

/M/JUAS	~ 60% low-energy electron accelerators	
* R. Hamm at 9th ICFA Seminar October 30, 2008		TOTAL 27700
(approximate numbers)	Non-destructive testing	650
	Electron cutting and welding	4500
	Radiation processing	2000
	Neutrons for industry or security	1000
	Ion implantation	9500
year 2007	Radioisotope production	550
world *	Hadron therapy	30
Accelerators in the	Photon or electron therapy	9100
	Ion beam analysis	200
	Synchrotron radiation sources	50
	High-energy physics research	120
	APPLICATION	

Low-energy electron accelerators in industry

1905 APPLEBY and MILLER, patent:

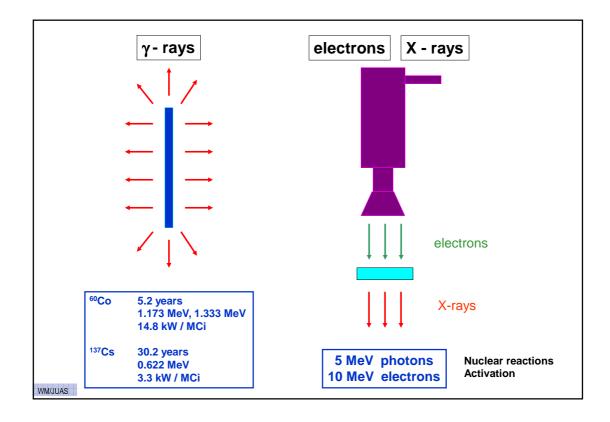
'use of X-rays to bring about an improvement in

the conditions of foodstuffs'

1956 JOHNSON and JOHNSON

sterilisation of medical devices

INDUSTRY radiation processing


in a car: dashboard, tyres, cables, painting ... in an airplane: constructional components ...

at the doctor: syringes, pharmaceuticals, sterile dressings
in the supermarket: strawberries, red meat, shrink packaging materials ...
permanently-creased trousers or T-shirts, raincoats ...

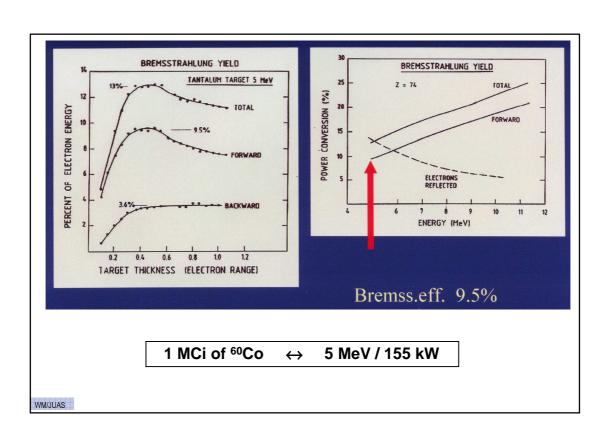
at home: electrical cables, parquet

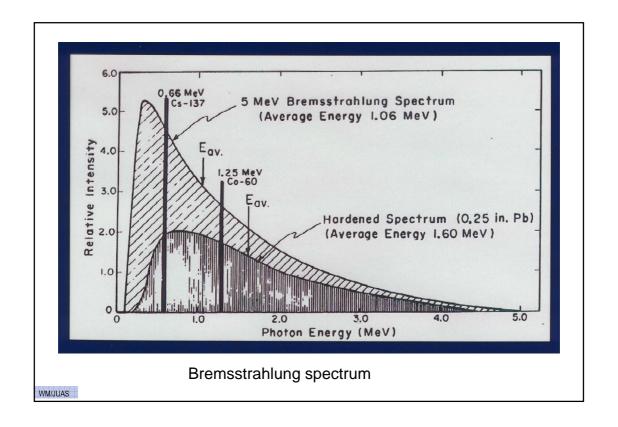
in the human body: prostheses, catheters, advanced drug-delivery systems ...

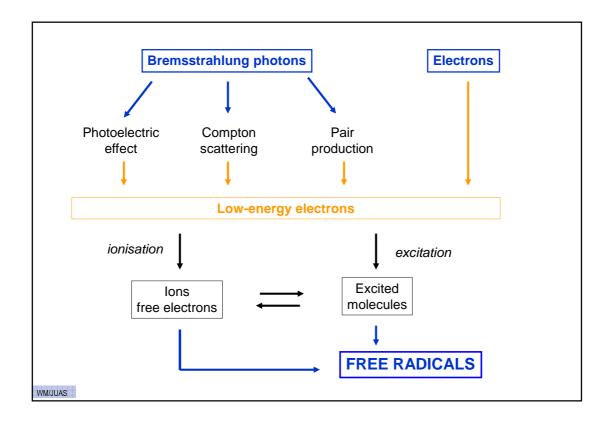
WM/JUAS

LOW-ENERGY ELECTRON ACCELERATORS

Bremsstrahlung production


 $\underline{\text{COLLISION STOPPING POWER}} \quad \rightarrow \quad \text{HEAT !!!}$


$$-\left(\frac{dT}{dx}\right)_{c} = 2\pi \frac{e^{4}NZ}{m_{e}\beta^{2}c^{2}} \left[ln \frac{m_{e}\beta^{2}c^{2}T}{2I^{2}(1-\beta^{2})} + (1-\beta^{2}) - ln2(2\sqrt{1-\beta^{2}} - 1 + \beta^{2}) + \frac{\left[l - \sqrt{1-\beta^{2}}\right]}{8} \right]$$


BREMSSTRAHLUNG STOPPING POWER

$$-\left(\frac{dT}{dx}\right)_{r} = \frac{NTZ(Z+1)e^{4}}{137m_{e}^{2}c^{4}} \left[4\ln\left(\frac{2T}{m_{e}c^{2}}\right) - \frac{4}{3}\right]$$

