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1.  SELF FIELDS  
 
 

1.1   Introduction 
 Charged particles in a transport channel or in a circular accelerator are confined, guided and 
accelerated by external electromagnetic (e.m.) fields. Acceleration is usually provided by the 
electric field of the RF cavity, while magnetic fields in the dipole magnets are used for guiding the 
beam on the reference trajectory (orbit), in the quadrupoles for the transverse confinement, in the 
sextupoles for the chromaticity correction.  
The motion of a single charge is governed by the Lorentz force through the equation: 

d m0γ
!v( )

dt
=
!
F ext = e

!
E + !v ×

!
B( )  

where m0 is the rest mass, g is the relativistic factor and !v  is the particle velocity. The external 
fields used for the beam transport do not depend on the beam current. With the above equation we 
can in principle calculate the trajectory of the charge moving through any e.m. field. 
 In a real accelerator, however, there is another important source of fields to be considered: the 
beam itself, which circulating inside the pipe produces additional e.m. fields called "self-fields". 
These fields depend on the beam pipe geometry, the surrounding materials, the beam charge and its 
velocity. They are responsible of many phenomena occurring in the beam dynamics: energy loss, 
betatron tunes shift, synchronous phase and tune shift, instabilities. It is customary to divide the 
self-fields in space charge fields and wake-fields. The space charge forces are those generated by 
the charge distribution, including the image currents circulating on the walls of the smooth perfectly 
conducting pipe. The wake fields are produced by the finite conductivity of the walls, resonant 
devices, transitions of the beam pipe. 

 

1.2  Direct space charge forces 
Let us consider a relativistic charge moving with constant velocity v. It is well known that the 
electrostatic field is modified because of the relativistic Lorentz contraction along the direction 
of motion. For an ultra-relativistic charge g®¥ the field lines are confined on a plane 
perpendicular to the direction of motion. In fact, from the Lorentz equations we can derive the 
electric field as function of the coordinates r (distance from the charge) and q (angle with 
respect the motion axis):  
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It is easy to see that for q=p/2, the radial electric field is proportional to the charge energy, 
while for q=0, the electric field vanishes as (energy)-2. 
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It is interesting to calculate the e.m. forces between two ultra-relativistic charges travelling on 
parallel trajectories. The longitudinal force is proportional to the electric field Ez, and vanishes 
as 1/g2, while the transverse force vanishes because electric and magnetic fields effects have 
opposite sign: 
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Fr = q Er − βcBθ( ) =
γqo

4π εor
2 1− β2( ) =

qo
4π εoγr

2   

For g®¥, two charges travelling close by don't see each other.  

In the case of a charge distribution, when g®¥ the electric field lines are perpendicular to the 
direction of motion. The transverse fields intensity can be computed like in the static case, 
applying the Gauss’s and Ampere’s laws: 
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 r 
r3

€ 

z = rcosθ

ρ2 = x2 + y2 = r2 sin2θ



 

Example 1: Compute the transverse space charge forces on an electron inside a relativistic 
cylinder of radius a with a uniform charge density.  
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Inside a rigid cylinder with a uniform charge density, travelling with ultra-relativistic speed, the 
transverse space charge forces vanish as 1/g2. 

 

1.3  Effects of conducting or magnetic screens  
 In an accelerator, the beams travel inside a vacuum pipe generally made of metallic 
material (aluminium, copper, stainless steel, etc.). The pipe goes through the coils of the 
magnets (dipoles, quadrupoles, sextupoles). Its cross section may have a complicated shape, as 
in the case of special devices like RF cavity, kickers, diagnostics and controls; however, most 
part of the beam pipe has a cross section with a simple shape: circular, elliptic or quasi-
rectangular. For the moment we consider only the effect of a smooth pipe on the e.m. fields of 
the beam.  

Before going into this problem, it is necessary to remind the basic features of fields close to 
metallic or magnetic materials. A detailed discussion of the boundary conditions is given in the  
Appendix 1.  
Let us consider a point charge close to a conducting screen. The electrostatic field can be 
derived through the "image method". Since the metallic screen is an equi-potential plane, it can 
be removed provided that a "virtual" charge is introduced such that the potential is constant at 
the position of the screen. 
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A constant current in the free space produces circular magnetic field. If µr»1, the material, even 
in the case of a good conductor, does not affect the field lines. 

