

Applications of Accelerators

Prof Rob Edgecock Rutherford Appleton Laboratory and University of Huddersfield

Outline

- Introduction to particle accelerators
 - at CERN
 - used for applications
- Summary of accelerator applications outside research
- Energy applications
- Medical applications:
 - cancer therapy
 - radioisotope production
- Industrial applications
- Environmental applications

Particle Accelerators

- For research, e.g. CERN, main requirements
 - energy
 - beam control (for luminosity, etc)
- Main accelerators used for protons:
 - linear accelerators at low energy
 - synchrotrons to get to higher energy

CERN

CERN's Accelerator Complex

Fermilab

RAL

Linacs: how do they work?

Linacs: how do they work?

Linac4 DTL

Photo credits: CERN

Acceleration via electric fields AC frequency in the RF range

ISIS 70 MeV linac at RAL

Linac4 chopper (3 MeV) line

Linac4 H- ion source

PLASMA

Linac4 Radio Frequency Quadrupole

Electron Linacs

- e- commonly produced by emission from heated cathode
- "Brighter" beam than for ions
- Higher frequency (smaller wavelength) RF possible:
 - higher accelerating gradients
 - smaller structures
- e- relativistic at low energy
- · Electron linacs (for applications) smaller and simpler than ions

Electron Linacs

Varian Medical Linac

- Advantages:
 - fixed RF frequency
 - fixed magnetic fields
 - easy to operate
 - reliable
 - good for non-relativistic particles
- Disadvantages:
 - each component used once per pass
 - long for high energies
 - expensive at higher energies
 - continuous operation has complications unless SC

Synchrotrons

Circular accelerators:

Strong Focussing

Alternating Gradient or Strong Focussing Beam alternately focussed in horiz and vert planes.

Strong Focussing

Strong Focussing

Main Dipoles	MB	1232	twir
Lattice quadrupoles	MQ	392	twir
Lattice sextupoles	MS	688	single
Lattice Octupoles	MO	168	twir
Skew quadrupoles	MQS	32	twir
Arc skew sextupoles	MSS	64	single
Tuning trim quadrupoles	MQT	160	twir
Octupole spool pieces	MCO	1232	single
Decapole spool pieces	MCD	1232	single
Sextupole corrector (b3) in MBA & MBB (spool piece corrector)	MCS	2464	single
Insertion region long trim quads	MQTLI	36	twir
Arc dipole corrector	MCBH	376	single
Arc dipole corrector	MCBV	376	single
Twin aperture separation dipole in IR (194mm). D4	MBRB	2	twir
Twin Aperture Separation dipole in IR(188mm). D2	MBRC	8	twir
Single Aperture Separation dipole, 1 MBRS magnet on each beam - one cryostat (D3 in IR4)	MBRS	4	single
Single aperture separation dipole. I maks magnet on each beam - one cryostal (03 in 1k4) Single aperture separation dipole. D1 in IR2 and IR8	MBX	4	single
Twin aperture separation dipole. D1 in IR2 and IR3 Twin aperture warm dipole. D3 and D4 in IR3 and IR7	MBW	20	twir
•			IWIF
Single aperture warm dipole. D1 in IR1 and IR5 (6 each side)	MBXW	24	single
Matching correction dipole	MCBCH	80	
Matching correction dipole	MCBCV	80	
Inner Triplet Horizontal dipole corrector,	MCBXH	24	single
Inner Triplet vertical separator	MCBXV	24	single
Single aperture, horizontal, warm dipole corrector	MCBWH	8	
Single aperture, vertical, warm dipole corrector	MCBWV	8	
Matching section dipole orbit corrector	мсвун	44	single
Matching section dipole orbit corrector	MCBYV	44	single
Skew octupole spool-piece (a4) associated to MQSX in MQSXA	MCOSX	8	single
Octupole spool-piece (b4) associated to MQSXA	MCOX	8	single
Quadrupole in the insertions (3.4 m)	MQM	46	twin
Quadrupole in the insertions (4.8 m)	MQML	36	twin
Wide aperture quadrupole in the insertions, twin aperture	MQY	24	twin
Quadrupole in the insertions (2.4 m)	MQMC	12	twin
Twin aperture warm quadrupole in IR3 and IR7.	MQWA	40	twin
Twin aperture warm quadrupole in IR3 and IR7.	MQWB	8	twir
Inner triplet quadrupole, single aperture (Q1, Q3)	MQXA	16	single
Inner triplet quadrupole, single aperture (Q2)	MQXB	16	single
Skew sextupole spool-piece (a3) associated to MQSX in MQSXA	MCSSX	8	single
Sextupole spool-piece (b3) associated to MCBXA	MCSX	8	single
	MQRL	4	twir
	MQR	4	twin
Dodecapole spool-piece (b6) associated to MCBXA	MCTX	8	single
Skew quadrupole (a2) in MQSXA	MQSX	8	single
Sites quality in incore	MCBWB	1	
	MU	8	