WM/JUAS

FREE RADICALS

damage DNA

radiotherapy food irradiation sterilisation

· chain reaction

R° + AB R- AB° + AB

R-AB° R- AB-AB° \rightarrow

polymer chemistry

· special chemical reactions

radiation synthesis

· graft a second polymer

curing biomaterials

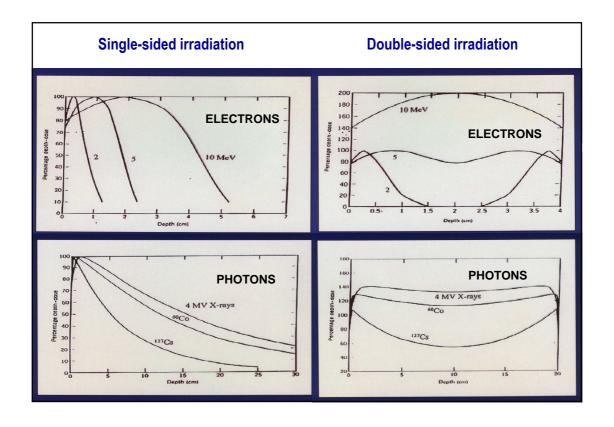
WM/JUAS

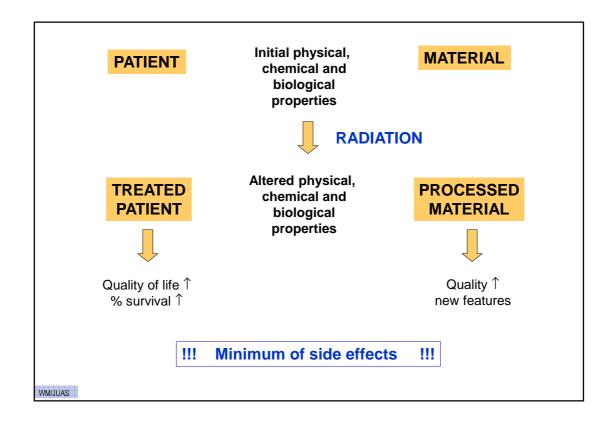
Physical, chemical and biological effects ~ deposited energy

