Tutorial

-Particle sources-

1. Ion Source Thermal Beam divergence

An ion source is set to a potential $+\mathrm{V}=10 \mathrm{kV}$. The axis of the source is along the z axis. The source extraction electrode is placed at $\mathrm{z}=0$. An electrode set to the ground potential is placed at $\mathrm{z}=\mathrm{d}=1 \mathrm{~cm}$. the ion is an argon $1+$ with atomic mass $40.1 \mathrm{uma}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$.
1.1 Assuming a 1D problem, what is the electric field intensity in the accelerating gap. What is its direction? (we assume $\mathrm{V}=0$ for $\mathrm{z}>\mathrm{d}$). plot $\mathrm{E}(\mathrm{z})$ for $\mathrm{z}=-\mathrm{d}$ to 10 d .
1.2 A motionless ion with a charge q is located at $\mathrm{z}=0$. It is accelerated by the electric field. Express the ion velocity v as a function of z for $\mathrm{z}=0$ to $\mathrm{z}=10 \mathrm{~d}$. Plot it. calculate the ion final velocity.
1.3 At what time td does the particle reach $\mathrm{z}=\mathrm{d}$?
1.4 At what time T does the particle reach $\mathrm{z}=10 \mathrm{~d}$?
1.5 Now, the plasma temperature gives the ion a transverse thermal energy Ex=1/2*kT, $\mathrm{T}=1000 \mathrm{~K}$. Express the transverse energy in eV . What is the transverse ion velocity vx? $\mathrm{k}=1,38 * 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$.
1.6 At what position x does the particle reach $\mathrm{z}=10 \mathrm{~d}$?
1.7 The beam pipe is 100 mm diameter, at which distance z will the particle touch the wall?

2. Space charge effect on an ion beam

An infinitely long cylinder composed of uniformly distributed electric charge density ρ is considered. The cylinder radius is R.
2.1 helped with the Gauss law, show that :

$$
\begin{cases}\text { for } r>R, & \vec{E}=\frac{\rho R^{2}}{2 \epsilon_{0} r} \overrightarrow{e_{r}} \\ \text { for } r \leq R, & \vec{E}=\frac{\rho r}{2 \epsilon_{0}} \overrightarrow{e_{r}}\end{cases}
$$

2.2 plot E(r)

2.3 A beam current with an intensity I, a velocity v is propagating in a beam pipe. Show that $\rho=\frac{I}{v \pi R^{2}}$. We assume that the beam is perfectly cylindrical and that the Electric field found in 2.1 can be used to model the space charge effect. Deduce:

$$
\begin{cases}\text { for } r>R, & \vec{E}=\frac{I}{2 \pi v \epsilon_{0} r} \overrightarrow{e_{r}} \\ \text { for } r \leq R, & \vec{E}=\frac{I r}{2 \pi v \epsilon_{0} R^{2}} \overrightarrow{e_{r}}\end{cases}
$$

2.4 The beam is composed of particle with charge q . The radial space charge induced velocity is $\vec{u}=u \overrightarrow{e_{r}}$, it is supposed to be null at $\mathrm{t}=0$. Using Newton's $2^{\text {nd }}$ law, show that the beam envelope for $r>R$ follows:

$$
\frac{1}{2} m u^{2}=\ln \left(\frac{r}{R}\right) \frac{q I}{2 \pi v \epsilon_{0}}
$$

This equation cannot be treated analytically.

3. Particle trajectory in a magnetic field

A charged particle with mass m and charge q moves in a uniform magnetic field $\vec{B}=B \vec{z}$.
We define $\omega=\frac{q B}{m}$. At $t=0$, the particle is at the point $\mathrm{O}(0,0,0)$ with a velocity $\vec{v}=v \vec{x}$.
3.1 From the second law of Newton, show that:

$$
\left\{\begin{array}{l}
\frac{d v_{x}}{d t}=\omega v_{y} \\
\frac{d v_{y}}{d t}=-\omega v_{x}
\end{array}\right.
$$

3.2 Deduce that:

$$
\left\{\begin{array}{l}
\frac{d^{2} v_{x}}{d t^{2}}=-\omega^{2} v_{x} \\
\frac{d^{2} v_{y}}{d t^{2}}=-\omega^{2} v_{y}
\end{array}\right.
$$

3.3 Look for a solution of type $v_{x}(t)=a \cos \omega t+b \sin \omega t$ and find :

$$
\left\{\begin{array}{l}
v_{x}=v \cos \omega t \\
v_{y}=v \sin \omega t
\end{array}\right.
$$

3.4 Deduce the trajectory coordinates:

$$
\left\{\begin{array}{c}
x(t)=\frac{v}{\omega} \sin \omega t \\
y(t)=\frac{v}{\omega}(1-\cos \omega t)
\end{array}\right.
$$

3.5 Show that the particle is making a circle with a radius $\rho=\frac{v}{\omega}$ around the center $C(0, \rho, 0)$
3.6 An electron is rotating in a 2 T magnetic field. What is the electron cyclotron frequency (in Hertz)?
3.7 What is its Larmor radius if its kinetic energy is 10 keV ?

4. Mass Spectrometer

An ion beam with charge state Q and mass $M=A m_{A}$ is extracted from an ion source set to a high voltage U. A is the mass number, $m_{A}=1 \mathrm{amu}\left(931.5 \mathrm{MeV} / \mathrm{c}^{2}\right)$
4.1 show that the ion velocity is $v=\sqrt{\frac{2 Q e U}{M}}$
4.2 The ions are passing through a 90° bending magnet with a magnetic field B and a bending radius ρ. Knowing that $v=\rho \omega$, show :

$$
B \rho=\sqrt{\frac{2 m_{A}}{e}} \sqrt{\frac{A U}{Q}}
$$

4.3 The source is ionizing H_{2} gas (we assume the mass of protons to be 1 amu). The high voltage is set to 10 kV . The beam intensity is measured in a Faraday cup after the dipole. When the dipole magnetic field is ramped, three signals are obtained in the detector for the magnetic field intensities written in the table below:

Peak identified	1	2	3
Magnetic field	$0,01438 \mathrm{~T}$	$0,02034 \mathrm{~T}$	$0,02492 \mathrm{~T}$

What are the M/Q of those beams? Can you identify them?

5 - Beam loss by charge exchange

A $14+$ ion beam is propagating into a beam pipe with a residual pressure of $10^{-6} \mathrm{mbar}$. The gas is supposed to be at 300 K . What is the lost fraction of the beam after 10 m ? 100 m ?

Nitrogen ionization potential: 14.5 eV

