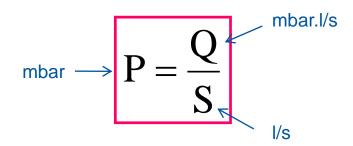


Vacuum Systems Lecture 2

V. Baglin

CERN TE-VSC, Geneva


Outline

- 1. Elements of adsorption/desorption
 - 2. Outgassing
 - 3. Qualification of materials

1. Elements of adsorption/desorption

Reminder: Pressure in a system

• The Pressure, is the ratio of the flux of molecules in the vacuum vessel to the pumping speed

- S range from 10 to 20 000 l/s
- Q range from 10⁻¹⁴ mbar.l/s for metalic tubes to 10⁻⁵ 10⁻⁴ mbar.l/s for plastics

3 orders of magnitude for pumping vs

10 orders of magnitude for outgassing

Outgassing MUST be optimised to achieve UHV

Reminder: Mass flow & quantities

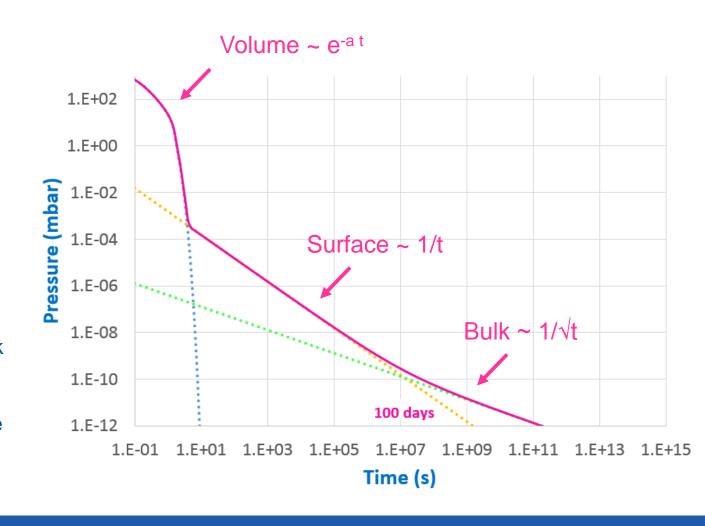
The mass flow can be derived from the ideal gas law

$$Q = p \frac{dV}{dt} = \frac{1}{N} \frac{dn}{dt} RT = R = N k$$

• It has the unit of [Pa.m3/s] which is equivalent to molecules/s

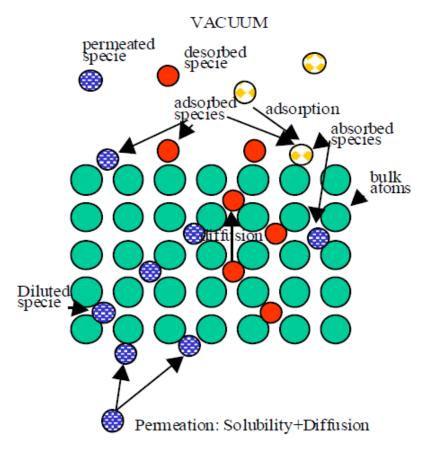
PV	G				
1 mbar.l	4.35 10 ¹⁹ molecules				
1 Torr.I	3.27 10 ¹⁹ molecules				

• Langmuir: $1 L = 10^{-6}$ Torr for 1 s.


Material for Vacuum Technology

- Metals are used for vacuum chambers building parts:
 - Stainless steel, copper, aluminum, beryllium
- Insulating material are used for instrumentation or assembly:
 - Minerals:
 - Ceramics, glass
 - Polymeres (plastics):
 - Kapton, PEEK
 - Glues
 - Elastomeres e,g. Viton,
- During the manufacturing process of these materials, atoms and molecules are sorbed i.e.
 adsorbed or absorbed on the material surface or the bulk
- The surface can be very rough and the material highly porous
- Quantities of gas adsorbed / absorbed in materials can be very large:
 - 1 cm³ of stainless steel can contain 0.05 0.5 mbar.l of hydrogen
 - Under vacuum, Nylon can lose 4% of its weight i.e. 5 mbar.l per cm³

Pump down of a vessel


- Consider 1 m long, Ø10 cm stainless steel tube pumped by 30 l/s
- 4 regimes

- 1) Volume pumping
- 2) Surface desorption
- 3) Diffusion from the bulk
- 4) Permeation trough the wall (solubility+diffusion)

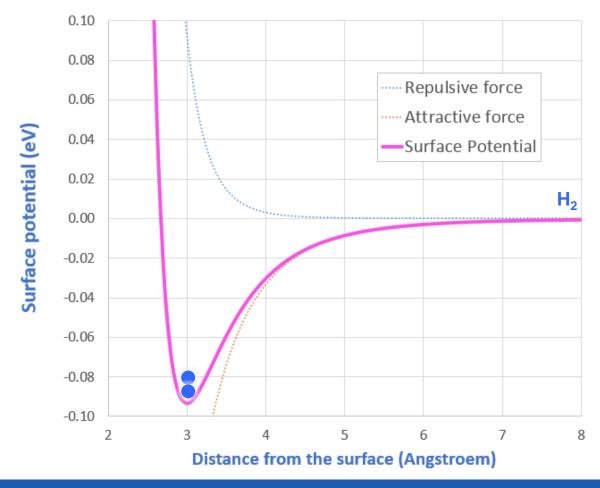
A schematic description

ATMOSPHERIC PRESSURE

Fig. 1 Surface and bulk phenomena in vacuum.

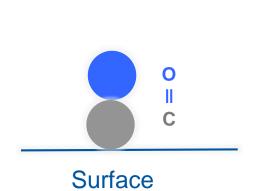
J De Segovia, Physics of Outgassing, CAS, CERN-99-05

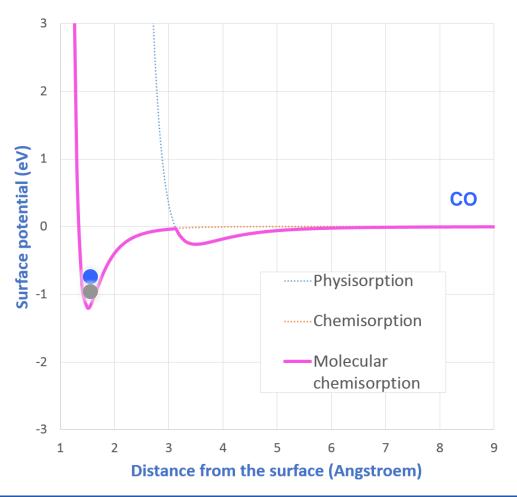
Adsorption-Desorption


- The process is controlled by the interaction energy between the molecule or atom with the surface
- Depending of the "binding energy" level, two types of adsorption exist
- Weak binding energy:
 - Physical adsorption process
 - Van der Waals forces
 - E: 6-30 kJ/mole or 60-300 meV per particle
- Strong binding energy:
 - Chemical adsorption process
 - Electron sharing
 - E: 30-10000 kJ/mole or 0.3-10 eV per particle
- The surface interaction can be described by Lennard-Jones potentials, E, as a function of the distance from the surface, r.

$$E = E_m \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$

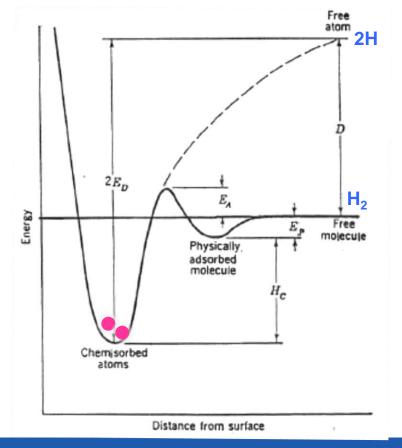
Physisorption


- A molecule, say H₂, approaches towards the surface
- The molecule is physisorbed onto the surface at ~ 3 Å with a "binding" (adsorption/desorption) energy of ~ 10 meV (twice the H heat of vaporization)


• Due to the nature of the physisorption process, several monolayers can be physisorbed in this state

