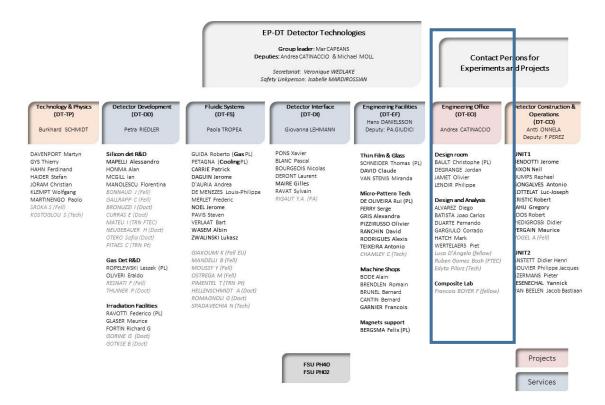
EP-DT Group Meeting Engineering Office

Andrea Catinaccio


CERN, November 1st 2016

Introduction

New project challenges have driven:

- developments in technical infrastructures
- growth in technical skills
- partial increase of resources.

In the next slides:

- Some info about the section & new personnel
- Update on technologies and technical infrastructures
- Some examples of key projects (new and running)
- Conclusions

Engineering Office (EO) Section Mandate and Team

Mandate

To provide design & engineering expertise for the group's projects:

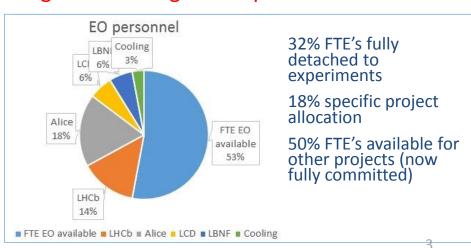
17 Members

11 Staff members

2 new Fellows

3 new Tech Students

1 new FTEC


Members profile:

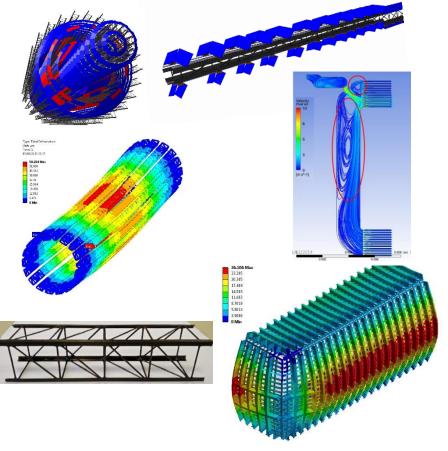
13 engineers4 designers

Query: Status Code All (except Externals) and Anchestor Unit EP-DT-EO

Name	First Name	Primary Nationality	Office 1	Organic Unit	Status Co
ALVAREZ FEITO	Diego	ES	25-R-028	FP-DT-FO	STAF
ANGELETTI	Massimo	IT	70-R-007	EP-DT-EO	TECH
BATISTA LOPES	Joao Carlos	PT	25-R-028	EP-DT-EO	STAF
BAULT	Christophe Daniel	FR	25-R-028	EP-DT-EO	STAF
BOYER	Francois	FR	25-R-004	EP-DT-EO	FELL
CATINACCIO	Andrea	IT	25-R-020	EP-DT-EO	STAF
D'ANGELO	Luca	IT	25-R-028	EP-DT-EO	FELL
DEGRANGE	Jordan	FR	25-R-028	EP-DT-EO	STAF
DUARTE RAMOS	Fernando Manuel	PT	25-R-004	EP-DT-EO	STAF
GARGIULO	Corrado	IT	25-R-014	EP-DT-EO	STAF
GOMEZ BOSCH	Ruben	ES	25-R-028	EP-DT-EO	TRNE
НАТСН	Mark	GB	58-1-013	EP-DT-EO	STAF
JAMET	Olivier	FR	3862-2-015	EP-DT-EO	STAF
LENOIR	Philippe	BE	25-R-028	EP-DT-EO	STAF
PELIZZARI	Andrea	IT	22-R-017	EP-DT-EO	TECH
PII OR7	Edyta Maria	PI	25-R-028	FP-DT-FQ	TECH
WERTELAERS	Piet	BE	25-R-018	EP-DT-EO	STAF

Consolidating future manpower with Department: 2 designer and 1eng. x Composite Lab

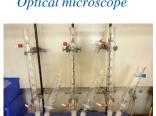
Section EP-DT-EO Competencies & Infrastructure


Wide range of disciplines in mechanical engineering

The core competencies of the section comprise:

- Engineering simulation for structural and thermal analyses, composites, fluiddynamics, multi-physics and structural verifications according to relevant standards and codes
- Integration studies of detectors
- The section covers as well activities of:
 - Composite Material prototyping and manufacturing
 - Project Engineering, manufacturing support and follow-up, relations with external suppliers, installation and first commissioning.

