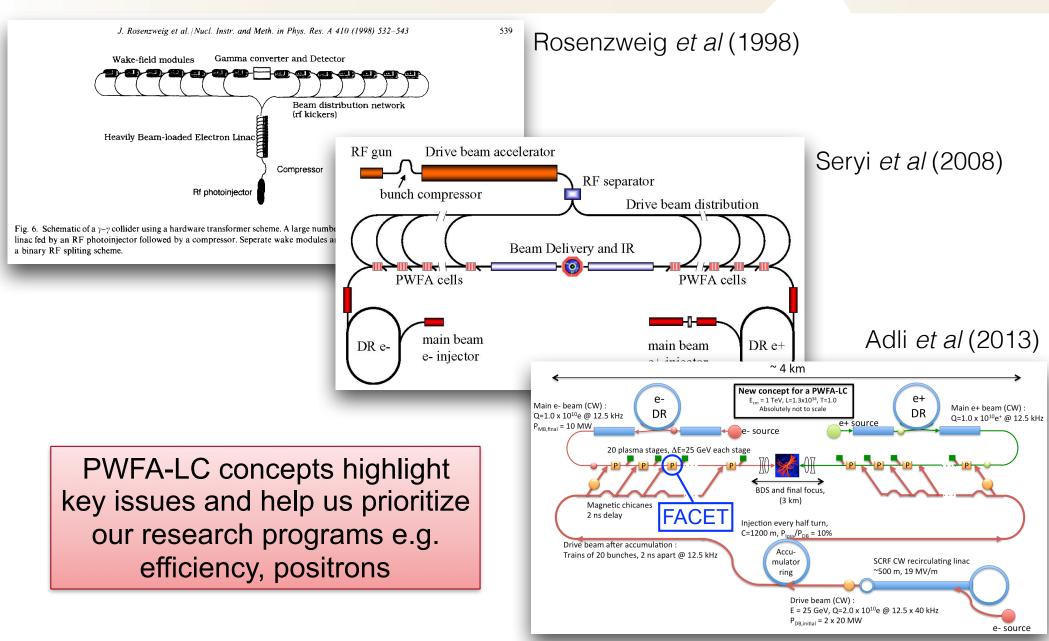
WG2 Report

Mark J. Hogan (SLAC), Allen Caldwell (MPP), and Edda Gschwendtner (CERN) April 27, 2017 @ ANAR2017

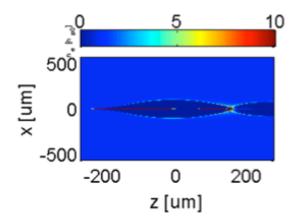

NATIONAL ACCELERATOR LABORATORY

WG2 Agenda: Two Related but Parallel Themes: e⁻ and p⁺ Driven Plasmas

-SLAC

Day	Time	Торіс	Speaker					
Tuesday	14:30	Define Classes of applications and physics requirements (Energy, luminosity, particle species etc)						
	15:30	State of the art for e- & e+ PWFA	S. Gessner					
	16:00	Break						
	16:30	State of the art and plans for plasma sources	P. Muggli					
	17:15	Challenges and requirements for plasma diagnostics						
	18:00	Adjourn or not						
	18:15	Activities at SPARC Lab	M. Ferrario					
Wed	9:00	Computational tools for e- & e+ driver plasmas	W. Mori (Skype)					
	9:45	Computational tools for p driven plasmas	K. Lotov					
	10:30	Break						
	10:45	Driver technology - production of short p bunches	A. Petrenko					
	11:15	State of the art and plans for p PWFA	E. Adli					
	12:00	PWFA with sub-TeV proton drivers	K. Lotov					
	12:30	Lunch						
	14:00	What have we learned and what's next for a conceptual PWFA-LC	E. Adli + all					
	14:30	Diagnostic requirements	B. Hidding					
	15:00	Alternate method for prodcuing short p bunches	A. Caldwell					
	15:15	Activities at FLASHForward	A. Knetsch					
	16:00	Break						
		What facilities are available or planned for this research	All					
		Key e-/e+ experiments/elements that need to be done/demonstrated (intro with US Roadmap)	M. Hogan					
		Key experiments to be performed/elements to be demonstrated for p-driven	P. Muggli					
		Synergies with other techniques (LWFA, DWA, DLA)						
		Driver technology - production of short e- bunches						
	18:00	Adjourn						

PWFA Research Roadmap for Electron Driver: Goal is to Get to a TeV Scale Collider for High Energy Physics



Snowmass paper has "worked" in the sense that we have got feedback from the LC community. I think the PWFA community should act on this.