Non-Dissociative Chemisorption

- Non-dissociative chemisorption: case of CO onto metals
- The molecule is chemisorbed onto the surface at ~ 1.5 Å with a "binding" energy of ~ 6 eV
- A maximum of one monolayer can be adsorb on the surface
- The carbon atom is oriented towards the surface


Dissociative Chemisorption

- Dissociative chemisorption: case of H₂ onto metals
- The molecule is physisorbed on the surface
- If the molecule has enough energy to overcome the activation barrier ($E_A \sim 0.4 \text{ eV}$), the molecule is dissociate and the H atoms are chemisorbed (H-H binding energy: $E_{diss} \sim 4.5 \text{ eV}$)
- The atoms are chemisorbed onto the surface at ~ 1.5 Å with a adsorption energy of ~ 3.7 eV
- A maximum of one monolayer can be adsorbed on the surface
- Activation energy ~ 0.4 eV

$$E_{Des} = E_A + E_{ads}$$

$$E_{diss} = E_{Des} + E_{ads}$$

	eV	kJ/mole	kcal/mole	
1 eV	1	96	23	
1 kJ/mole	0.01	1	0.24	
1 kcal/mole	0.043	4.2	1	

1st order desorption

• The rate of molecular desorption from a surface is given by:

$$-\frac{d\theta}{dt} = \nu_1 \theta \ e^{-E_D/kT}$$

- θ , surface coverage, v_1 frequency of vibration of an adsorbed molecule (10¹³ Hz), E_D , activation energy for desorption
- Applicable for physisorbed molecules and non-dissociated chemisorbed molecules
- Solution:

$$\theta(t) = Ae^{-t/\tau}$$

$$\tau = \frac{1}{v_1} e^{E_D/kT} = \tau_0 e^{E_D/kT}$$

2nd order desorption

- For dissociatively chemisorbed molecules (H₂, N₂, O₂) on metals
- Collision at surface of atoms is needed before molecular desorption occur
- The rate of molecular desorption from a surface is given by:

$$-\frac{d\theta}{dt} = v_2 \theta^2 e^{-E_D/kT}$$

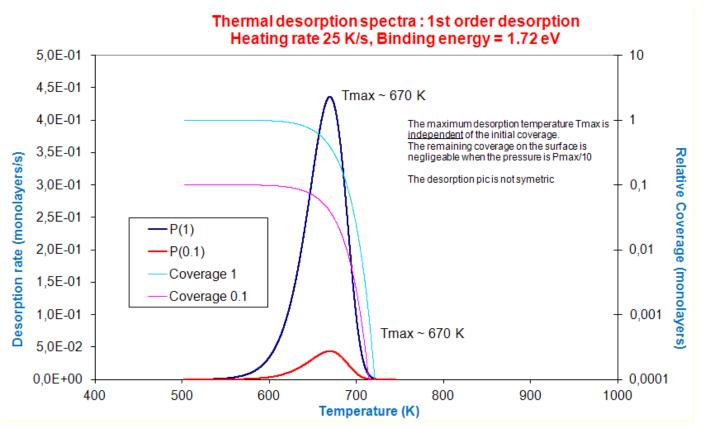
• θ, surface coverage, v₂, second order rate desorption constant (10⁻² cm²/s), E_D, activation energy for desorption

TPD or TDS

- The order of desorption and the desorption energy can be evaluated from Temperature Programmed Desorption or Thermal Desorption Spectroscopy
- Applying a linear change of the temperature sample $T = T_o + \beta t$, the desorption rate is maximum at temperature Tp for:
 - For first order:

$$\frac{E}{R T_n^2} = \frac{v_1}{\beta} e^{-E/R T_p}$$

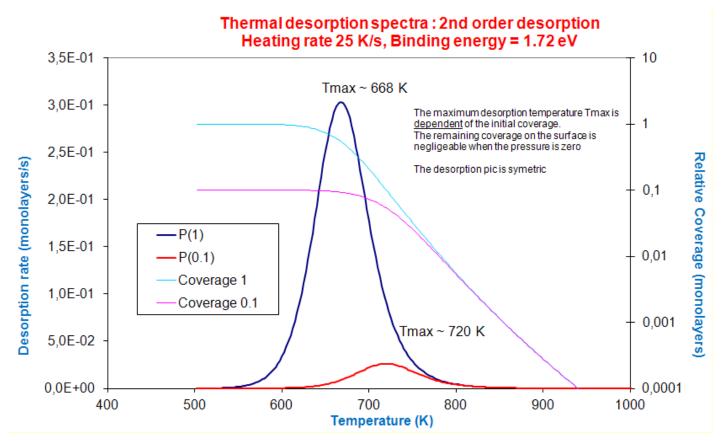
P.A. Redhead, Vacuum 12 (1962), 203.

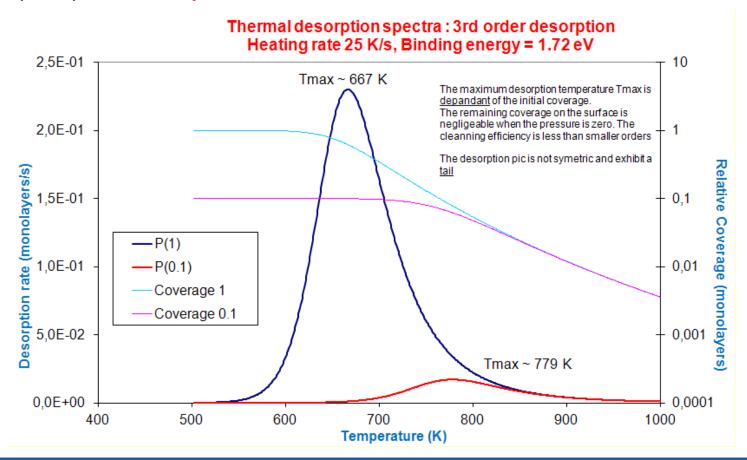

• For second order:

$$\frac{E}{R T_p^2} = \frac{\theta_{initial} \nu_2}{\beta} e^{-E/R T_p}$$

• Solving the above equations with β and Tp as inputs give the activation energy

TDS spectra: 1st Order


- The maximum temperature T_{max} , is independent of the initial surface coverage
- The remaining coverage on the surface is negligible when the pressure is P_{max} 10
- The desorption peak is not symmetric

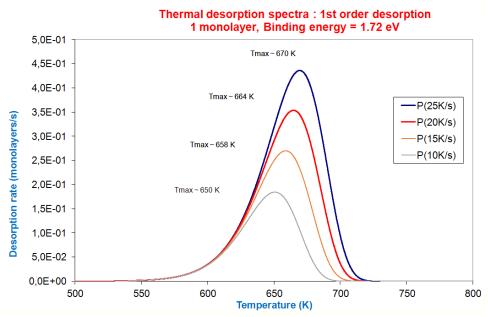

TDS spectra: 2nd Order

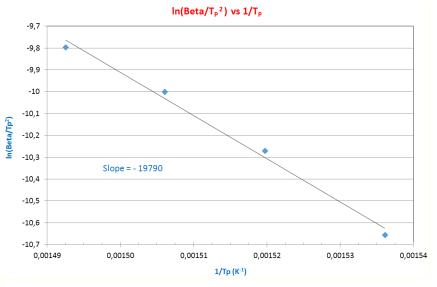
- The maximum temperature is dependent of the initial surface coverage
- The remaining coverage on the surface is negligeable when the pressure is 0.
- The desorption peak is symmetric

TDS spectra: 3rd Order

- The maximum temperature is dependent of the initial surface coverage
- The remaining coverage on the surface is negligible when the pressure is 0.
- The desorption peak is not symmetric and exhibit a tail