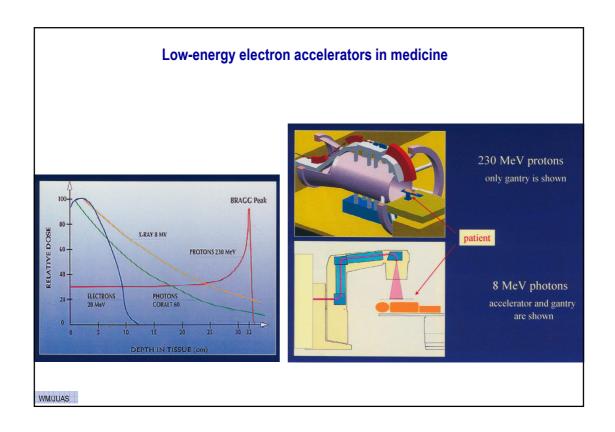
DOSE = deposited energy per unit mass

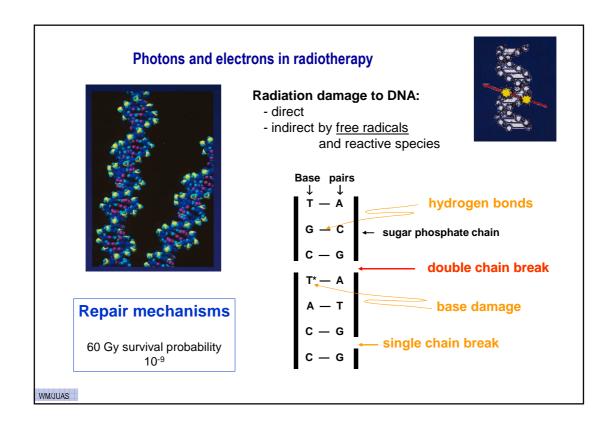
1 Gray = 1 J / kg

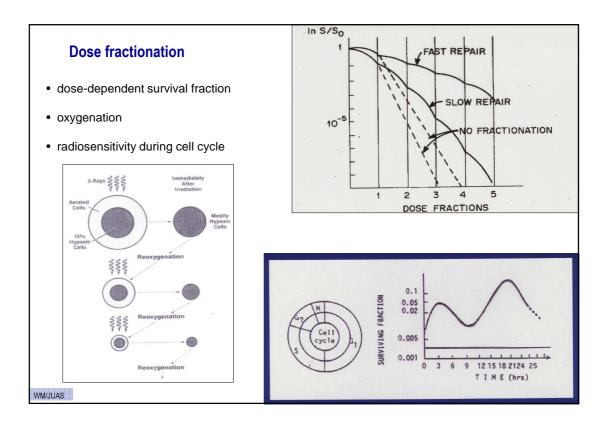
1 Gy = 100 rad

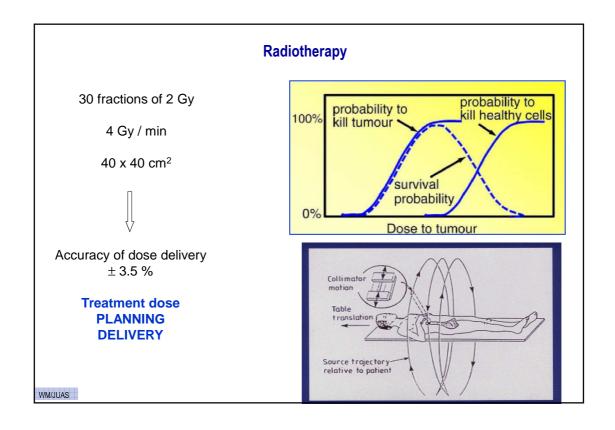

4.2 kGy in water \rightarrow 1° C

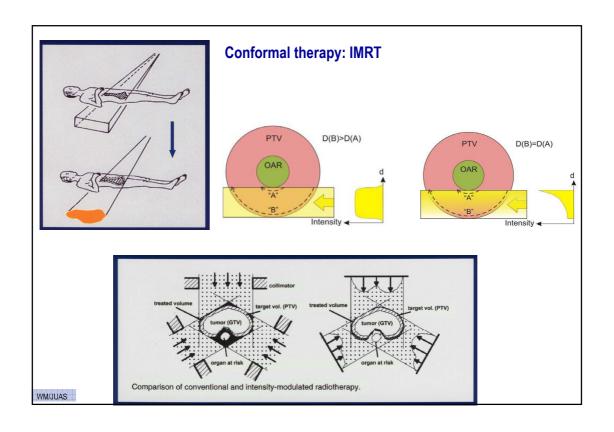

⇒ high yields of reactive species at low temperatures

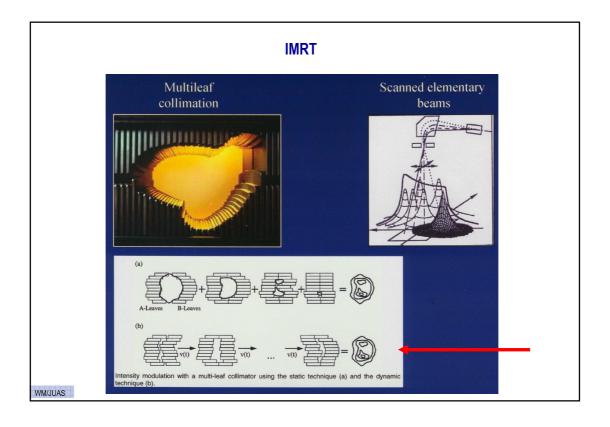

ELECTRONS or PHOTONS


similar end products different spatial distributions


WM/JUAS







Radiation field requirements

BEAM

- · well defined
- · variable in size
- moveable in three dimensions
- · variable energy
- · variable intensity
- X-ray ⇔ electron mode
- · pure and well-confined

TREATMENT UNIT

- reliable and reproducible
- · easy maneuvrable
- · simple and fail-safe
- very compact

DOSE RATE

- high
- irradiation time ~ 1/2 minute
- · accurately monitored
- · fail-safe feedback to accelerator

DOSE DISTRIBUTION

- uniform or
- · non-uniform in predefined way
- · controllable
- · reproducible
- stable

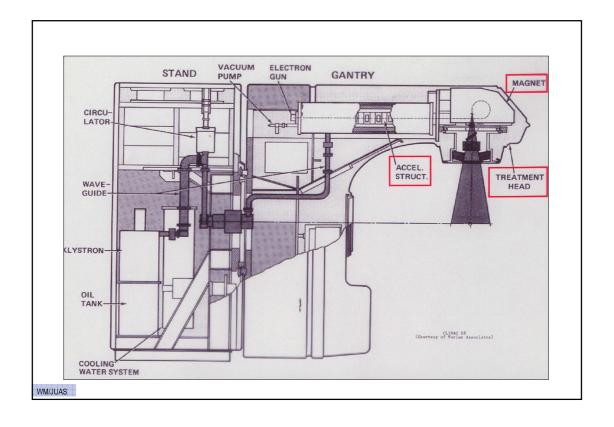
WM/JUAS

Machine requirements

energy range
 intensity range
 dose rates
 4 - 25 MeV
 0.5 - 50 μA
 1 - 4 Gy / min

number of electron energiesnumber of X-ray energies2

homogeneity of X-ray fields
 homogeneity of electron fields
 5 % over 40 x 40 cm²
 5 % over 25 x 25 cm²


• leakage doses below 10⁻³ at 1 m

gantry rotation 360°isocentre definition 1 mm

degrees of freedom
 good definition at target
 15 (rotation and translation)
 energy, position, direction

• volume 5 x 3 x 3 m³

WM/JUAS

Energy of the electron accelerator

$$V = \sqrt{(1 - e^{-2\tau})P_0R_0L} - \frac{R_0LI}{2} \left[1 - 2\tau \frac{e^{-2\tau}}{1 - e^{-2\tau}} \right]$$

V = energy of accelerator section in MeV

L = length accelerator structure in meters

 P_0 = high-frequency peak power in MW

 R_0 = shunt impedance in $M\Omega/m$

 τ = attenuation constant

I = accelerated peak current in Amperes

WM/JUAS

Accelerating structures

4 - 25 MeV Energy:

Length: ~ 1 m

HF power: 2 - 5 MW_p 5 - 10 MW_p magnetron

klystron

Disc-loaded waveguides

Shunt impedance ↑↑

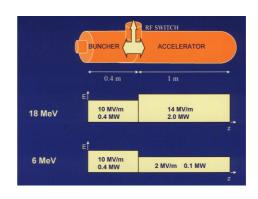
$$R_0 = -\frac{E_0^2}{\frac{dP}{dz}}$$

· travelling wave structure

- · biperiodic structure
- standing wave structure • side-coupled structure

WM/JUAS

Energy variation


1. Variation of input power P₀ or accelerated current I

$$V = \sqrt{(1 - e^{-2\tau})P_0R_0L} - \frac{R_0LI}{2} \left[1 - 2\tau \frac{e^{-2\tau}}{1 - e^{-2\tau}} \right]$$

BEAM LOADING

2. Variation of RF frequency

3. Buncher + accelerator section

WM/JUAS

Electrons in bending magnet systems

Magnetic rigidity
$$\chi_b = B\rho = \frac{1}{299.79} \sqrt{V(V+1.022)}$$

V = energy of electrons in MeV

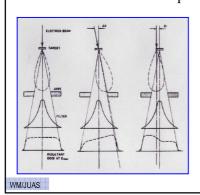
B = magnetic field induction in Tesla

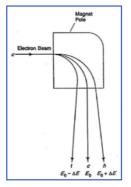
 ρ = bending radius in meters

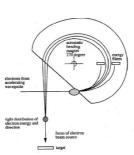
Excitation of room-temperature magnet $NI \approx \frac{B}{\mu_0} \, g$