EP-DT-EO Technical Infrastructure


EP-DT Composite Lab

Manual polish system

Optical microscope

Chemical dissolution bench

NEW Tensile Testing Machine

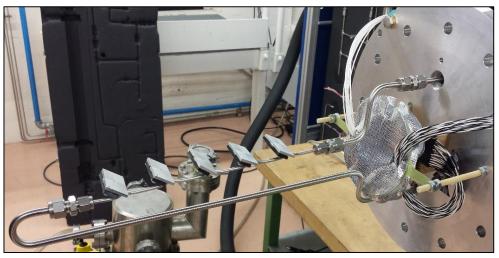
- Upgrading of equipment well advanced
- All main experiments as customers
- WS on composites @ Berkeley and @ CERN (2017)
- Contacts with KT and the Swiss Space Center for a possible partnership

Composite training (More than 40 people trained to the prepreg technology)

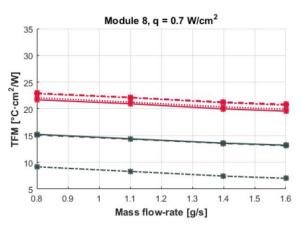
Production Room

New autoclave 2.5m x 1m

New compacting table



RTM process developed with DT-CO



EP-DT-EO Technical Infrastructure EP-DT Thermal Setup

 Vacuum vessel setup to provide thermal characterization of advanced materials for detectors

- Equipped with Ciller and/or CO2 system
- Prototyping measurements
 - Reference material samples
 - Characterisation of material interfaces
 - Test for Atlas Pixel SLIM v3.0 and v2.0
 - A simple SS sample with 5 loops was tested. Results show no relevant issues.
 - A realistic Ti sample is to be tested after the setup upgrade.

EP-DT

Detector Technologies

Main Engineering Tools (EO)

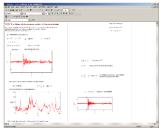

A wide range of tools (12) available for CAD, FEA and analytical calculations.

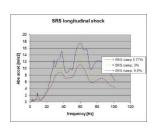
New CAD/CAM software selected with EN (main workshop) x DT-EF and CO

ANSYS Classic and APDL programming

ANSYS Workbench

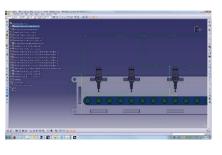
Scia Engineer Structures

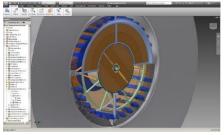

Composites EsaComp

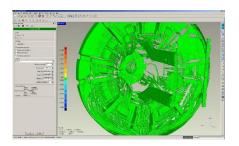


EXAGON assemblies

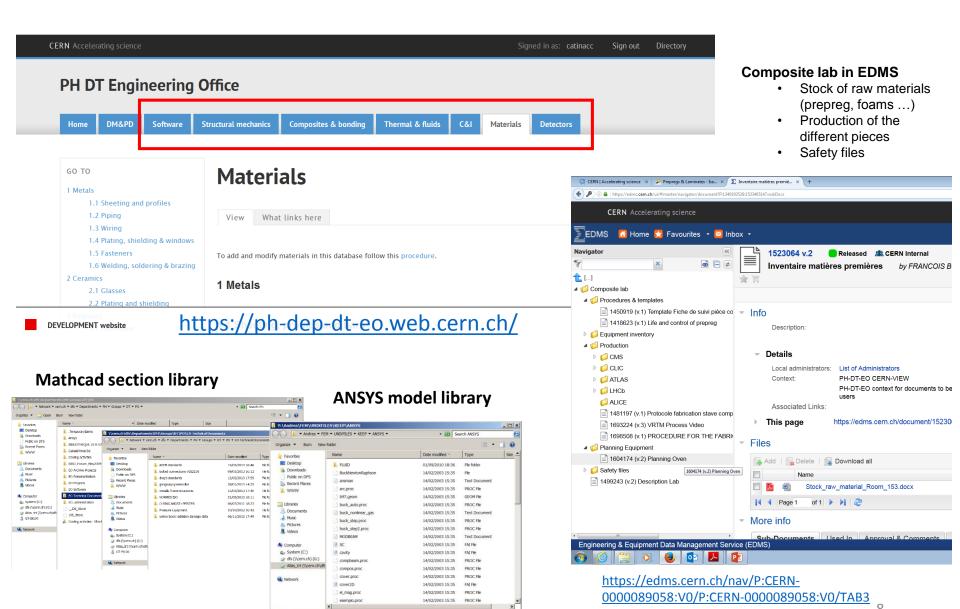
Analytical Mathcad library Vibration SRS software