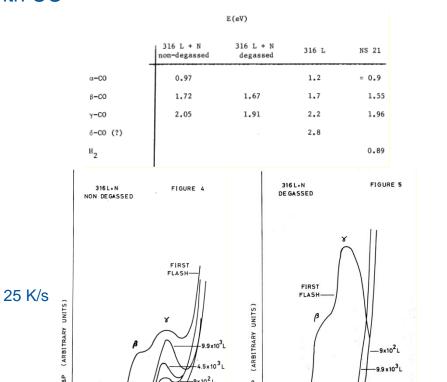
Evaluation of the activation energy


Measure with several heating rates

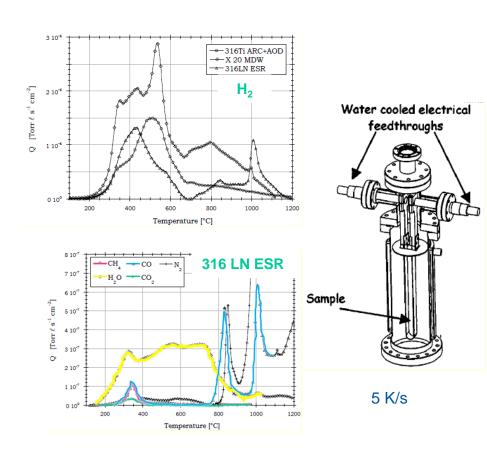

• First order $\frac{E}{R T_p^2} = \frac{v_1}{\beta} e^{-E/R T_p}$

Taking natural log and rearranging

$$ln\left(\frac{\beta}{{T_p}^2}\right) = -\frac{E}{R T_p} + ln\left(\frac{v_1 R}{E}\right)$$


Plot In(β/T_p²) vs 1/T_p gives a straight line with slope proportional to E

Some results of TDS


- The binding energy of CO range from 0.9 to 2.8 eV
- Vacuum fired material cannot be repopulated with CO

A.G. Mathewson et al, Proc. 7th Int. Vac. Congr, Vienna, 1977

660 760

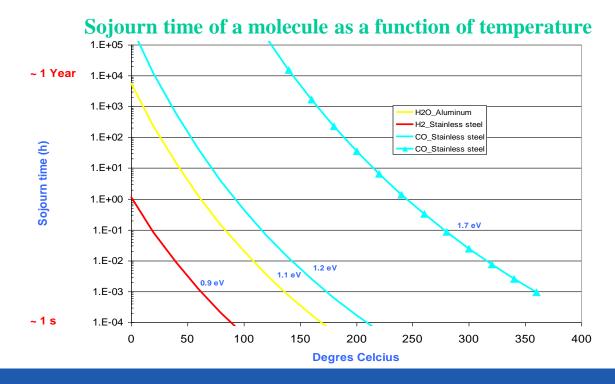
- 200°C bakeout
- H₂ is desorbed at different temperature
- H₂O is still present

JP Bacher et al, JVSTA 21 Jan/Feb 2003, 167

160 260 360 460 560

Sojourn time

- This is the characteristic time for a first order desorption process
- The sojourn time (residence time) of a molecule on a surface is a function of the desorption energy, Ed, and the surface temperature, T:


$$\tau = \tau_0 \, e^{\left(\frac{E_D}{k \, T}\right)}$$

- With $\tau 0$ the oscillation period of the molecules on the surface $\sim 10^{-13}$ s.
- The inverse of the sojourn time reflects the probability of desorption
- Strongly bound molecules have long residence time
- Increasing the temperature decrease the residence time
- Decreasing the temperature, increase the residence time

H₂O - Sojourn time

- At room temperature, the sojourn time of water on the surface is very large ~ 1 week
 - The surface coverage of water is therefore reduced by 1/e in a week
- Water desorption is dominating the pumping process and several months are needed to evacuated fully the water adsorbed on the surface
- Water originates from previously adsorbed molecules and also from reaction with oxides

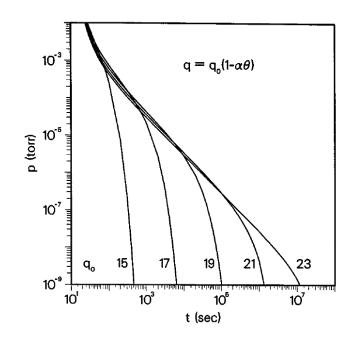
 $Fe_xO_y+2H \rightarrow Fe+H_2O$

2. Outgassing

2.1 Water outgassing

Water outgassing

It is observed that the desorption of water follows a law of the form, with a ~ 1:

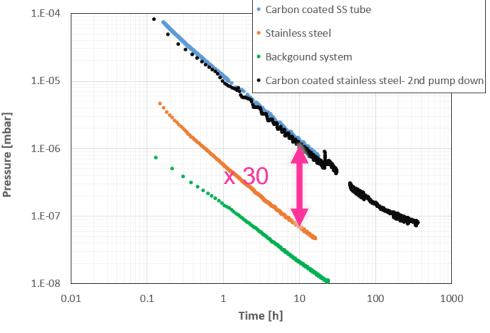

$$q(t) = q_0 t^{-a}$$

In practical units

$$q(t) = \frac{3 \ 10^{-9}}{t \ [h]} mbar. l. s. cm^{-2}$$

- Model of Redhead:
 - Desorption/adsorption is assumed to be reversible
 - The surface coverage can be expressed as a function of pressure by a suitable isotherm
 - Assumes a Tempkin isotherm with several possible adsorption energies, q_i, due to the complexity of the technical surface (15-23 kcal/mole *i.e.* 0.6 1 eV)

$$P(t) = \frac{\theta_m RT V/S}{GV(q_0 - q_1)} t^{-1}$$


P.A. Redhead, J. Vac. Sci. Technol. A 13(2), Mar/Apr 1995

Impact of roughness

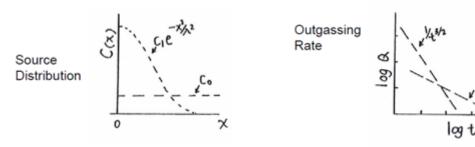
• Case of unbaked a-C coated stainless steel tube, 450-500 nm thick:

Mass spectrum is water dominated ~ x 30 unbaked stainless steel 2nd pump down very similar to 1st one

After 10h pumping: Stainless steel = 2 10⁻¹⁰ mbar.l/s/cm² a-C coating = 6 10⁻⁹ mbar.l/s/cm²

Courtesy I. Wevers

The amount of water chemisorbed on the surface increases when increasing the surface roughness


• Mechanical polishing or electropolishing are used to reduce the outgassing rate of materials

Water outgassing & exposition to water

$$Q(t) = Q_0 t^{-a} = \frac{q_1}{t^{3/2}} + \frac{q_2}{t^{1/2}}$$

- The exponent, a, varies with the quantity of water exposed:
- Large water exposure (17 ML): 1.3
- ambiant air (8L): 1
- low water exposure (0.02 ML): 0.65
- The observation can be modeled by the superposition of:
 - a water surface concentration => a ~ 3/2
 - a water bulk concentration => a ~ 1/2

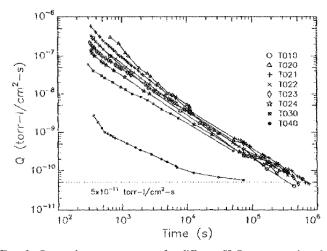
F. Dylla, CAS 2006 & J. Vac. Sci. Technol. A 11(4), Jul/Aug 1993

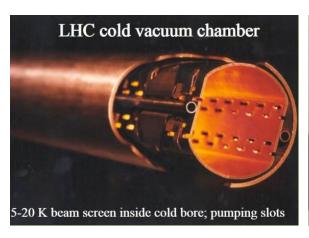
Venting with dry N2 reduces pump down times

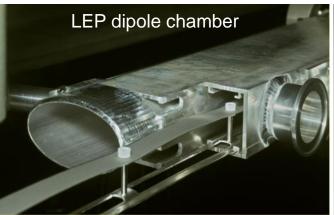
TABLE I. H₂O absorption/desorption data for various venting conditions of the stainless-steel (304) test chamber.^a

	H ₂ O absorbed (ML)	H ₂ O exposed (ML)	$Q = Q_{10}/t^{\alpha}$		$Q = q_1/t^{3/2} + q_0/t^{1/2}$			
Trial			$Q_{10} \times 10^4$	α	$q_1 \times 10^3$	$q_0 \times 10^8$)	Venting gases	
T010	7.8		2.67	1.22	1.96	3.73	Ambient air	
T020	16.8	600	8.21	1.30	4.23	3.86	Controlled	
T021	9.2	400	3.12	1.18	3.15	5.86	mixture of	
T022	7.2	200	2.36	1.19	2.11	6.11	H ₂ O and N ₂	
T023	3.6	100	0.87	1.09	1.55	6.33		
T024	2.3	10	0.52	1.07	0.86	5.89		
T030	0.7		0.12	0.96	0.29	14.0	N_2 gas (> 10 ppm H_2O)	
T040	0.017		5.07 × 10 ⁴	0.65	8.91×10^{-2}	1.05	Highly dry N ₂ gas	

^{*}Note: The unit for the outgassing rate (Q) is (Torr ℓ/cm^2 s) and the unit of time (t) is (s).