NI = number of Ampere-turns

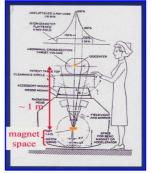
B = magnetic field induction in Tesla


g = gap between magnet poles in meters


 $\mu_0 = 4\pi.10^{-7} \text{ Tm/A}$


WM/JUAS

Bending magnet systems


$$x_{1} = m_{11}x_{0} + m_{12}x_{0}' + m_{13}\frac{\Delta p}{p}$$
$$x_{1}' = m_{21}x_{0} + m_{22}x_{0}' + m_{23}\frac{\Delta p}{p}$$

Energy spread medical ~ 10 % research < 1 %

LOW-ENERGY ELECTRON ACCELERATORS

Bending magnet systems

TRANSPORT calculations

$$\mathbf{M}_{H} = \begin{pmatrix} 1 & L & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{M}_{V} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{v} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$$

HOMOGENEOUS BENDING MAGNET

Bending angle α Bending radius ρ

$$\mathbf{M}_{\mathrm{H}} = \begin{pmatrix} \cos\alpha & \rho\sin\alpha & \rho(1-\cos\alpha) \\ -\frac{\sin\alpha}{\rho} & \cos\alpha & \sin\alpha \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{M}_{\mathrm{V}} = \begin{pmatrix} 1 & \rho L \\ 0 & 1 \end{pmatrix}$$

WM/JUAS

WEAK FOCUSSING BENDING MAGNET

Field index 0 < n < 1

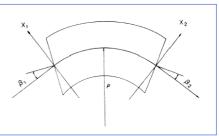
Length L Bending angle α Bending radius ρ

$$\mathbf{M}_{\mathrm{H}} = \begin{pmatrix} \cos\sqrt{1-n}\alpha & \frac{\rho\sin\sqrt{1-n}\alpha}{\sqrt{1-n}} & \frac{\rho\left(1-\cos\sqrt{1-n}\alpha\right)}{1-n} \\ -\frac{\sqrt{1-n}\sin\sqrt{1-n}\alpha}{\rho} & \cos\sqrt{1-n}\alpha & \frac{\sin\sqrt{1-n}\alpha}{\sqrt{1-n}} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{\mathrm{V}} = \begin{pmatrix} \cos\sqrt{n\alpha} & \frac{\rho\sin\sqrt{n\alpha}}{\sqrt{n}} \\ -\frac{\sqrt{n}\sin\sqrt{n\alpha}}{\rho} & \cos\sqrt{n\alpha} \end{pmatrix}$$

WM/JUAS

HOMOGENEOUS BENDING MAGNET with ROTATED POLE SHOE EDGES


Length L Bending angle α Bending radius ρ

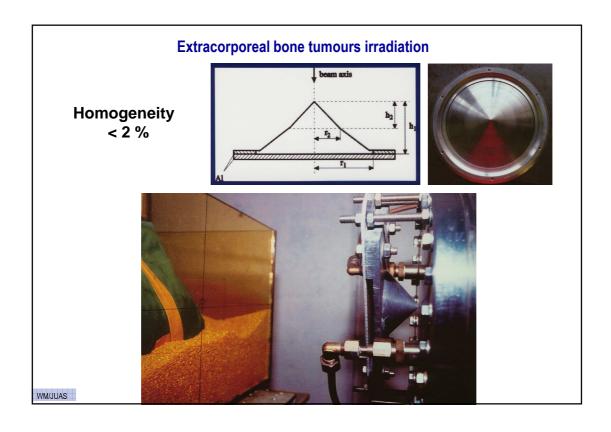
 β_1 angle of pole edge rotation at entrance

 $\beta_2\,\text{angle}$ of pole edge rotation at exit

$$\mathbf{M}_{\mathrm{H}} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{\tan \beta_2}{\rho} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \alpha & \rho \sin \alpha & \rho (1 - \cos \alpha) \\ \frac{\sin \alpha}{\rho} & \cos \alpha & \sin \alpha \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \alpha & \rho \sin \alpha & \rho (1 - \cos \alpha) \\ \frac{\sin \alpha}{\rho} & \cos \alpha & \sin \alpha \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{v} = \begin{pmatrix} 1 & 0 \\ -\frac{\tan \beta_{2}}{\rho} & 1 \end{pmatrix} \begin{pmatrix} 1 & \rho \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{\tan \beta_{1}} & 0 \\ -\frac{1}{\rho} & 1 \end{pmatrix}$$

$$\begin{vmatrix}
sin\alpha \\
1
\end{vmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
\frac{tan\beta_1}{\rho} & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$


Brailing Plans
Scarnings Alguet
Residues

Purging Magnet & Purging & Purging Magnet & Purgi

New trends

- intensity-modulated radiotherapy
- thomotherapy
- image-guided radiotherapy
- stereotactic radiosurgery
- intra-operative radiotherapy

MAKALILIAO

Radiation treatment of human grafts and artificial implants

CORNEA

sclerae of the human eye

 $\begin{array}{c} \text{prosthesis} \ \rightarrow \ \text{imflammation} \\ \text{rejection} \end{array}$

 \Rightarrow 'packed' in human sclerae

- less reactions
- synchronous movement

lyophylisation \rightarrow sterilisation 25 kGy \rightarrow

• bone fragments: maxillo-facial reconstruction

• human implants: cardiological stents, polymeric implants, hydrogels

• blood products: lymphocytes 40 Gy (graft-versus-host disease)