Can we reach the parameters suggested? Some key open questions, as commented

by the linear community :

- **credible and efficient drive beam scheme.** High drive beam energy an issue. PWFA comm. should develop high T.R. stage. LC comm. could develop efficient designs. MO: Not the most urgent.
- reduce energy spread from few % to few per mille. PWFA comm. should find requirement on bunch shaping. Or, develop new final focus (in cooperation with LC comm.)
- efficiency versus instability and energy spread question. Tolerances. PWFA comm., perhaps in cooperation with LC comm. should do full simulations, including off-axis pump-depleted DB / WB scenarios to efficiency collider emittances. Backed by theoretical assessments.
- **emittance preservation** at 10 nm level needs more study, especially at very high energy/density. Ion motion, scattering, betatron radiation etc. PWFA comm. studies with simulation..
- interstages must have 100% charge coupling (not 95%, not 98%), as well as emittance preservation.
 LC community could help with optics design.
- overall parameters are based on ILC, not optimized. A method to optimize overall parameters should be developed. LC community could help, but first basic scalings must be derived.
- e+ and technical challenges remain. Similar exercises should be done for hollow channel plasmas (e-, e+). But seems useful to complete e- blow-out studies in order to have a credible parameter set

Several questions do not need new test facilities, but manpower to do numerical and theoretical studies. Questions been out there for many years already.

Electron Driven Table (1 of 3)

SLAC

Scientific bottleneck / challenge Facilities / capabilities needed		Milestones			Comments	
	Experimental	Computational	5 years	5 - 10 years	10 - 20 years	
Collider Design		Start to End Simulations	Develop and maintain self-consistent parameters	Develop and maintain self-consistent parameters	CDR, TDR	R&D on concepts, including experiments and simulations. Will require engagement of larger accelerator & detector communities
Designing Experiments for Concept Validation at Test Facilities			Support for collaborations & University groups	Support for collaborations & University groups	Support for collaborations & University groups	Strongest collaborations involve University and National Labs
Optimized Beam Loading Scenarios			Self-consistant set for positrons			Develop self-consistant scenarios for beam loading (high-gradient, high-efficiency and emittance preservation) for both electrons and positrons
Positrons	High-energy, High peak current, sub-ps positron beams & specialized plasma sources			Exploration of self- loaded regime, hollow channels, quasi non- linear reginmes	Plasma sources for e- & e+ beam production	
Beam quality preservation	Matched Injection, acceleration, extraction		Emittance preservation at 1μm level with % level dE/E			Transverse wakes, hosing, lon motion, plasma source development with ramps, external injection
Development of low emittance PWFA based e- sources	Laser to e- beam spatial- temporal alignment (synchronization), specialized plasma sources, low emittance diagnostics		Emittance preservation at 1µm level	Emittance preservation at 100nm level (external injection)		

In WG2 we see no bottlenecks – only challenges and opportunities ;-)

Electron Driven Table (2 of 3)

Scientific bottleneck / challenge	Facilities / capabil	ties needed		Milestones		Comments		
	Experimental	Computational	5 years	5 - 10 years	10 - 20 years			
Transformer Ratio >1	Shaped beams with high peak current to drive non-linear wakes		Shaped beam experiments and demonstration of T > 2 (low E)	Shaped beam experiments and demonstration of T > 2 (high E)		Develop and demonstrate techniques for beam shaping		
Beam Dynamics & Tolerances	Independent drive-witness beams with temporal & spatial alignment control. Diagnostics with sub-um, fs resolution	accelerator & plasma		Parametric staging studies with independent drive- witness beam		Basic processes in addition to tolerance studies need to consider: Hosing, radiation loss, polarization preservation		
Plasma Sources	Tailored density ramps, differential pumping solutions, thermal management		Tailored density ramps, differential pumping solutions	Hollow (and quasi- hollow) channels development		Plasma profiles for emittance preservation at any Hz, refine to kHz rep rates with heat transport		
Systems Integration				Drive-Main beam merging and extraction		Bunch compressors, drive beam format, delay, delivery, energy scaling, lareg dE/E beam dump for spent beam		
Staging	Capability for multi-GeV with high capture efficiency			Studies with independent witness injector	Multi-stage demonstration in FFTBD	Optical design for multiple stages		

Electron Driven Table (3 of 3)

SLAC

Scientific bottleneck / challenge	Facilities / capabilities needed					
	Experimental	Computational				
Diagnostic development	Visualize wakes, EOS (bunch duration, synchronization & time-of-arrival), Novel plasma-based fs&µm spatiotemporal alignment (pioneered in E210), Emittance measurement, Selective driver/witness bunch measurement (charge, size, current profile), Plasma density tomography, Ultrafast bunch kickers (e.g. to separate driver and witness), High rep rate effects diagnostics , (Transverse) electron beam probing of wake					
Simulation Development		Adaptive mesh refinement, Adaptive particle loading:Vary Npcell and/or particle merging and splitting, Dynamic load balancing, Adaptive 2d and 3d time steps, Intel Phi and GPUs, Radiation reaction (basic model is implemented) and QED effects				

Diagnostics:

Single shot generally preferred

Simulations:

- Quasistatic codes are workhorse for beam driven (experimental planning, data interpretation, initial collider parameter studies)
- Exascale capabilities are in development.