FIG. 2. Outgassing measurements for different H_2O exposures in a log $\{Q\}$ vs $\log(t)$ plot. (See Table I for key to trial numbers, T010-T040.)


Typical design value of outgassing rates

- The outgassing rate of unbaked surfaces is dominated by H₂0.
- For metallic surfaces, unbaked after 10h (or 100h tbc) of pumping (Torr.l.s⁻¹.cm⁻²)

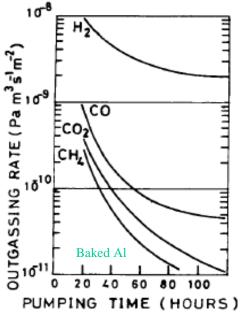
Gas	Al	Cu	St. Steel	Ве
H ₂	7 10-12	1.4 10-11	7 10-12	1.4 10-11
CH ₄	5 10 ⁻¹³	5 10 ⁻¹³	5 10 ⁻¹³	1 10-12
H ₂ O	3 10-10	3 10-10	3 10-10	6 10-10
CO	5 10-12	1 10-12	5 10-12	1 10-11
CO ₂	5 10 ⁻¹³	2.5 10 ⁻¹³	5 10 ⁻¹³	1 10-12

A.G. Mathewson et al. in Handbook of Accelerator Physics and Engineering, World Scientific, 1998

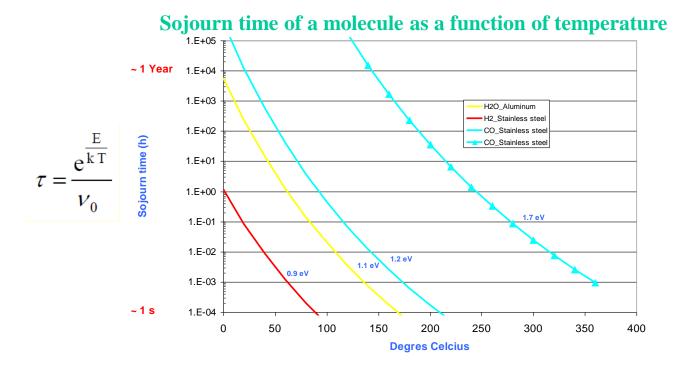
2.2 Bake-out

Sojourn time at high temperature

$$\tau = \frac{e^{\frac{E}{kT}}}{\nu_0}$$


- The sojourn time decrease strongly with increasing temperature
- Heating the material allows a degassing of molecules with binding energies < 2 eV

E(eV)	120°C	200°C	300°C	400°C
0.9	4 10 ⁻² s	4 10 ⁻⁴ s	8 10 ⁻⁵ s	6 10 ⁻⁷ s
1.1	13 s	5 10 ⁻² s	5 10 ⁻⁴ s	2 10 ⁻⁵ s
1.7	20 years	1.5 days	88 s	0.5 s
2.0	1 10 ⁵ years	6 years	10h	95 s
2.8	3 10 ¹⁵ years	2 10 ⁹ years	1 10 ⁴ years	3 years


- Molecules with larger binding energies than 1.7-2 eV will not be depleted by a bake-out
 - → those molecules will be available for subsequent desorption by e.g. ion bombardment

In Situ Bake Out

• A bake-out above 150 degrees increase the desorption rate of H₂O and reduce the H₂O sojourn time in such a way that H₂ become the dominant gas

A.G. Mathewson *et al*. J.Vac.Sci. 7(1), Jan/Fev 1989, 77-82

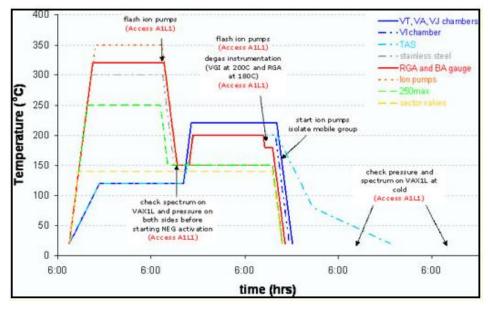
Material for bakeout

Collars

thermocouples

bakeout jackets

racks


heating tape



Storage area

Bakeout systems

"Combined" sector

Both beams circulates in the same beam pipe

Amount of gas removed after a bake-out

After a laboratory bake-out of a stainless steel chamber at 200°C for 20 h

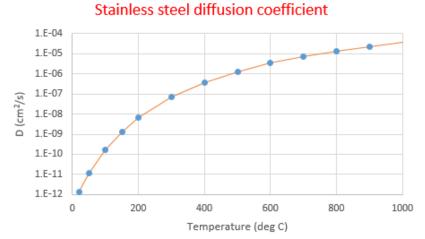
Gas species	$\mathbf{H_2}$	CH ₄	H_2O	CO	CO_2	Total
Molecule.cm ⁻² x 10 ¹⁵	11	0.7	7	4.4	5.7	28.8

C. Herbeaux et al., J. Vac. Sci. Technol. A 17(2), Mar/Apr 1999, 635

Several monolayers of gas are removed from the vacuum system during a bake out

Diffusion

• The diffusion coefficient is a function of the diffusion energy and temperature:

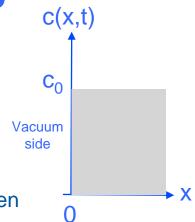

$$D(T) = D_o e^{-E_{diff}/kT}$$

• In 304L, 316L stainless steel:

TºC	20	900	$D_0 = 5.8$
D [cm ² /s]	1.4 10 ⁻¹²	2.3 10-5	$E_{diff} = 0.5$

 $D_o = 5.8 \ 10^{-3} \ cm^2/s$ $E_{diff} = 0.558 \ eV$

P. Tison, Le Vide, 264, Dec 1992, 377


- The hydrogen diffusion in materials is govern by Fick Laws:
 - 1st Law: The gaseous flux, q, is equal to the production of the diffusion coefficient, D, by the gradient of hydrogen concentration
- $q(x,t) = -D \frac{\partial c(x,t)}{\partial x}$

• 2nd Law: The time variation of the hydrogen concentration is equal to the product of the diffusion coefficient by the second derivative of the hydrogen concentration in the solid

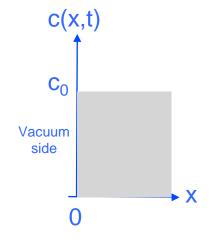
$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}$$

Diffusion in a semi-infinite slab

- Assume a stainless steel slab of infinite thickness with a uniform initial concentration along the slab at t=0 *i.e.* $c(x,0) = c_0$
- For t>0, the pumping is started in such a way the diffused hydrogen is evacuated from the surface *i.e.* c(0,t)=0
- This is the case of a vacuum chamber under pumping
- Solving the 2nd Fick law with these boundary conditions gives for the hydrogen concentration:

$$c(x,t) = \frac{2c_o}{\sqrt{\pi}} \int_0^{\frac{x}{2}\sqrt{Dt}} e^{-y^2} dy = c_o \operatorname{erf}\left(\frac{x}{2}\sqrt{Dt}\right) \qquad \text{with:} \quad \operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-y^2} dy$$

• The hydrogen outgassing rate, q, after a pumping time, t, can be derived from the 1st Fick law:

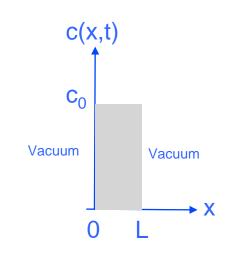

$$q(t) = D\left(\frac{\partial c(x,t)}{\partial x}\right)_{x=0} = c_o \sqrt{\frac{D}{\pi}} \frac{1}{\sqrt{t}} \propto \sqrt{D} t^{-1/2}$$

The outgassing rate varies inversely with the square root of the pumping time

R.J. Elsey, Vacuum 25, 7 (1975), 299

• The total amount of gas desorbed from the surface at time t is:

$$\int_0^t q(t)dt = c_o \sqrt{\frac{2}{\pi}} \sqrt{Dt} \propto \sqrt{t}$$

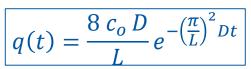


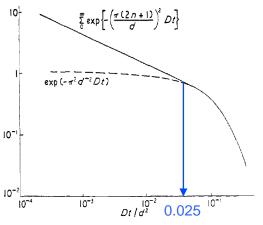
R.J. Elsey, Vacuum 25, 7 (1975), 299

Diffusion in a finite slab

- Assume a stainless steel slab of thickness, L, with a uniform initial concentration along the slab at t=0 i.e. $c(x,0) = c_0$
- For t>0, the pumping is started in such a way the diffused hydrogen is evacuated from the surface i.e. c(0,t)=0 and c(L,t)=0
- This is the case of a wall totally enclosed in a vacuum system
- Solving the 2nd Fick law with these boundary conditions gives:

$$c(x,t) = c_o \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} sin\left(\frac{2n+1}{L} \pi x\right) e^{-\left(\frac{\pi(2n+1)}{L}\right)^2 Dt}$$




• The hydrogen outgassing rate from both surfaces, q, after a pumping time, t, can be derived from the 1st Fick law:

$$q(t) = 2D\left(\frac{\partial c(x,t)}{\partial x}\right)_{x=0} = \frac{8c_0D}{L}\sum_{n=0}^{\infty} e^{-\left(\frac{\pi(2n+1)}{L}\right)^2Dt}$$

when: Dt/L² > 0.025, all values above n>0 are negligible leading to: □

$$c(x,t) = c_o \frac{4}{\pi} \sin\left(\frac{\pi}{L}x\right) e^{-\left(\frac{\pi}{L}\right)^2 Dt} \qquad q(t) = \frac{8 c_o D}{L} e^{-\left(\frac{\pi}{L}\right)^2 Dt}$$

R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459

Diffusion in a finite slab: bake-out

• Following an in-situ bake out at temperature T_{BO} for a long enough time duration t_{BO} , the outgassing rate at room temperature (RT) of one face of the slab is constant and equal to:

$$q_{RT}(t) = \frac{4 c_o D(T_{RT})}{L} e^{-\left(\frac{\pi}{L}\right)^2 D(T_{BO}) t_{BO}} \times e^{-\left(\frac{\pi}{L}\right)^2 D(T_{RT}) t} \approx \frac{4 c_o D(T_{RT})}{L} e^{-\left(\frac{\pi}{L}\right)^2 D(T_{BO}) t_{BO}}$$

In practice, long enough duration time means a couple of hours:

$$\frac{D(T_{BO})\ t_{BO}}{L^2} > 0.025$$

L (mm)	200°C	250ºC	300°C
1	11	3	1
2	42	11	4

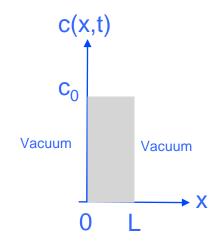
• In practice, increasing the bake out temperature is more efficient than increasing the bake out duration time:

Table of equivalences between bake out temperature

200°C	250°C	300°C
1 day	7h	2h
4 days	1 day	8h
10 days	2 days	1 day

R.J. Elsey, Vacuum 25, 7 (1975), 299

R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459



Diffusion in a finite slab

Complementary information

• The total amount of gas desorbed from the surface at time t is:

$$\int_0^t q(t)dt = c_o D \left(1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{\sqrt{2n+1}} e^{-\left(\frac{\pi(2n+1)}{L}\right)^2 D t} \right)$$

R.J. Elsey, Vacuum 25, 7 (1975), 299

R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459

Typical design value outgassing rates

- The outgassing rate of baked surfaces is dominated by H₂
- Metal, baked (24 h at 150°C for Cu and Al, 300°C for SS) after 50h of pumping (Torr.l.s⁻¹.cm⁻²)

Gas	Al	Cu	St. Steel	Ве
H ₂	5 10 ⁻¹³	1 10-12	5 10 ⁻¹³	1 10-12
CH ₄	5 10 ⁻¹⁵	5 10 ⁻¹⁵	5 10 ⁻¹⁵	1 10-14
H ₂ O	1 10-14	<1 10 ⁻¹⁵	1 10-14	2 10-14
CO	1 10-14	1 10-14	1 10-14	2 10-14
CO ₂	1 10-14	5 10 ⁻¹⁵	1 10-14	2 10-14

A.G. Mathewson et al. in Handbook of Accelerator Physics and Engineering, World Scientific, 1998

Outgassing rate of baked material are 2-3 order of magnitude less than unbaked materials

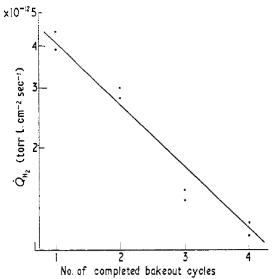
CMS End cap chamber

Copper tubes

Successive bakeout of a finite slab

• n succesive bakeout at T_{BO} of long enough time duration t_{BO} give the following outgassing rate

at room temperature:


$$q_n(t) = \frac{4 c_o D(T_{RT})}{L} e^{-n \left(\frac{\pi}{L}\right)^2 D(T_{BO}) t_{BO}}$$

R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459

- A plot In(q) vs number of bakeout cycles is linear with a slope proportional to the diffusion coef.
- So each bakeout reduce the outgassing at room temperature by a constant value:


$$\frac{q_{n+1}(t)}{q_n(t)} = e^{\left(\frac{\pi}{L}\right)^2 D(T_{BO})t_{BO}}$$

Stainless steel sample: a reduction of x1.3-1.5 after each cycle

R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459

LHC collimator: a reduction of x1.3 after each cycle

J. Kamiya et al., Vacuum 85 (2011) 1178-1181

Outgassing vs temperature

Due to the diffusion term, the outgassing rate of a baked material follows an Arrhenius law:

$$q(T) = q_o e^{-\frac{E_a}{kT}}$$

A plot In(q) vs 1/T gives a straight line which slope is proportional to the activation energy

Baked stainless steel:


$$E_a \sim 0.5 \text{ eV}$$

°C	30	50	100	150
$\frac{q}{q_{RT}}$	2	5	70	450

Vacuum fired baked s. steel:

$$E_a \sim 0.4 \text{ eV}$$

°C	30	50	100	150
$\frac{q}{q_{DT}}$	2	5	30	150

Courtesy P. Chiggiato, TE-VSC

Laboratory measurements are sensitive to day & night temperature!