Catalsyt for 3D printer **Dimension Elite**


CATIA V5 - 3D modeling and Smarteam

Autodesk Inventor 3D modeling


Geomagic laser scan reconstruction

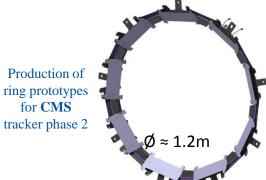
WorkNC CAD/CAM

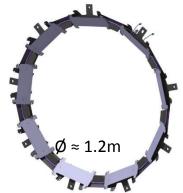
Web - EDMS and \dfs EO libraries

Offline status: Online
Offline availability: Not availabil

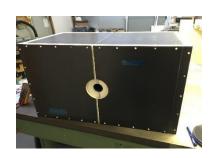
EP-DT-EO some examples of key projects and technologies in 2016

Among about 30 projects / activities (non exhaustive list) followed each year.


EO projects with Composites


Activities since the beginning of the year

The composite lab is now prototyping and producing final CFRP components for most of CERN Experiments

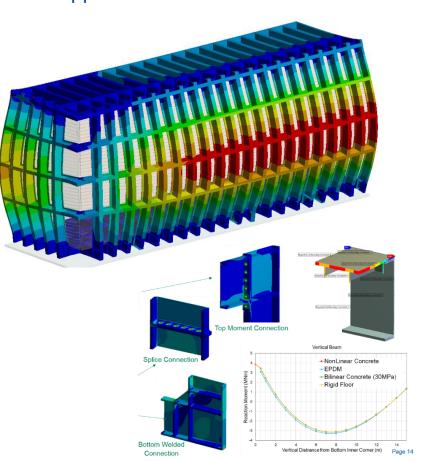

Stave prototype for **CLIC** experiment

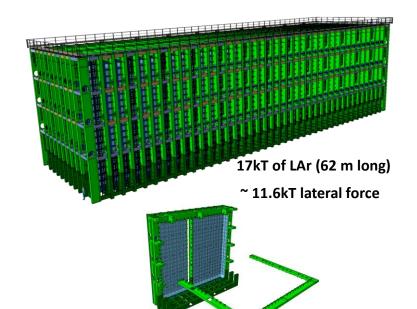
Production of Shell longeron prototypes for ATLAS phase 2 pixel upgrade (SLIM)

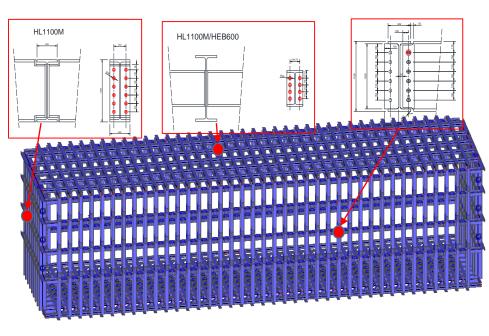
UT Box prototype for **LHCb** experiment

Tracker outer prototype for **CLIC** experiment

MICROMEGAS Carbon vacuum table (DT-CO)


Carbon plates produced for CMS (module 2S and PS)




Support for **AIDA**₁₀ calorimeter

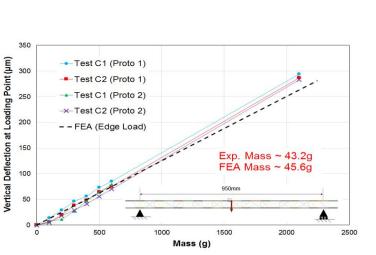
EO Neutrino LBNF

- 3D CAD models
- Assembly process and tooling
- Structural design (EC3 / SCIA, Analytical)
- FEA Warm Vessel, Bolted/Welded Connections (Sub-modelling), Floor support conditions.