WM/IIIAS

Low-energy electron accelerators in industrye

BEAM POWER = ENERGY x INTENSITY

DOSE RATE

INTENSITY

Energy

< 10 MeV electrons < 5 MeV photons

tissue bank

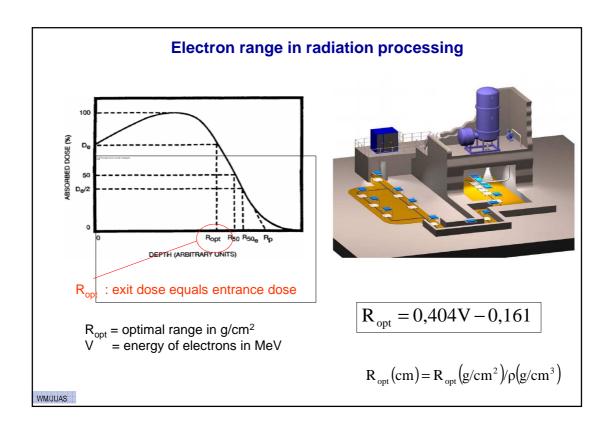
SCLERA

RETINA

~ penetration depth

150 KW

5 MeV / 30 mA 0.5 MeV / 300 mA


ACCELERATORS

3 energy ranges 0.1 - 0.5 MeV

0.5 - 5 MeV

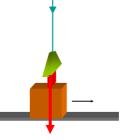
5 - 10 MeV

WM/JUAS

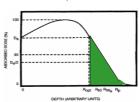
Throughput in radiation processing (electron and X-ray mode)

Mass throughput

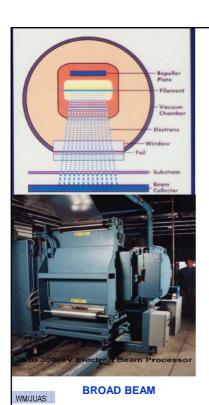
$$\frac{M}{T} = F(e)F(i)\frac{P}{D(ave)}$$


M = mass in kg

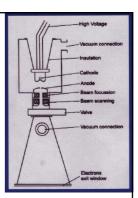
T = time in seconds


P = emitted radiation power in kW

D(ave) = average absobed dose on kGy


F(i) = fraction of emitted beam current intercepted by material

F(e) = fraction of incident electron energy absorbed by material


WM/JUAS

Energy range 0.1 - 0.5 MeV

Single-stage machines

- self-shielding
- low penetration capability
- integrated in production line
- beam widths ~ 2.5 m

SCANNING TYPE

APPLICATIONS:

surface treatment iraddiation of coatings, adhesives, inks printing industry

e.g. thin film packaging

Energy range 0.5 - 5 MeV

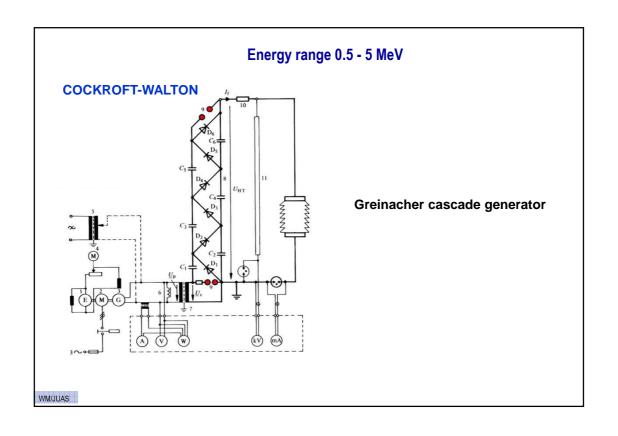
Multi-stage machines COCKROFT-WALTON

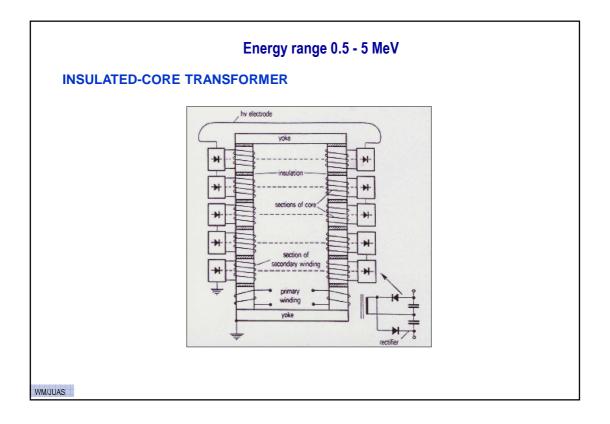
• high penetration capability

• up to 300 kW

• beam widths ~ 2 m

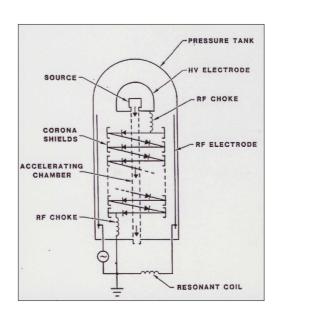
INSULATED-CORE TRANSFORMER


DYNAMITRON


APPLICATIONS: processing of thick sheets

> wires and cables tubes and pipes fiber composites tire components

heat-shrinkable products foamed polyethylene


WM/JUAS

Energy range 0.5 - 5 MeV

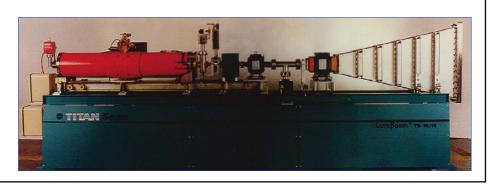
DYNAMITRON

WM/JUAS

Energy range 5 - 10 MeV

RF linear accelerator → 50 kW

RHODOTRON \rightarrow 200 kW up to 1 MW


APPLICATIONS: < 5 MeV applications

medical sterilisation food processing

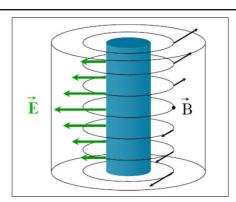
polymer crosslinking, grafting, degradation