 
 

 
 

 
 

 
 

 
 

 
 

However, if the material is of ferromagnetic type, with µr>>1, due to its magnetisation, the 
magnetic field lines are strongly affected, inside and outside the material. In particular a very 
high magnetic permeability makes the tangential magnetic field zero at the boundary so that the 
magnetic field is perpendicular to the surface, just like the electric field lines close to a 
conductor.  
In analogy with the image method for charges close to conducting screens, we get the magnetic 
field, in the region outside the material, as superposition of the fields due to two symmetric 
equal currents flowing in the same direction. It easy to see that these currents make zero the 
tangential component of the magnetic field.  

 
 
As discussed in Appendix 1, the scenario changes when we deal with time-varying fields for 
which it is necessary to compare the wall thickness and the skin depth (region of penetration of 
the e.m. fields) in the conductor. If the fields penetrate and pass through the material, we are 
practically in the static boundary conditions case. Conversely, if the skin depth is very small, 
fields do not penetrate, the electric field lines are perpendicular to the wall, as in the static case, 
while the magnetic field line are tangent to the surface. In this case, the magnetic field lines can 
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be obtained by considering two linear charge distributions with opposite sign, flowing in the 
same direction (opposite charges, opposite currents). 
 

 
 
We are ready now to analyse some simple cases. 

 
CIRCULAR PERFECTLY CONDUCTING PIPE (Beam at center) 

Due to the symmetry, the transverse fields produced by an ultra-relativistic charge inside the 
pipe are the same as in the free space. This implies that for a distribution with cylindrical 
symmetry, in ultra-relativistic regime, there is a cancellation of the electric and magnetic 
forces. Therefore, the uniform beam of Example 1, produces exactly the same forces as in the 
free space. It is interesting to note that this result does not depend on the longitudinal 
distribution of the beam. 

 

Example 2: Compute the fields and the space charge forces produced by a relativistic charged 
cylinder of radius a, moving inside a circular pipe of radius b. Consider a uniform 
radial distribution and a longitudinal linear density l(z). 

                                                                      
Because of the symmetry, the fields are the 
same as in the free space. The transverse fields 
intensity reproduce longitudinally the charge 
density.  

 
 

 
The transverse force on a test charge inside the cylinder is:  
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Exercise 1: Compute the transverse space charge forces for the following longitudinal 
distributions: parabolic, sinusoidal, gaussian. 

I -II



 

Exercise 2: Compute the transverse space charge forces for a bunch with the following 
distribution: 
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PARALLEL PLATES (Beam at center) 

In some cases, the beam pipe cross section is such that we can 
consider only the surfaces closer to the beam, which behave 
like two parallel plates. In this case, we use the image method 
to a charge distribution of radius a between two conducting 
plates 2h apart. By applying the superposition principle we get 
the total image field at a position y inside the beam. 
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Where we have assumed h>>a>y. For d.c. or slowly varying currents, the boundary 
condition imposed by the conducting plates does not affect the magnetic field. As a 
consequence there is no cancellation effect for the fields produced by the "image" 
charges.  

From the divergence equation we derive also the other transverse component: 
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Including also the direct space charge force, we get: 
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Therefore, for g>>1, and for d.c. or slowly varying currents the cancellation effect 
applies only for the direct space charge forces. There is no cancellation of the electric 
and magnetic forces due to the "image" charges. 

