| J 77 / \ ANAR2017: Advanced and Novel Accelerators

_\ for High Energy Physics Roadmap Workshop

Review of Advanced Accelerator
Development in Japan

Kansai Photon Science Institute (KPSI)
National Institutes for Quantum and Radiological Science and
Technology (QST)

G @QST

Masaki KANDO

on behalf of the laser acceleration researchers in Japan

2017-04-27 14:00-14:30 CERN



® Working teams in Japan

® Ongoing large-scale-fund : INPACT
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Laser-Acceleration facilities in Japan
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Status report of each facilities in Japan



Dielectric accelerator for radiobiology research

at University of Tokyo & KEK

A tabletop micro-beam machine
makes it possible to irradiate a
target site in a living cell.

Single proton, ion or
100 electrons

A few MeV energy

K.Koyama, et al., J. Phys. B: At. Mol. Opt. Phys, 47,
234005 (2014) .

Present problem to conduct basic
studies of radiobiology and radical
chemistry is less machine-time
allocation.

Micro-beams are delivered by big

wfc*f ISP A A glass capillary is adopted to Producing the micro-beam with
=S N achieve the selective irradiation. a sub-micron channel of the
xmh&/*’j%‘ However, scraping off a major part accelerator
- of the beam to produce the micro- Table-top DLA system
HIMAC beam. |
,\Ikeda@RlKEN.g-] M. Uesaka, et al., Rev. Accel. Sci. and Tech., 9, I\/IICFOSCOU
= 235 (2016) . -
Specimerig Cell
Dielectric Laser Accelerator (DLA) for electrons -
The evanescent field around the grating surface Magnet )
accelerates electrons. LA | Vag -
Dielectric Wall Accelerator (DWA) for ions )
High-voltage short pulses applied across a series Fiber
of dipole electrodes accelerate ions. Laser |

“emEleClion. eMItler
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Present / Future of Dielectric Accelerator Research at

KEK & U.T.

DLA Z. Chen, et al., Rev. Laser Eng., 48, 97 (2017) . DW A

- Simulation for non-relativistic electrons . .
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AIST X-ray generation by laser Compton scattering using monoenegetic electron bunch
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[Ref.] E. Miura et al.,
Appl. Phys. Express 7, 1046701 (2014).

Next step : Demonstration of MeV X-ray generation
« Generation of higher energy (> 200 MeV) monoenergetic electron

bunch

* Using second harmonic light (400 nm) as a colliding pulse

narionaL insTirute of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattel
signals from objects hidden in aluminium containers

@ CrossMark
JOURNAL OF APPLIED PHYSICS 114, 083103 (2013) o

Standoff detection of hidden objects using backscattered ultra-intense

laser-produced x-rays
H. Kuwabara,' Y. Mori,>® and Y. Kitagawa?
1HI Corporation, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501, Japan

2The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku,
Hamamatsu, Shizuoka 431-1202, Japan

(Received 30 May 2013; accepted 6 August 2013; published online 22 August 2013)

FIG. 3. (a) Aluminium container (0.8-
mm thick) in which the objects are hid-
den. The container dimension is
150mm x 100 mm x 50 mm. (b) Inside
the container are a 30-mm-thick
acrylic resin block (left) and a block of
either 5-mm-thick copper or 1-mm-
thick lead (right).

Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects
hidden in aluminium containers. Coincident measurements using primary X-rays enable
differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals
the shapes of the objects, while their material composition can be identified from the modification
methods of the energy spectra of backscattered X-ray beams. This achievement is an
important step toward more effective homeland security. © 2013 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4819084]

FIG. 4. Backscattered X-ray images
show the inside of the container for (a)
acrylic resin (left) and copper (Cu,

Lead aperture right) and (b) acrylic resin (left) and
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H. Kuwabara, Y. Mori*, and Y. Kitagawa, J. Appl. Physics 114 083103 (2013).