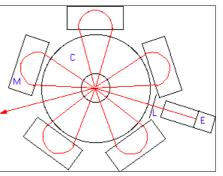
LINAC

WM/JUAS

JUAS MARCH 2017

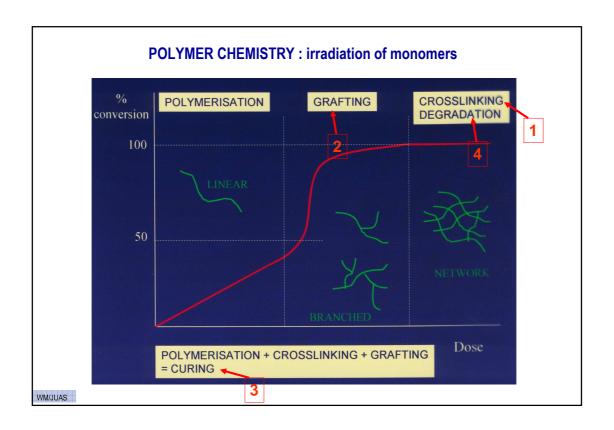
2

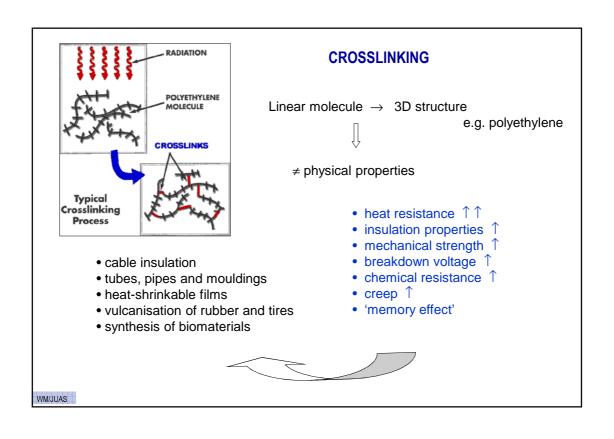

Energy range 5 - 10 MeV


RHODOTRON

$$E = \frac{E_0}{r} \cos 2\pi \frac{z}{\lambda} \sin(\omega + \varphi)$$

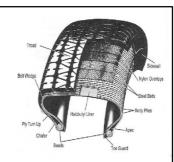
$$B = \frac{B_0}{r} \sin 2\pi \frac{z}{\lambda} \cos(\omega t + \varphi)$$




WM/JUAS

INDUSTRIAL APPLICATIONS of ELECTRONS and BREMSSTRAHLUNG

- 1. POLYMER CHEMISTRY
 - \rightarrow crosslinking
 - $\rightarrow \textit{grafting}$
 - $\rightarrow \textit{curing}$
 - ightarrow degradation
- 2. STERILISATION
- 3. FOOD TREATMENT
- 4. RADIOGRAPHY
- 5. WELDING AND CUTTING


WM/JUAS

EXAMPLE: Pre-vulcanisation of tires

partial crosslinking before the tire is assembled:

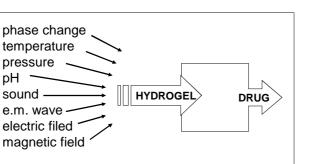
- stabilizes thickness of sections during final thermal curing process
- · prevents steel belt from migrating through its supporting rubber layer

- improves manufacturability
- better dimensional stability
- higher quality tire
- more uniform thickness
- better balance
- thinner thus generating less frictional

Outside (A")
Inside (A")

A"

Defects of Tire

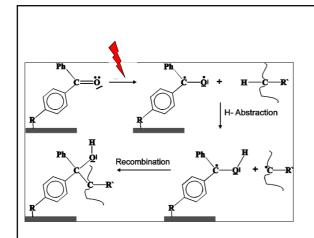

Radiation Processing Avoids These

WM/IIIAS

EXAMPLE: Synthesis of biomaterials

HYDROGELS = crosslinked macromolecular networks swollen in water

- rubbery structure
- substantial water content
- ~ soft living tissue \rightarrow BIOCOMPATIBLE
- porous network
- \rightarrow BIOFUNCTIONAL



- biodegradable polymers
- hydrogels for burn wounds
- porous polymeric hydrogels for advanced drug delivery systems

constant release signal responsive

WM/JUAS

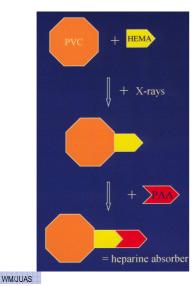
- finishing of textiles
- adhesion of polyethylene on aluminium
- weak hydrogels on polymeric support
- biofunctional groups on inactive supports

GRAFTING

Polymer backbone + monomer

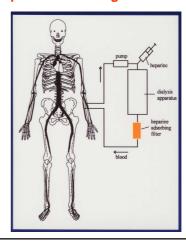
≠ surface properties

- biocompatibility
- adhesion
- permeability
- wettability
- chemical resistance
- · chemical compatibility
- printability
- hydrophilic / phobic quantities
- functionalisation
- · mechanical properties

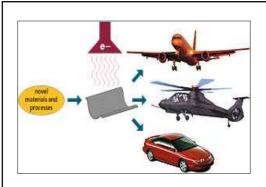


WM/JUAS

EXAMPLE: Immobilisation of bioactive agents


Grafting of biofunctional groups on polymer supports

• HEPARINE FILTER


Hemodyalysis of uremic patients blood + artificial surfaces → coagulation

heparine adsorbing filters

 FIXATION of HD CELL CULTURES

- \rightarrow natural skin
- $\rightarrow \text{pancreas cells}$

e.g. carbon fiber reinforced epoxies

- automobiles
- aircraft
- ships
- space vehicles
- building materials
- sporting goods
- printed circuit boards