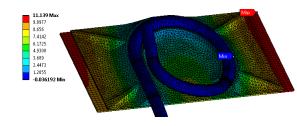
ATLAS Pixel Phase 2 Upgrade: SLIM Project

 Design, optimisation & prototyping of CFRP support structures (Truss girder)

 Development of aggressive solutions for cooling tilted silicon modules



0 kgf / 1 mm


Detector Technologies

EP-DT

0.36g (porous graphite)

EO other Projects

Other examples of running projects/ activities (non exhaustive list):

CMS:

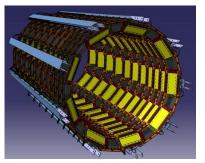
- Upgrade TOB, TIB
- Upgrade High granularity Si Calorimeter
- CMS HGCal wafer probe station setup

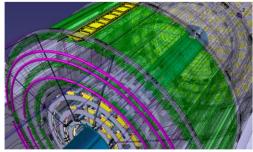
Alice

- ITS upgrade
- ITS, TPC, installation LS2
- TC integration

LHCb

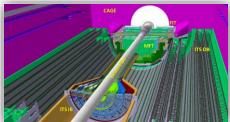
- upgrade (SciFi tracker), UT detector
- TC integration, infrastructure design and calculations

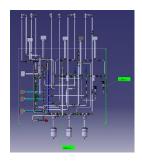

NA62


- GTK integration and micro-cooling
- Straw detector (post installation support)

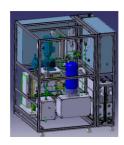
LCD:

- CLICdp Vertex, Integration studies HCAL, ILC collaboration
- Outer tracker support structure prototype
- Testbeam telescope


Support to the Cooling Project (EP-DT-FS)
Support Catia / Smarteam
Micro-fabrication and micro-scint design support



Integration: CMS OUTER TRACKER PHASE 2 UPGRADE



Alice ITS staves production, Beam pipe production, TC integration

Junction Box for LHCb detectors: UT & Velo

Operation Lucasz Plant modelling 13

EP-DT-EO 2016 Objectives and Conclusions

- Objectives presented at the beginning of the year have been largely achieved (DTCM with management on 14.1.2016).
- This thanks to the expertise and commitment of all the team members.
- Several examples have been provided here on:
 - Key technologies.
 - Discipline retention synergies.
 - Multitasking, balance of resources.
 - Complementary areas of expertise (Composites, Thermal materials)
- Projects for 2017 are very challenging.
- Existing DT Resources will need to be internally re-allocated.
- Resource consolidation by the Department will be the key for the present and future success of EO.

Thank You

EP-DT-EO 2016 Objectives and achievement examples

Results of Objectives presented at the DTCM with management on 14.1.2016

- Stay at the forefront of key technologies:
- Some examples: recent development in CFRP, thermal material characterization WS on composites @ Berkely and @CERN 2017 - contributing to Forum on Detector Mechanics - KT developments on micro heat pipes, Swiss space center - New facilities developed - New challenges in projects as Pixel and Neutrino large structures.
- Continue to develop a Reservoir of technical expertise discipline retention synergies across projects:
- Some examples: Training in CFRP provided synergies with Alice and CMS in composite development- procurement and sharing of raw material - development and sharing of engineering database. Selection and procurement of new CAD/CAM system (WorkNC) for EF and CO.
- Respond efficiently to large multitasking, balance of resources:
- Some examples: dynamic allocation of designers and engineers for Neutrino, ITK Pixel, Cooling, Support for CFRP developments, 3D printed parts - New Students, Fellows, FTEC and Trainees (5 young trainees this year) x projects.
- Develop further complementary areas of expertise (Composites, CFD):
- Some examples: design and calculations of large metallic structures, composites (see above), advanced thermal materials, on CO2 on-detector cooling

EP-DT Detector Technologies

Group leader: Mar CAPEANS Deputies: Andrea CATINACCIO & Michael MOLL

Secretariat: Veronique WEDLAKE Safety Linkperson: Isabelle MARDIROSSIAN

Contact Persons for Experiments and Projects

Technology & Physics (DT-TP)

Burkhard SCHMIDT

DAVENPORT Martyn **GYS Thierry** HAHN Ferdinand HAIDER Stefan JORAM Christian **KLEMPT Wolfgang** MARTINENGO Paolo SROKA S (Fell) KOSTOGLOUS (Tech)

Detector Development (DT-DD)

Petra RIEDLER

Silicon det R&D MAPELLI Alessandro HONMA Alan MCGIII Ian MANOLESCU Florentina BONNAUD J (Fell) GALLRAPP C (Fell) BRONUZZI I (Doct) CURRAS E (Doct) MATEU I (TRN FTEC) NEUGEBAUER H (Doct) OTERO Sofia (Doct) PITAES C (TRN Pt)

Gas Det R&D ROPELEWSKI Leszek (PL) OLIVERI Eraldo RESNATI F (Fell) THUINER P (Doct)