 
PARALLEL PLATES (Beam at center, a.c. currents) 

We have seen that close to a conductor the e.m. fields have a different behaviour, 
depending on the skin depth of the material (Appendix 1). Usually, the frequency beam 
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spectrum is quite rich of harmonics, especially for bunched beams. It is convenient to 
decompose the current into a d.c. component, vI l= , for which dw>>Dw, and an a.c. 
component, vI l~~ = , for which dw<< Dw. While the d.c. component of the magnetic field 
does not perceives the presence of the material, its a.c. component is obliged to be 
tangent at the wall. We can see that this current produces a magnetic field able to cancel 
the effect of the electrostatic force. 
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Combining with the direct space charge force, we get for the a.c. component: 
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and analogously: 
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PARALLEL PLATES (Beam at center, d.c. currents, ferromagnetic case) 
  Let us consider now the case where outside the 

metallic pipe, there is a dipole magnet with a gap 
g. The magnetic field produced by the d.c. current 
doesn't see the conducting pipe, while it is 
strongly affected by ferromagnetic material. In 
fact, as seen in the section about the boundary 
conditions, the magnetic field lines must be 
orthogonal to the pole surface. We have also seen 
that the total magnetic field can be obtained by 
considering image currents with the same sign.  
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Proceeding analogously to the section of parallel plates (beam at center), we get: 
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From the relation Ñ×B=0, we get: 

By
im (z, x) ≅ µoβcλ(z)π

2

24πg2
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PARALLEL PLATES (General expression of the force ) 
Taking into account all the boundary conditions for d.c. and a.c. currents, we can write the 
expression of the force as: 
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where l is the total current divided by βc, and l  its d.c. part. We take the sign (+) if u=y, and 
the sign (–) if u=x. 

One finds often the above expression in terms of the “Laslett “ form factors: 
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where the “Laslett “ form factors ε0, ε1 and ε2 can be obtained for several beam pipe 
geometries. For example, for parallel plates we get ε0=1/2, ε1=π2/48, ε2=π2/24. It is interesting 
to note that these forces are anyway linear in the transverse displacement x and y. 
 

 

1.4  Longitudinal forces 
What about the longitudinal forces?   

Using the results of Appendix 2, putting  Es=0 at wall, we get:  
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Thus, the longitudinal force acting on the test charge is positive (negative) in the region with 
negative (positive) density slope. 
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Exercise 3: Compute the longitudinal direct space charge forces for the following longitudinal 
distributions: parabolic, sinusoidal, Gaussian. 

 
2.  BETATRON TUNE SHIFT 

 

We consider a perfectly circular accelerator with radius ρx. The beam circulates inside the beam 
pipe. The transverse single particle motion in the linear regime, is derived from the equation of 
motion. 

 
Including the self field forces in the equation of motion, we have  
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d mγv( )
dt

= F ext  r ( ) + F self  r ( )  

which at constant energy becomes: 
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dv
dt

=
F ext  r ( ) + F self  r ( )

mγ
 

According to the coordinate system of the figure, indicating with r  the charge position and with x 
and y the transverse displacements with respect to the reference trajectory, we write: 
!r = ρ x+x( ) êx + yêy
!v = "xêx + "yêy +ωo ρ x+x( ) êz
!a = ""x −ωo

2 ρ x+x( )"# $%êx + !!yêy + !ωo ρ x+x( )+ 2ωo !x"# $%êz

 

Where the dots mean derivative with respect to time.  

For the motion along x: 

!!x −ωo
2 ρ x+x( ) = 1

mγ
Fx
ext +Fx

self( )  

 which is rewritten with respect to the azimuthal position s=vzt: 

!!x = vz
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=
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We assume now small transverse displacements x with respect to the machine radius rx, so that we 
can linearly expand the above equation into 

!!x −
1
ρ x

+
1
ρx
2 x =

1
m0vz

2γ
Fx
ext +Fx

self( )  

In addition, we have that the external force is due to the magnetic guiding fields. We suppose to 
have only dipoles and quadrupoles, or, equivalently, we expand the external guiding fields in a 
Taylor series up to the quadrupole component 

−Fx
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and recognize that the dipolar magnetic field By0 is responsible of the circular motion along the 
reference trajectory of radius ρx according to the equation 
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we finally obtain 
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which can also be written as 
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where we have introduced the normalized gradient 
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with g the quadrupole gradient in [T/m] and p the charge momentum.  