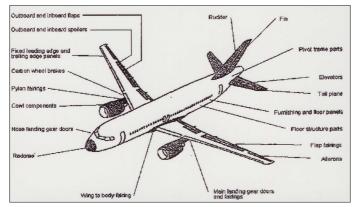
CURING

Polymerisation + crosslinking + grafting

on SURFACES (mainly with electrons)

- · antistatic films
- laminates (credits cards, telephone cards)
- offset printing
- · door finishing
- · parquet coating
- protective films....

in BULK MATERIAL (mainly bremsstrahlung)


- wood-polymer composites
- · concrete-polymer composites
- · advanced composites

WM/JUAS

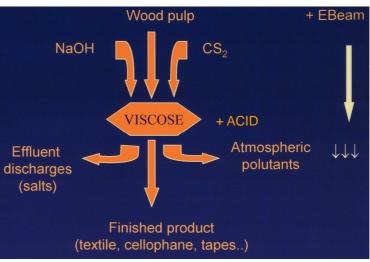
EXAMPLE: On-aircraft repair

Composite materials (carbon-reinforced epoxies):

strength-to-weight ratio ↑ stiffness-to-weight ratio ↑ corrosion resistance impact damage tolerance wear properties

20 - 25 % of aircraft structural weight

AIR CANADA Airbus A320 on aircraft repair with mobile accelerator


WM/JUAS

• cellulose in viscose industry

DEGRADATION

ullet powdered Teflon molecular weight \downarrow lubricants, high quality inks

• degradation of pollutants water, industrial or hospital waste sewage sludge, flue gases

WM/JUAS

STERILISATION

Radiation killing of pathogenic microorganisms

- energy-efficient
- low temperature
- no toxic residues
- total sterilisation
- no ozon depletion
- $(\leftrightarrow heat)$
 - $(\leftrightarrow heat)$
 - $(\leftrightarrow EtO)$ $(\leftrightarrow EtO)$

 - $(\leftrightarrow Met.B.)$

- medical disposables

syringes, needles, surgical sutures wound and burn dressings gloves, masks, gowns Petri dishes and pipettes

- medical implants

artificial organs bone grafts human eyeballs

- pharmaceuticals

- cosmetics

WM/JUAS

FOOD TREATMENT

Low Dose Applications (< 1 kGy)

- **Phytosanitary** Insect disinfection (grains, papayas, mangoes, avocados...)
- Sprouting Inhibition (potatoes, onions, garlic...)
- Delaying of maturation, parasite disinfection

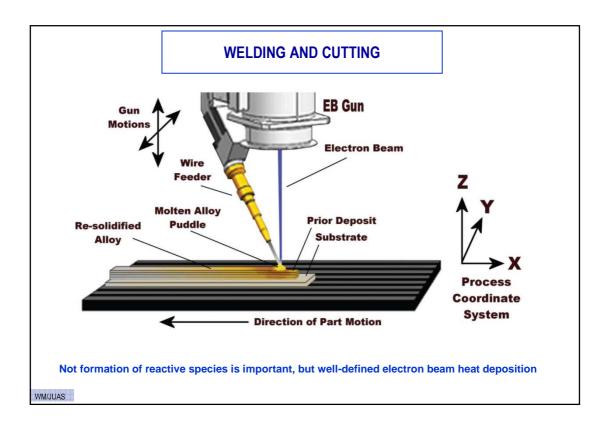
Medium Dose Applications (1 to 10 kGy)

- Control of foodborne pathogens (beef, eggs, crab meat, oysters...)
- **Shelf-life extension** (chicken, pork, low fat fish, strawberries, mushrooms...)
- Spice irradiation

High Dose Applications (> 10 kGy)

- Food sterilisation (meat, poultry, seafood...)

WM/JUAS

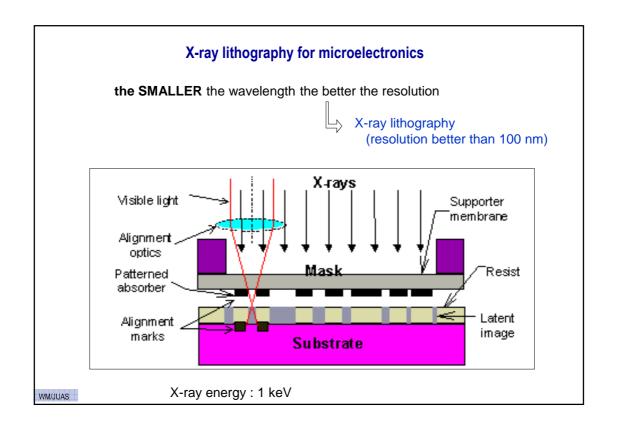

RADIOGRAPHY

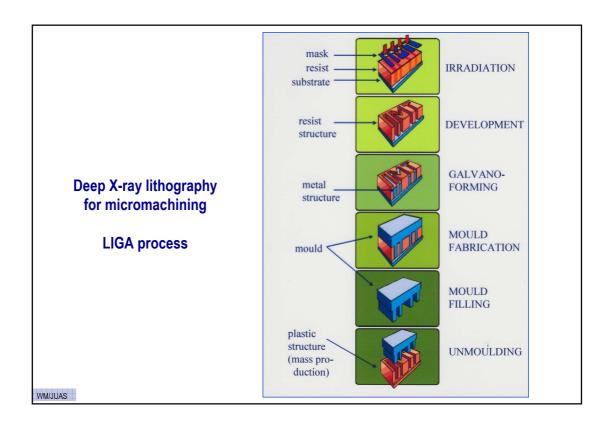
- dynamically inspecting jet engines
- X-ray screening of cargo containers
- inspecting concrete structure integrity
- · inspecting castings
- reverse engineering CT studies
- nuclear waste inspection
- border control