Synchrotrons

Circular accelerators

Synchrotrons

- Advantages:
 - very high energies possible
 - very good beam control
 - small machine aperture
- Disadvantages:
 - big
 - expensive
 - pulsed
 - variable frequency RF
 - not so easy to operate

University of HUDDERSFIELD International Institute for Accelerator Applications

Rest of the World

- Nearly 40000 accelerators in use
- About half < 5 MeV
- Nearly all of rest < 20 MeV
- About 2/3rd electrons, 1/3rd ion
- Used for a variety of applications
- Requirements different from HEP:
 - cost effective
 - reliable
 - easy to operate
 - current is usually more important than energy
- Three types of accelerator
 - electrostatic
 - linacs
 - cyclotrons

Electrostatic Accelerators

- Use a DC electric field for acceleration
- Various types
- Main limitation: electrical breakdown

1897 – J.J. Thomson Cathode ray tube

- Cockcroft Walton ~voltage multiplier
- · Van der Graaff
- Tandem

John Cockcroft & Ernest Walton Voltage Multiplier Cavendish Laboratory, 1932.

ISIS Cockcroft-Walton at RAL

Dynamitron

Electrostatic Accelerators

Electrostatic Accelerators

- Advantages:
 - DC
 - large beam currents possible
 - easy to operate
 - very efficient
 - reliable
- Disadvantages:
 - limited beam energy
 - high voltages

First circular particle accelerator built by Ernest O. Lawrence & Stanley Livingston at Berkeley in 1930.

Energy = 80 keV, Diameter = 13cm

Simple cyclotron: isochronous to 12 MeV Above that, the magnetic field must be shaped

Three things to worry about:

Isochronous:

where

Horizontal control/focussing:
 To 1st order, horizontal tune

where average field index k

Vertical control/focussing:
 To 1st order, vertical tune

where flutter

$$B_{av}(r) \sim \gamma(r)$$

$$B_{av} = \langle B(\theta) \rangle$$

$$v_x^2 \approx 1 + k$$

$$k(r) \equiv \frac{r}{B_{av}} \frac{dB_{av}}{dr}$$

$$v_y^2 \approx -k + F(1 + 2\tan^2 \varepsilon)$$

$$F \equiv \left\langle \left(\frac{B(\theta)}{B_{av}} - 1 \right)^2 \right\rangle$$

→ Azimuthally Varying Field cyclotrons by L.H.Thomas in 1938

GE and IBA

PSI cyclotron 600MeV

- Advantages:
 - CW
 - fairly large beam currents possible
 - easy to operate
 - fairly efficient
 - reliable
- Disadvantages:
 - fixed beam energy
 - highish beam losses

Accelerator Applications

- Accelerators created for Particle Physics
- Many developments driven by PP
- Now used for other applications
 - ~40000 accelerators already in use around the World
 - Annual sales: >\$3.5B
 - Annual product, etc, sales: >\$0.5T
 - Fit into a few broad categories:
 - Energy
 - Environment
 - Healthcare
 - Industry
 - Security and defence
 - Research

Energy Applications

- All at an early stage
- · Fission:
 - waste burners
 - thorium energy amplifiers
- Fusion:
 - plasma heating
 - materials studies
 - heavy ion inertial fusion

Fission

- · (Almost) all fission reactors employ uranium-235 as fuel
- Related problems
 - only 0.7% of natural uranium \rightarrow enrichment
 - proliferation: plutonium production
 - safety
 - uranium supply is not infinite
 - waste

Main waste issue:

Minor Actinides ²³⁷Np, ²⁴¹Am, Cm

- long lived >1000 years
- very radiotoxic (a, high energy γ)
- very hot

Fission

Requirements for ADS

- Sufficient beam energy for neutron spallation
- Sufficient beam current

Beam power: ≥ 4 MW

FIG. 2: Neutron multiplicity per unit energy and per incident proton as a beam energy for a LBE target.