It is important to note that both the curvature radius and the normalized gradient depend on the 
azimuthal position ‘s’. By using the focusing constant Kx(s) we then should write 

!!x (s)+Kx (s)x(s) =
1

m0vz
2γ
Fx

self (x, s)  

In absence of self fields, the solution of the free equation (Hill’s equation) gives the well known 
betatron oscillation: 

x(s) = ax βx (s) cos µx (s)−ϕ x[ ]  
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In the analysis of the motion in presence of the self induced fields, however, we adopt a simplified 
model where particles execute simple harmonic oscillations around the reference trajectory. This is 
equivalent to have the focusing term Kx constant around the machine. Although this case is never 



fulfilled in a real accelerator, however it provides a reliable model for the description of the beam 
instabilities. Under this approximation we can write 
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which is a linear differential equation. The homogeneous solution is given by 
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The differential equation of motion then becomes 
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By expanding the self-forces around the ideal orbit, we have a constant term which changes the 
equilibrium orbit and a linear term (proportional to the displacement) which changes the focussing 
strength and therefore induces and a shift of the betatron frequencies. 
This can happen either in the motion of individual particles inside the beam (incoherent motion), or 
in the oscillation of the whole beam (coherent motion) around the closed orbit. 
 

2.1  Shift and spread of the incoherent  tunes 
When the beam is located at the centre of symmetry of the pipe, the e.m. forces due to space charge 
and images cannot affect the motion of the centre of mass (coherent), but change the trajectory of 
individual charges in the beam (incoherent). These forces may have a complicate dependence on the 
charge position. A simple analysis is done considering only the linear expansion of the self-fields 
forces around the equilibrium trajectory. 

 
TRANSVERSE INCOHERENT EFFECTS 

       We take the linear term of the transverse force in the betatron equation: 
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In case of uniform transverse beam distribution, either in a circular pipe and between parallel plates, 
the linearity of the force is not an approximation. For other kinds of distribution, we can always 
suppose that the transverse displacement r of a charge is much smaller than the transverse bunch 
dimension σr, so that we can always expand the force at first order r. In any case we end up with a 
self induced force linearly dependent on the particle displacement. As a consequence, by 
considering, for example, the motion along the x direction, we get 
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The linear additional term produces a shift of the betatron tune. Indeed we can write: 
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We recognize in the brackets a term proportional to the square of the new betatron tune, shifted, 
with respect to the initial one Qx, by the self induced forces. This term can be written as 
Qx +ΔQx( )2 / ρx

2 . For small perturbations, the shift ΔQx can then be obtained by: 
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A similar expression is found in the y direction. The betatron shift is negative since the space charge 
forces are defocusing on both planes. Notice that the tune shift is in general function of “z”, 
therefore there is a tune spread inside the beam. This conclusion is generally true also for more 
realistic non-uniform transverse beam distributions, which are characterized by a tune shift 
dependent also on the betatron oscillation amplitude. In these cases, instead of tune shift the effect 
is called tune spread. 

Example: Incoherent shift of the betatron tune for a uniform electron beam of radius a and length 
lo, inside a circular pipe. (N=1010, rx=20 m, Eo=1 GeV, lo=.1 m, Qx=10, a=.1 mm). 

electron rest mass: 0.51 MeV    ®    g = 2000  (relativistic charge) 
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or expressed in terms of the classical radius of electron: 
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Exercise 4: Compute the incoherent tune spread of a proton beam with uniform radial density and 
longitudinal parabolic density l(z), moving on the axis of a circular pipe.  

Exercise 5: Compute the incoherent tune shift for a bi-gaussian electron beam in the linear 
approximation.  

Exercise 6: Compute the incoherent betatron tune shift for a uniform proton beam inside two 
parallel plates with h=2 cm. 