Laser wake-field acceleration can fabricate a compact X-ray pencil beam

system through the inverse Compton scattering.
This is applicable for a mobile Laser Backward X-ray inspection; strongly

required for homeland securities, industrial inspections and disaster fields.
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: Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast N H K
i multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration

: from 1.5 to 6 ps with fixed laser intensity of 10'®W cm~2, the maximum proton energy is improved more / ) ‘
© than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV M M M { t )
: protonsis enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps N I k k e I N I k k a n - K O gy O — e A :
: pulse duration. The proton energies observed are discussed using a plasma expansion model newly ’ ’ m x l/ —_ *f— 2~)b$ — aiﬁ % t>
developed that takes the electron temperature evolution beyond the ponderomotive energy in the over . a5 o K Gl 4 T &

. picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven Kyo d O _TS u S h I n , e tc. % 11 ﬁ I ’& y‘}g b @ iﬂ % 7,'}b :' ‘

: fastignition and novel ion beamlines.
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Conical THz radiation emission by laser plasma at Utsunomiya
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Highly Efficient Terahertz Radiation Generated from Laser-Solid Interaction at Osaka
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Research Funding



FUNAING SOUICES

+ KAKENHI  EYRNIRE=5

K AKENHMHI

Most common, competitive research funding in Japan. TOTAL: ~2,300 M$
Includes all science fields
Several categories : 0.2M$/y - 1 M$ly, 3-5y

* More goal-oriented, selected themes
Green Innovation, Life Innovation, ICT, Nanotech-Material

S SREReES 0 Team, 0.5-1.2 M$ly, <5y

PRESIO one, 0.5-1 M$/y, <3y

Weam, TOTAL 480M$, 15 projects approved
5y, 2014-2018

M. Kando, ANAR2017, CERN, 24-28 Apr., 2017



IMPACT Program

Toward LWFA-driven compact XFEL



ImPACT - UPL (Ubiquitous Power Laser)

Ubiquitous Power Laser
for

achieving a safe, secure .
and longevity society SANG @oshib

Comfortable living environment

m Project 1: LWFA (Laser  rasmawae _ Fectrors

Electron
wakefield acceleration) of beam
electrons and XFEL Laser
demonstration Laser wakefield acceleration

of electrons

m Project 2: Development
of ultra-compact optical
pulse lasers for industry

Handheld laser Tabletop laser
Yuji SANO
RN R BN 0 L Annual MT Meeting@KIT Karlsruhe University
@ I MPACT 10
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Harima Center for Photon Sciences, Osaka Univ. (SPring-8 site)

Integrated Platform for laser acceleration

LAPLACIAN: Laser Acceleration Platform as a Coordinated Innovative Anchor

/18: Integrated platform for laser acceleration
Goal: Multi-stage and X-ray generation (Length <10m, Ex~1keV)

PM Dr. Sano
JST (Tokyo)

200TW Multi-beam
Platform Laser System

Injector

Phase rotator Booster

LWFA module

plasma channel

-

1A:

Laser acc. elemental tech.
Dev. of 1 GeV LWFA module

Prof. Hosokai, Osaka Univ. (Suita)
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X-ray radiation
of 1 keV

1D
Wakefield & beam diagnosis

Diagnosis and Control of laser and

beams
M. Kando, KPSI, QST (Kizu)
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1C:

Micro-undulator

Development of micro-undultaor

Prof. Yamamoto, KEK (Tsukuba)
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3J:

XFEL characterization
X-ray characterization after
undulator

.

Dr. Yabashi, RIKEN Harima” 3

3L:

Test of micro-undulator

Evaluation of micro-undulatr....

Prof. Hama, Tohoku Univ. (Sendai) &




Conclusion (My: persenal view)

®There are NO concrete plans (funded plans) seeking for “Laser-driven High-energy
accelerators” in Japan.

®BUT, there are many groups in Japan working on Advanced Accelerator Concepts
or closer topics.

®Especially, RIKEN (who are managing “Light Sources” (SR, XFEL) are collaborating
with us to construct Laser-electron driven XFEL.

® A small (but powerful) group is doing “AAC concepts” at KEK.

®More tends to (easier) applications such as Inverse Compton Scattering X-rays (gamma-
rays), XFELSs, ion sources for cancer therapy, neutron sources for inspection, etc.

®These activities are necessary and important steps toward “High Energy Accelerators”.

® International Collaboration helps to build up the community in Japan.

M. Kando, ANAR2017, CERN, 24-28 Apr., 2017
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