Barros et al, Braz. J. Phys. vol.40 no.4 São Paulo Dec. 2010

Requirements for ADS

Sufficient beam reliability

Example Projects

- MYRRHA in Belgium: 600 MeV, 1.5 MW
 - SC proton linac
 - lead-bismuth eutectic target

- Timescale: 100 MeV accelerator in 2024
 - decision on next steps

- China: largest energy consumer in world; 79% coal in 2011
- Nuclear power:

now: 22 reactors working (18GWe), 27 construction (27GWe)

2020: 58 GWe (with 30 GWe under construction)

2050: 350-400 GWe (~ total world production in 2014)

- ADS project:
 - 250 to 600 MeV
 - 2.5 mA
 - CW superconducting proton linac
 - flowing granular target

Granular target

- 1 Ion source+LEBT+RFQ+MEBT
- 2 HWR009 section
- ③ HWR019 section
- 4 Spoke042 section

- ⑤ Elliptical062 section
 - 6 Elliptical 082 section
 - 7 Coupling section
- 8 Reactor

- Aim: initial facility (>250 MeV, 10 mA, <10 MWt) 2022 demo facility (1 GeV, <15mA, >500 MWt - 2030)
- Currently prototyping

10 MeV beam being commissioned

Granular Flow by Gravity

University of HUDDERSFIELD International Institute for Accelerator Applications

Thorium

- 235U problems
 - only 0.7% of natural uranium \rightarrow enrichment
 - proliferation: plutonium production
 - uranium supply is not infinite
 - waste
- Alternative fuel: thorium
 - 3*uranium in the Earth's crust, all burnt as fuel:
 1 ton Th ~ 200 tons U ~ 3500000 tons coal [Carlo Rubbia] about same amount in crust as lead
 - proliferation resistant (no Pu)
 - 50% of waste for storage
 - but.....sub-critical

Known Resources (ktonnes)

Thorium Fuel Cycle

Sub-criticality – must make more neutrons. One method: an accelerator ~ 10 MW

But, currently, there is only really talk about this, little actual activity

JET Tokamak at Culham, UK.

- ·Create plasma of D and T
- ·Heat it to 1×106 °C
- ·Compress it magnetic
- ·Cause fusion

JET Tokamak at Culham, UK.

- ·Create plasma of D and T
- ·Heat it to 1x106 °C
- ·Compress it magnetic
- ·Cause fusion

Neutral ions can produce 35 MW of heating for JET Single biggest source

ITER Neutral Beam Test Facility (PRIMA)

Mission of PRIMA MITICA SPIDER:

Optimise NBI operation

Maximize reliability of injectors

Develop technologies for injectors

Test key remote handling tools and procedures

Achieve nominal parameters:

P. Sonato et al., Fusion Eng. Des. 84 (2009) 269

40MW

Materials Research

Fusion:

Materials research

DEMO: 10¹⁸ neutrons m⁻²s⁻¹

at 14.1 MeV

30 dpa/year

IFMIF:

Create ~14 MeV neutrons using Li(d,xn) reaction

2 x 40 MeV, 125 mA linear accelerators

20 dpa/year **Nuclear HVAC** Industrial HVAC **Electric Power** 5MW/beam PIE Detritiation Supply Access Cell Process -Test Cel **RF Modules** Post Irradiation Human Beam Dump Examination Li Loop **SRF Linac** Injector RFQ

Heavy Ion Inertial Fusion

- · Use heavy ions to compress fuel for fusion
- Idea has been around since 1970s
- Being studied mainly in the US

Heavy Ion Inertial Fusion

Courtesy: C.M.Celata

Heavy Ion Inertial Fusion

Courtesy: C.M.Celata

Muon Catalysed Fusion

- Principle:
 - muonic atoms ~200 times smaller than standard
 - coulomb barrier thinner
 - fusion easier
 - muon released after fusion, hence catalyst
- · Studied in various labs, e.g. Dubna, TRIUMF, PSI, KEK, RAL
- Works, but muons needs to be 10x cheaper

Energy Conclusions

- Accelerators being studied for fission and fusion use
- Still under development
- Pushing (or well beyond!) the boundaries:
 - beam current
 - beam power
- ADS linac studies have built on:
 - CERN work on Superconducting Proton Linac (SPL)
 - European Spallation Source