PWFA Research Roadmap for Proton Driver: Goal is to Get to a High-Energy LHeC-like e⁻p⁺ Collider

SLAC

Electron bunches	Central value	Possible values	Comment	
Energy	100 GeV	10 – 100 GeV	LHeC default is 60 GeV; to re-visit.	
Number of electrons per bunch	1.15 × 10 ¹⁰	Above 10 ¹⁰ ?	Generally the higher the bunch charge the better	
Number of electron bunches	288	Already maximum ?	Equal to number of SPS proton bunches	
Repetition rate	Repetition rate 15 Hz		Equal to SPS repetition frequency	

Proton bunches	Proton bunches Central value		Comment		
Energy	7 TeV	7 TeV	LHC protons		
Number of protons per bunch			Determined by LHC wishes		
Beta function	Beta function 0.1 m		Determined by LHC wishes		
Normalised emittance	3.5 μm	Fixed ?	Determined by LHC wishes		

Above parameters give luminosity of 1×10^{30} cm⁻² s⁻¹

Parameters from G. Xia et al., Nucl. Instrum. Meth. A 740 (2014) 173.

M.J. Hogan intro to PWFA @ ANAR2017, April 25, 2017

Proton Driven Table (1 of 2)

-SLAC

Scientific bottleneck / challenge	Facilities / capabili	ties needed		Milestones		Comments
	Experimental	Computational	onal 5 years 5 - 10 ye		10 - 20 years	
Demonstration/control of SMI of p+ buncn	Exist	Limited to 2D simulations/3D Quasi- static	Seeding, dependencie, maintaining high gradient			
Acceleration of externallyinjected e-, sample wakefields	Exist		GeV enery, finite energy spread (~10%), low trapped charge			
Acceleration of short e- bunch	Exist (?)	3D simulations, redudec and full PIC	Multi GeV, large charge capture	Multi-GeV, full charge capture, emittance<10mm-mrad (e-/p+ colider application)		
Development of scalable plasma source 5-10-100's m, high density uniformity (<1%) (helicon/discharge, etc.)	New plasma source developemnt laboratory	Plasma simulations of helicon sources	4-10m	100m	100's m	Type of source not defined
Quick 3D simulation capabilities for optimization and comparison w experimental results						
Production of shorter p+ bunches (few cm)	Existing machine (SPS)		"Beam gymnastic in existing machine, longitudinal beam cooling			
Production of ultra-short p+ bunch (<1mm, TeV energy, 1e11p+)	New p+ bunch source? Compression after extraction?	Machine impedance simulation/understandi ng				
Production of low emittance p+ bunch			Transverse beam cooling			
Pre-modulation of p+ bunch (no plasma)	High frequency linac, dispersive section (SPS- AWAKE beam line)		Parameter studies			
Identify accelerator for fixed target studies, detectors calibartions, etc.	Facility including plasma- based accelerator of p+ bunch AND physics experiment(s)		Identify possible physics experiment	Design of suitable facility	Building facility	(10-100GeV)

Proton Driven Table (1 of 2)

Scientific bottleneck / challenge	Facilities / capabil	ities needed		Milestones		Comments
	Experimental	Computational	5 years	5 - 10 years	10 - 20 years	
				Design of source with		
				transverse and		
Diagnostics for plasma			Transverse diagnostics	longitudinal acces to		
Diagnostics for plasma wave/wakefields	Exist		on existing source,	plasma, phton		
wave/wakeneius			shadowgraphy, etc.	acceleration,		
				shadowgraphy, spectral		
				interferometry?		

A Couple of Patric's Items We Didn't Even Get To

Parameters achieved now and in the future...

Table of efficiencies

Beam Driven PWFA Parameters Achieved to Date

	Er	nergy			Performance				
PWFA-LC State of the Art					PWFA-LC State of the Art				the Art
Parameter	Units	Value	Electrons	Positrons	Parameter Units		Value	Electrons	Positrons
Final Energy	GeV	3000	29	24.4	Charge per Bunch	nC	1.5	0.03	0.207
Energy per Stage	GeV	25	9	4.4	Rep Rate	Hz	1E+04	1	1
Peak Gradient	GeV/m	7.6	6.9	3.4	Normalized Emittance (H)	μm	10	100	
Geographic Gradient	GeV/m	1			Normalized Emittance (V) μ m 0.035				
Transformer Ratio		1			Energy Spread [r.m.s.] %		1	4	1.8
Number of Stages		60	1	1	Polarization	%	80		
Plasma Length	meter	3.3	1.3	1.3	Bunch Length (sigma)	μm	20	50	
Plasma Density	e-/cc	2E+16	5E+16	8E+16	Tolerances				
Heat Load	kW/m	100				Elect	rons:		
	C	Cost			Nature 515 (2014) and <u>http://arxiv.org/pdf/1511.06743v1.pdf</u>				
PWFA	-LC		State of	the Art	to be published in PPCF				
Parameter	Units	Value	Electrons	Positrons	s Positrons: Nature 524 (2015)				
Efficiency - Instantaneous	%	50	30	34					Individual
Efficiency - Total %				parameters e.g. energy gain are not best of that quantity					

WGs should decide how we want to present parameters for the report – self-consistent set, best ever, range...