2.3 Hydrogen reduction

Vacuum firing

- A method to reduce hydrogen content in stainless steel (316 series)
- Outgassing the material in performed in an oven at 950°C under vacuum (<10⁻⁵ mbar) for 2 h
- The high temperature allows to enhance hydrogen diffusion

Courtesy P. Chiggiato, TE-VSC

CERN large furnace

Length: 6 m

Diameter: 1 m

Maximum charge weight: 1000 Kg

Ultimate pressure: 10⁻⁹ mbar

P at the end of the treatment: high 10⁻⁶ mbar range

Impact on structural properties

- Under the heat surface treatment 304 series stainless steel are recrystallized due to carbide precipitation at the grain boundaries
 - → cannot be used as material for flanges (leak at the level of the knife)!
 - → low carbon and low carbon nitrogen alloys stainless steel are used
- The hardness of the material is not modified
- The surface is enriched in Fe due to the Cr evaporation during the treatment
- When the material is bring back to atmospheric pressure, it keeps the memory of the treatment since the hydrogen diffusion at room temperature is small
 - → A single treatment is needed in the life of the material

Table 1. Deduced hydrogen concentration in the samples from the nuclear resonance analysis (NRA) and an extraction method	đ
---	---

Treatment	Time(h)	Temperature (°C)	NRA Hydrogen conc. (At/cm ⁻³)	Extraction Hydrogen conc. (At/cm ⁻³)
Untreated			1.70(25) · 1019	5.17(5) · 10 ¹⁸
Air baked	2	400	1.37(22) - 1019	1.56(5) · 1018
Air baked	4	400	$8.2(17) \cdot 10^{18}$	$8.0(5) \cdot 10^{17}$
Air baked	8	400	8.2(17) · 10 ¹⁸	4.2(5) · 10 ¹⁷
Air baked	16	400	7.8(17) - 1018	$4.2(5) \cdot 10^{17}$
Air baked	24	400	$6.5(16) \cdot 10^{18}$	$3.3(5) \cdot 10^{17}$
Vacuum				
Fired	1	950	$1.3(7) \cdot 10^{18}$	$4.2(5) \cdot 10^{17}$

 $c \sim 2 \cdot 10^{19} \text{ H/cm}^3 \text{ reduced to } 10^{18} \text{ H/cm}^3$

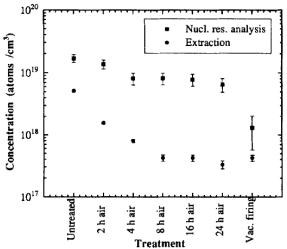
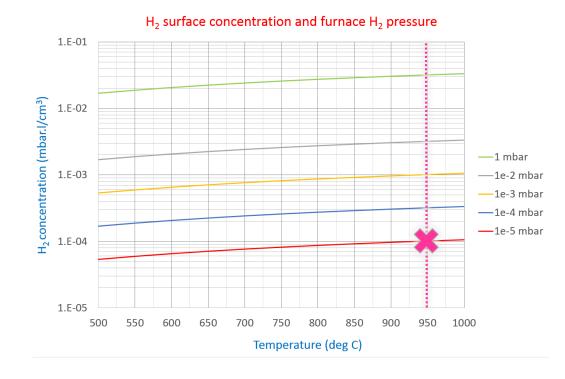


Figure 1. The average hydrogen concentration in the $0.05-0.7 \mu m$ depth range of the virgin, air baked and the vacuum fired samples. The results from the extraction method are also included.

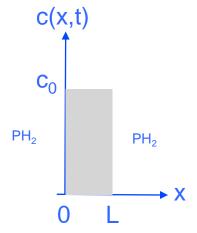
L. Westerberg et al., Vacuum 48 (1997) 771-773


Hydrogen Solubility

- During the thermal process, the hydrogen can dissolve into the material, in particular at high temperature
- The hydrogen solubility in stainless steel increase with increasing temperature and exposed pressure according to the Seivert's law:

$$c_F = 3\sqrt{P} e^{-\frac{E_S}{kT}}$$

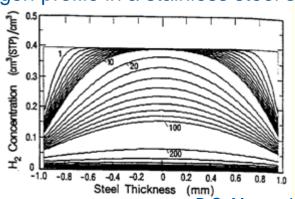
With $E_s = 0.115$ eV, P in bar and c_F in mbar.l/cm³

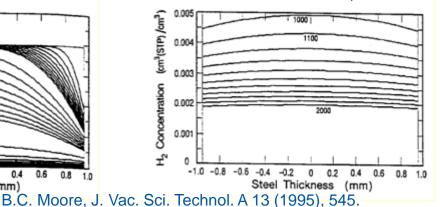

- A furnace pressure < 1 mbar is needed to reduce the "natural" H surface concentration
- At 10^{-5} mbar and 950° C, the minimum H_2 concentration is 10^{-4} mbar.l/cm³ *i.e.* $\sim 5 \cdot 10^{15}$ H/cm³
- 3 to 4 order magnitude less than in "natural" stainless steel!

Diffusion in a finite slab with residual H₂ pressure

- Assume a stainless steel slab of thickness, L, with a uniform initial concentration along the slab at t=0 *i.e.* $c(x,0) = c_0$
- For t>0, the pumping is started in such a way the diffused hydrogen is in equilibrium with the oven pressure *i.e.* $c(0,t)=c_F$ and $c(L,t)=c_F$
- Solving the 2nd Fick law with these boundary conditions gives:

$$c(x,t) \approx c_F + (c_o - c_F) \frac{4}{\pi} sin\left(\frac{1}{L} \pi x\right) e^{-\left(\frac{\pi}{L}\right)^2 Dt}$$




• After the vacuum firing in the furnace at temperature T_F for a duration t_F , the hydrogen concentration c_H , in the solid is:

R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459

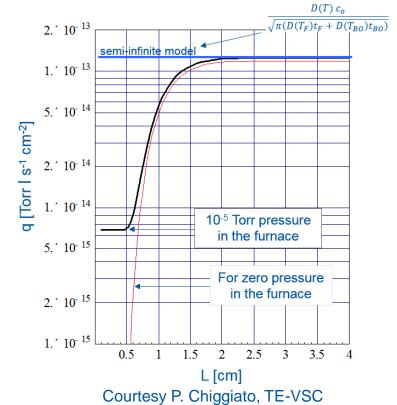
$$c_H(x, t_F) \approx c_F + (c_o - c_F) c_o \frac{4}{\pi} sin \left(\frac{1}{L} \pi x\right) e^{-\left(\frac{\pi}{L}\right)^2 D(T_F) t_F}$$

Hydrogen profile in a stainless steel sheet as a function of time (in second)

Subsequent bakeouts following vacuum firing

 As previously, taking into account the achieved hydrogen surface concentration following the vacuum firing, the hydrogen outgassing rate after n successive bakeout at $q(t) = D\left(\frac{\partial c(x,t)}{\partial x}\right)$ temperature T_{BO} and duration t_{BO} is obtained from the 1st Fick Law:

$$q_{n,F}(t) = \left[c_F + (c_O - c_F) e^{-\left(\frac{\pi}{L}\right)^2 D(T_F) t_F}\right] \frac{4 D(T_{RT})}{L} e^{-n\left(\frac{\pi}{L}\right)^2 D(T_{BO}) t_{BO}}$$


R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459

• For thin sheets, the initial content of hydrogen is fully removed. The final outgassing is defined by the H₂ pressure in the furnace:

 $q \sim 5 \cdot 10^{-15} \text{ mbar.l/cm}^2$

 For thick slab, the pressure in the furnace as limited influence:

 $q \sim 10^{-13} \text{ mbar.l/cm}^2$



Stainless steel 316 LN

- 1.5 mm thick sheet held at 300°C for 24 h, rate measured 120 h after then end of bake-out
- A reduction of ~ 1.8 between each cycle

B. Versolatto, N. Hilleret, CERN Vacuum Technical Note 2002

Diffusion barrier: air baking

- The hydrogen diffusion is reduced by a diffusion barrier created during the air bake-out
- Stainless steel tube:
 8 m length, 1.2 m diameter, 2mm thick
- Air fired at 400 deg for 38h
- Then baked at 150 deg for 7 days
- Oxide thickness x 10
- $q = 10^{-15} \text{ mbar.l/s/cm}^2$
- Diffusion energy increased from 0.5 to 0.6 eV
- Low cost!

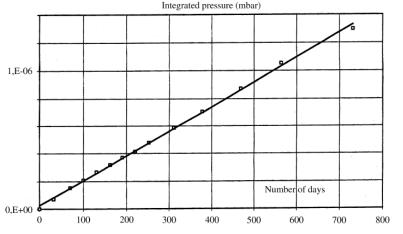
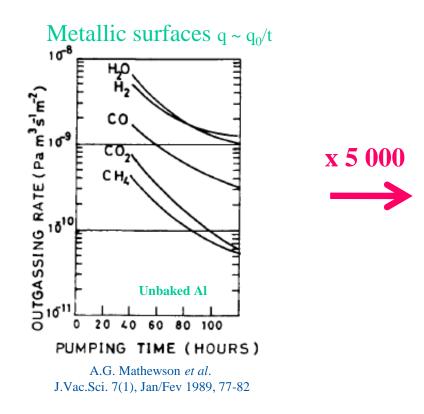


Fig. 1. Hydrogen accumulation over a long period of time in the Orsay corrugated prototype tube for VIRGO.