Irradiation Facilities RAVOTTI Federico (PL) **GLASER Maurice** FORTIN Richard G GORINE G (Doct) GOTKSE B (Doct)

Fluidic Systems (DT-FS)

Paola TROPEA

GUIDA Roberto (Gas PL) PETAGNA (Cooling PL) **CARRIE Patrick** DAGUIN Jerome D'AURIA Andrea DE MENEZES Louis-Philippe MERLET Frederic **NOEL Jerome PAVIS Steven VERLAAT Bart** WASEM Albin

GIAKOUMI K (Fell EU) MANDELLI B (Fell) MOUSSY Y (Fell) OSTREGA M (Fell) PIMENTEL T (TRN Pt) HELLENSCHMIDT A (Doct) ROMAGNOLI G (Doct) SPADAVECHIA N (Tech)

ZWALINSKI Lukasz

Detector Interface (DT-DI)

Giovanna LEHMANN

PONS Xavier BLANC Pascal **BOURGEOIS Nicolas** DERONT Laurent MAIRE Gilles **RAVAT Sylvain** RIGAUT Y.A. (PA)

Thin Film & Glass

SCHNEIDER Thomas (PL) **DAVID Claude** VAN STENIS Miranda

Engineering Facilities

(DT-EF) Hans DANIELSSON

Deputy: PA.GIUDICI

Micro-Pattern Tech DE OLIVEIRA Rui (PL) **FERRY Serge** GRIS Alexandra PIZZIRUSSO Olivier **RANCHIN David RODRIGUES Alexis TEIXEIRA Antonio** CHAMLEY C (Tech)

Machine Shops **BODE Alain BRENDLEN Romain BRUNEL Bernard CANTIN Bernard GARNIER Francois**

Magnets support BERGSMA Felix (PL)

Engineering Office (DT-EO)

Andrea CATINACCIO

Design room

BAULT Christophe (PL) DEGRANGE Jordan JAMET Olivier LENOIR Philippe

Design and Analysis

ALVAREZ Diego **BATISTA Joao Carlos DUARTE Fernando** GARGIULO Corrado **HATCH Mark** WERTELAERS Piet Luca D'Angelo (fellow) Ruben Gomez Bosh (FTEC) Edyta Pilorz (Tech)

Composite Lab

Francois BOYER F (fellow)

Operations (DT-CO) Antti ONNELA

Detector Construction &

Deputy: F.PEREZ

BENDOTTI Jerome DIXON Neil DUMPS Raphael **GONGALVES Antonio KOTTELAT Luc-Joseph** KRISTIC Robert **LAHU Gregory** LOOS Robert PIEDIGROSSI Didier **VERGAIN Maurice** VOGEL A (Fell)

UNIT2

UNIT1

ANSTETT Didier Henri **BOUVIER Philippe Jacques IJZERMANS** Pieter **LESENECHAL Yannick** VAN BEELEN Jacob Bastiaan

FSU PH40 FSU PH02 **Projects**

Services

EP-DT-EO Current Projects

More than 30 projects / activities (non exhaustive list):

Atlas

- Upgrade ITk Pixel, Pixel structures and thermal R&D
- Jig for bonding module onto flex
- Micromegas design x production

CMS:

- Upgrade TOB, TIB
- Upgrade High granularity Si Calorimeter
- CMS HGCal wafer probe station setup

Alice

- ITS upgrade
- ITS, TPC, installation LS2
- TC integration

LHCb

- upgrade (SciFi tracker), UT detector
- TC integration, infrastructure design and calculations

NA62

- GTK integration and micro-cooling
- Straw detector

Neutrino LBNF:

 Structural engineering and final design review (Andrea, Joao, Piet, Christophe, Luca)
 2.5 FTE's plus 1 fellow from July . Ongoing.

LCD:

- CLICdp Vertex, Integration studies HCAL, ILC collaboration
- Outer tracker support structure prototype
- Testbeam telescope

Support to the Cooling Project (EP-DT-FS)
Micro-fabrication and micro-scint design support
FEA support and design studies
3D printing, Catia user support

EP-DT-EO Current Projects

More than 30 projects / activities (non exhaustive list):

Composite lab

Tools and infrastructures **Prototype activities**

Thermal Testing Setup

Engineering database
Structure implementation
Populating DB

R&D

Composite materials
Thermal management materials
FEA methods: creep, CZM, fracture mechanics,
XFEM, Ansys-Catia bi-directional associative
connection, FEA model integration
3D printing technologies (Christophe)