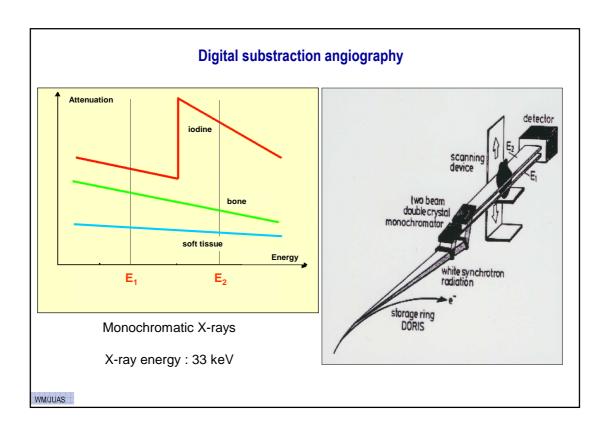
WM/JUAS

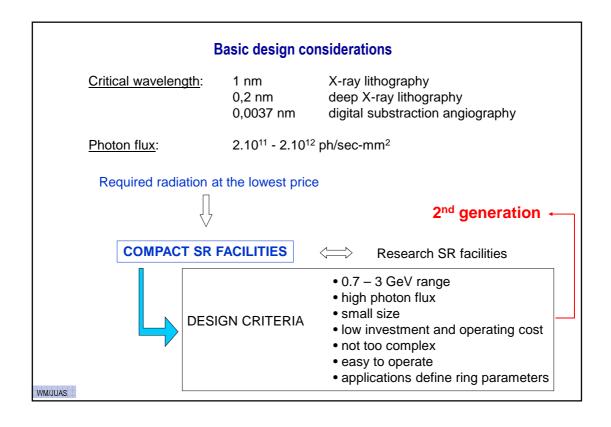
SYNCHROTRON RADIATION

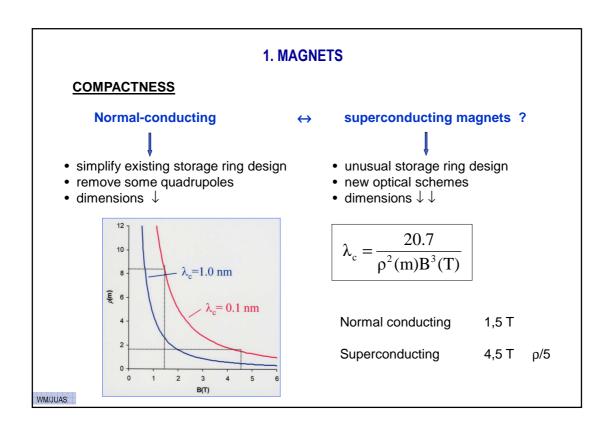
- continuous X-ray spectrum of high intensity
- strong concentration in the horizontal plane
- small source size and low divergence
- high degree of polarisation
- well defined time structure
- precisely calculable radiation characteristics

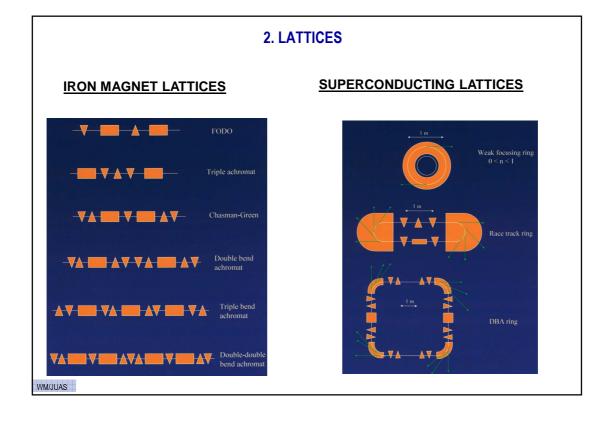

INDUSTRIAL


- X-ray lithography for microelectronics
- deep X-ray lithography for micromachining


MEDICAL


· digital substraction angiography


WM/JUAS



3. INJECTION at LOW ENERGY

Accumulation of high currents in SR facilities:

- injection of bunch
- phase space shrinks during damping time
- following bunch injected

Low energy: preaccelerator space and cost $\downarrow\downarrow$

weak radiation damping efficiency
 damping time ~ 1 / E³
 ≈ lifetime

• scattering with gas atoms lifetime $\downarrow\downarrow$

 \bullet Touscheck scattering: mutual interaction of electrons in bunch lifetime \downarrow

LINACS MICROTRONS

WM/JUAS

ANKA

Energy 2.5 GeV
Stored current 400 mA
Bending radius 5.56 m

• Magnets 8 normal conducting 22.5° 4 cells of 2 x DBA

Critical wavelength 0.2 m
 Magnetic field 1.5 T
 Nb of beamports 11
 Diameter ring Ø 35 m

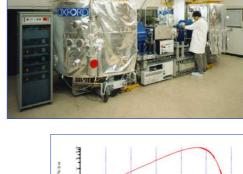
• Injector 500 MeV booster synchrotron 53 MeV microtron

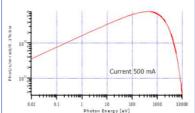
WM/JUAS

HELIOS

HELIOS 1 IBM East Fishkill HELIOS 2 Singapore

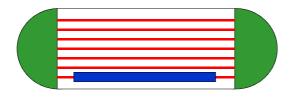
Energy 700 MeVStored current 620 mA


• Magnets 2 superconducting 180°


Critical wavelength 0.84 m Nb of beamports 20

• Dimensions 6 m x 2m

• Injector 200 MeV linac (HELIOS 1)


100 MeV microtron (HELIOS 2)

WM/JUAS

Stable motion in HELIOS ring

Stability condition in periodic rings:

$$-1 \le \frac{1}{2} \operatorname{traceM} \le 1$$

period

$$\mathbf{M} = \begin{pmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} \\ \mathbf{m}_{21} & \mathbf{m}_{22} \end{pmatrix}$$

traceM = trace of matrix M, it is equal to the sum of the diagonal elements of matrix M

M is transfer matrix of one period in ring

WM/JUAS