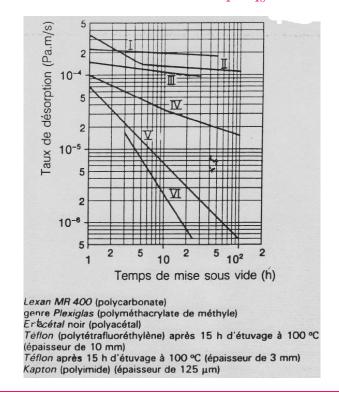
Outgassing performance of an industrial prototype tube for the Virgo antenna, P. Marin et al., Vacuum 49 (1998) 309

Diffusion barrier: coating?

- The hydrogen diffusion is reduced by a diffusion barrier created by a coating e.g. TiN
- At least 1 µm film thickness
- The film reduce the hydrogen permeation
- Extrapolation from coupons measurements predicts 10⁻¹⁴ Pa.m s⁻¹ (10⁻¹⁷ mbar.l/s/cm²)
- 3D object: difficulties to realise a uniform coating without pinholes which compromised the observed performance on a tube or vacuum chamber
- Reduction of 2 orders of magnitude of the hydrogen outgassing rate:
 - Uncoated chamber: 10⁻¹⁰ mbar.l/s/cm²
 - TiN coated chamber: 7 10⁻¹³ mbar.l/s/cm²



TiN thin film on stainless steel for extremely high vacuum material, K. Saito et al., J. Vac. Sci. Technol. A 13(3) May/Jun 1995, 556


2.4 Other materials

Outgassing of plastics

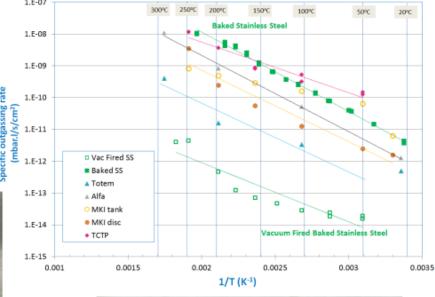
- Plastic material are highly porous and contains much more water than metalic surface
- Their outgassing rate is limited by a diffusion process

Plastic surfaces $q \sim q_0/\sqrt{t}$

Good Vacuum Design:

Use ONLY metallic surfaces and reduce to ZERO the amount of plastics

Outgassing of ferrites


Complementary information

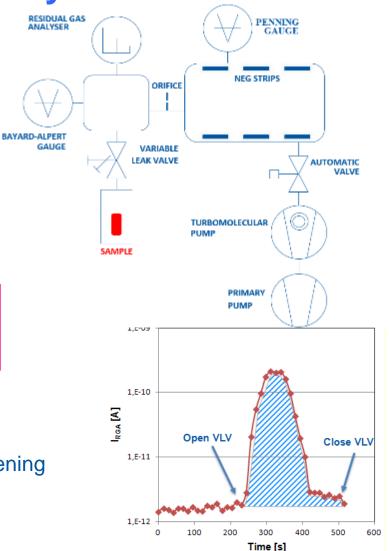
• Ferrites inserted in devices (XRP, TCSP, TCTP, MKI, TDI ...) can heat up during operation => increase of outgassing rate

- TT2-111R, CMD5005 and CMD10
- Treated at 400°C 1000°C

°C	50	100	150	200
$\frac{q}{q_{RT}}$	5	40	150	600

3. Qualification of materials

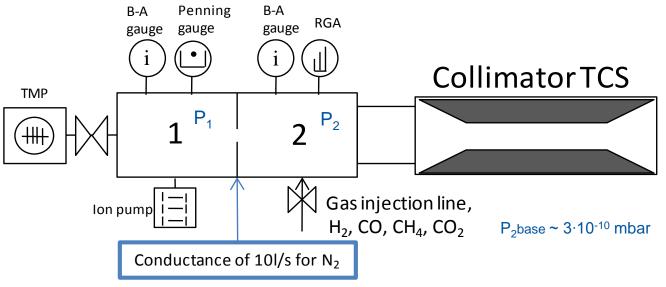
Outgassing measurement by Accumulation


- A sample is placed in an evacuated vessel and the leak valve closed
- Gas accumulates into the sample chamber
- After some accumulation time t_{acc}, the leak valve is opened and the mass spectra measured
- The leak valve is closed again and the procedure repeated every 1 to 72 h

$$Q(\Delta t_{ac}) = \frac{S_i \int_0^{\Delta t} \alpha_i \, I_{RGA}(t) \, dt}{\Delta t_{ac}}$$

• With:

 S_i the pumping speed for gas, i α the RGA calibration factor for gas, i I_{RGA} the current recorded during the leak valve opening Δt the RGA recording duration Δt_{ac} the accumulation time


Sensitive measurement

Courtesy I. Wevers

Outgassing measurement - Throughput

J. Kamiya et al., Vacuum 85 (2011) 1178-1181

- The component is connected to a pumping system via a conductance, C
- Background is determined by a blank run
- The outgassing rate is

$$Q_{N2eq} = C (P_2 - P_1)$$

In N₂ equivalent no RGA is needed!

$$Q_{i} = S_{eff}P_{2,i} = C_{i} (P_{2,i} - P_{1,i})$$

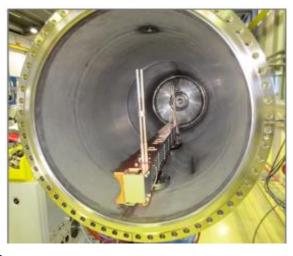
$$S_{eff} = \frac{C_{i} (P_{2,i} - P_{1,i})}{P_{2,i}} = C_{i} (1 - \frac{P_{1}}{P_{2}})$$

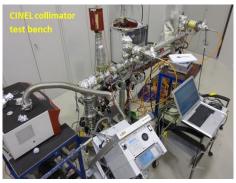
$$Q_{i} = C_{i} \alpha_{i} I_{i} (1 - \frac{P_{1}}{P_{2}})$$

 α the RGA calibration factor for gas, i I_i the RGA current for gas I c_i the conductance for gas i

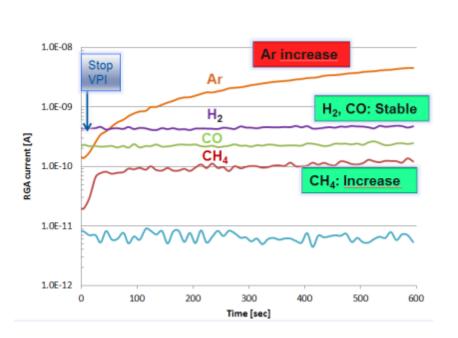
Vacuum Acceptance Test Laboratory

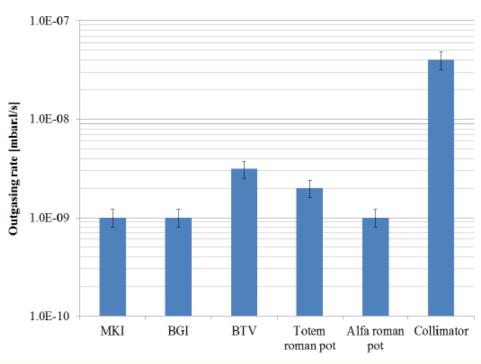
Example of tested parts





Example of tested parts





Vacuum Acceptance Tests

- Prior LS1 installation ~1200 LSS's equipments have been baked and validated at the surface :
 - functional test
 - pump down
 - leak detection
 - residual gas composition
 - total outgassing rate

Identification of virtual leaks by accumulation test

Outgassing rate of some LHC components

G. Cattenoz et al., Proceeding of IPAC'14, Dresden, Germany

Cleaning Methods

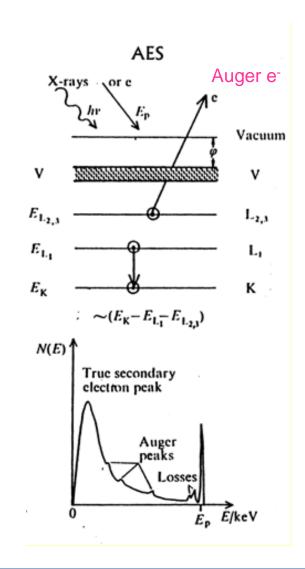
- Chemical cleaning is used to remove gross contamination such as grease, oil, finger prints.
- It can be needed to attack the surface with acids to etch the oxide layer
- Passivation can be helpful to produce a "stable" oxide layer on the surface
- Example of CERN LHC beam screens :

Degreasing with an alkaline detergent at 50°C in an ultrasonic bath

Running tap water rinse

Cold demineralised water rinse by immersion

Rinse with alcohol


Dry with ambient air

Surface characterisation – AES

- Auger Electron Spectroscopy is surface sensitive (nm?)
- Hydrogen and helium are not detected
- An incoming electron/photon eject an electron from a core level of an atom to create a hole
- This hole is filled by an electron falling from an higher energy level
- The energy released is transferred to a 3rd electron *i.e.* the Auger electron, which is ejected into the vacuum
- Measuring the electron energy of the emitted Auger electron allows to do a chemical analysis of the solid
- The e⁻ gun source might induce surface modification
- Auger lines might overlap
- spot: 0.01x0.01 to 0.1x0.1 mm²
- Detection limit ~10¹⁴ atoms/cm²

C content after chemical cleaning and vacuum firing

• An in-situ bakeout after a vacuum firing produce a much cleaner surface than a baked surface

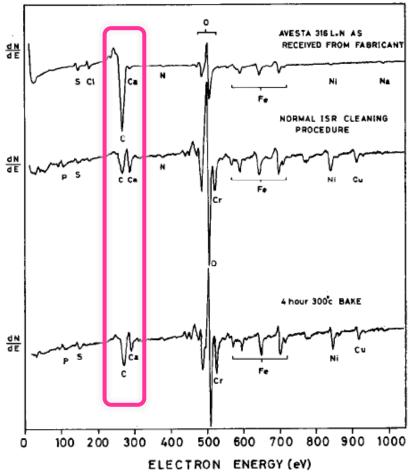


Figure 1. Auger spectra from a 316 L + N stainless steel specimen, as received (top) after solvent cleaning (centre) and after baking at 300°C for 4 h (bottom).

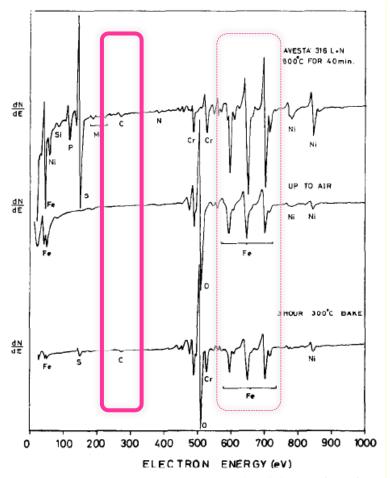


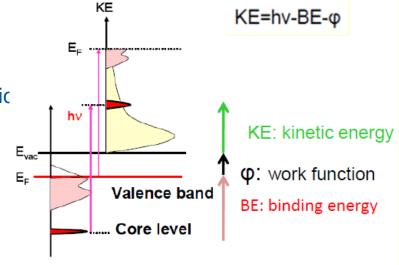
Figure 3. Auger spectra from a 316 L + N stainless steel specimen after heating to 800° C for 40 min *in vacuo* (top), after exposing to air (centre) and after a 3 h 300° C bake (bottom).

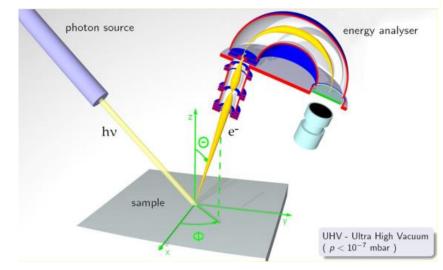
The surface cleanliness of 316 LN stainless steel studied by SIMS and AES, A. G. Mathewson, Vacuum 24 (1974) 505

Surface characterisation – XPS

- X-ray Photoelectron Spectroscopy is surface sensitive (1- 3 nm)
- Hydrogen and helium are not detected
- An X-ray photon ejects an electron i.e. a photoelectron from a core level of an atom to create a hole
- The energy of the ejected photoelectron is characteristic of the emitting species
- XPS is more sensitive than AES and provides rich information on the chemical state of the emitter.

Detection limit ~10¹⁴ atoms/cm²

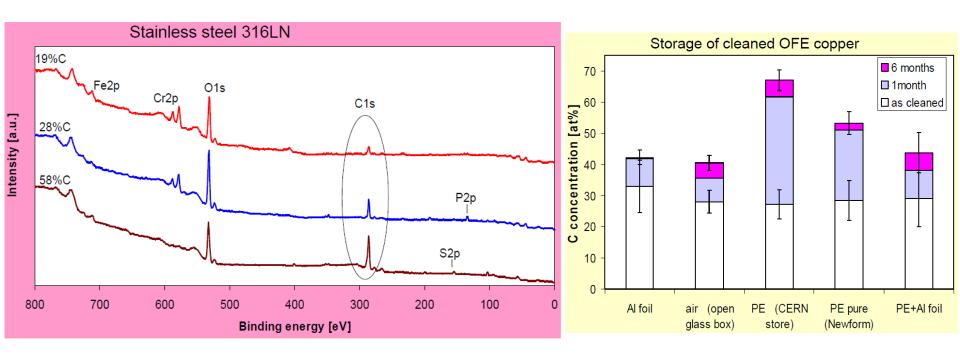

X-Ray Sources:


- AI: $E_{exc} = 1486.74 \text{ eV}$; $P_{max} = 400 \text{ W}$
- Ag: E_{exc} = 2984.3 eV; P_{max} = 600 W

 → spot size on the sample: 1x3.5 mm²

Synchrotron radiation based X-Ray Sources:

- Monochromatic photon energy
- From IR to hard X-rays
- High flux



Cleanliness evaluation

- 40% atoms of C on stainless steel is an upper acceptable limit
- Thickness of the layer ~ 0.5 nm
- Cleanliness is monitored by integrating the C1s peak

The assessment of metal surface cleanliness by XPS, C. Scheueurlein and M. Taborelli, Appl. Surf. Sci 252 (2006) 4279

Lecture 2 summary

- The pressure in a vacuum vessel is determined by the outgassing of the surface
- The sojourn time of a molecule on a surface is a strong function of its biding energy and the temperature of the surface
- Unbaked materials are dominated by water outgassing. The desorption rate is 1/t
- Baked material are dominated by hydrogen outgassing. The desorption rate is 1/√t
- Several methods are available to decrease the outgassing rate of the materials (vacuum firing, chemical cleaning etc.)
- Components must be characterised in the laboratory with appropriate tools to guarantee a good performance in a machine

Some References

- Physics of outgassing, JL de Segovia, CAS, CERN 99-05
- Thermal outgassing, K. Jousten, CAS, CERN 99-05
- Water outgassing, H.F. Dylla, CAS Vacuum in Accelerators, May 2006
- Thermal outgassing, P. Chiggiato, CAS Vacuum in Accelerators, May 2006
- Reduction of stainless-steel outgassing in ultra-high vacuum, R. Calder, G. Lewin, Br J Appl. Phys, 18, 1967, 1459
- R.J. Elsey, Vacuum 25, 7 (1975), 299
- Making it Work, A. G. Mathewson, CAS, CERN 92-03
- Cleaning for vacuum services, CAS, CERN 99-05
- Cleaning and surface properties, M. Taborelli, CAS, CERN 2007-003
- The physical basis of ultra-high vacuum, P.A. Redhead, J.P. Hobson, E.V. Kornelsen. AVS.
- Scientific foundations of vacuum technique, S. Dushman, J.M Lafferty. J. Wiley & sons. Elsevier Science.
- Les calculs de la technique du vide, J. Delafosse, G. Mongodin, G.A. Boutry. Le vide.
- Vacuum Technology, A. Roth. Elsevier Science

Thank you for your attention !!!