 
In the general case of non-uniform focusing, the betatron tune shift is given by the following 
formula: 
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Example: Incoherent shift of the betatron tune for a uniform electron beam of radius a and length 
lo, non-uniform focusing: (N=1010, rx=20 m, Eo=1 GeV, lo=.1 , ex= 5 10-7 ). 
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2πβ 2γ 3l0
βx (s)
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2πβ 2γ 3l0
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2.2 Consequences of the space charge tune shifts 
In order to avoid beam instabilities, in circular accelerators, the values of the betatron tunes should 
not cross the linear and non-linear resonances of the tune diagram. The tune spread induced by the 
space charge force may result in the impossibility to accommodate the beam in the space between 
the resonant lines making it hard to satisfy this basic requirement.  
Typically, in order to avoid major resonances the stability requires 

ΔQu < 0.5  

If the tune spread exceeds this limit, it is possible to reduce the effect of space charge tune 
spread by increasing the injection energy. 
It is worth noting that, provided that the coherent tune remains inside the incoherent tune spread, 
this last one produces a beneficial effect, Landau damping, which can cure the coherent instabilities. 

In a LINAC or a beam transport line, the space charge forces cause an energy spread and perturb 
the equilibrium beam size. It is required that the defocusing space charge forces must not be larger 
than the external forces. 
 

2.3 The synchrotron motion 
In the longitudinal case the motion is governed by the RF voltage: 

V (z) = V̂ sin hω0
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Where h is the harmonic number, w0 is the revolution frequency, js is the synchronous phase. In the 
linear approximation, the equation of motion is that of a simple harmonic oscillator:  
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the particles oscillate around the synchronous phase fs with a synchronous tune given by: 

Qz =
ωz

ωo

=
eηhV̂ cosϕs

2πβ 2Eo

 ;       with  η  = 1
γ 2 −αc  

The factor h accounts for the increase of the speed with energy (1/g2), and the length of the real 
orbit due to the dispersion (ac). 

The interaction of the beam with the surroundings, may induces longitudinal e.m. forces which are 
to be included in the equation of motion:  
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In the linear approximation, the longitudinal force produces the shift of both the synchronous phase 
and the synchronous tune.  

 

2.4 Longitudinal incoherent effects 
 The constant term leads to a shift of the synchronous phase and to the displacement of the closed 
orbit. We analyse the motion around the new equilibrium: 
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We consider the same approximation used in the transverse case and we get 
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The synchrotron shift can be either positive or negative and changes with the position of the charge. 

Example: Beam of radius a and length lo, inside a circular pipe. Uniform transverse and parabolic 
longitudinal. (N=1010, rx=20 m, Eo=10 GeV, lo=.1 m, Qz=10-3,b/a=5 ). 
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Exercise 7: Compute the longitudinal incoherent tune spread of a proton beam with uniform radial 
density and Gaussian longitudinal density l(z), in a circular pipe. (Same data of 
example). 

 
 



3. WAKE FIELDS and POTENTIALS 
 

Parasitic forces are generated by the beam, which interacts with all the components of the 
vacuum chamber. These components may have a complex geometry: kickers, bellows, RF 
cavities, diagnostics components, special devices, etc. The study of the fields requires to 
solve the Maxwell equations in a given structure taking the beam current as source of fields. 
This is a quite complicated task for which it has been necessary to develop dedicated 
computer codes, which solve the e.m. problem in the frequency or in the time domain. There 
are several useful codes for the design of accelerator devices: CST Studio Suite, GDFIDL, 
ACE3P, ABCI, and others. 

Here we first discuss the general features of the parasitic fields, and then show a few simple 
examples in cylindrical geometry: perfectly conducting pipe and the resonant modes of a RF 
cavity. Although the space charge forces have been studied separately, they can be seen as a 
particular case of wake-fields.  

3.1  Wake potentials  
The parasitic fields depend on the particular charge distribution of the beam. It is therefore 
desirable to know what is the effect of a single charge (i.e. find the Green function) in order 
to reconstruct the fields produced by any charge distribution.    

The e.m. fields created by a point charge, act back on the charge itself and on any other 
charge of the beam. We focus, therefore, our attention on the source charge qo, and on the 
test charge q, assuming that both are moving with the same constant velocity v =bc on  
trajectories parallel to the  axis. 

Let E and B be the fields generated by q0 inside the structure, (s0=vt,r0) be the position of 
the source charge and (s=s0+z,r) be the position of the test charge q.  

Since the velocity of both charges is along z, the Lorentz force has the following 
components: 
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F = q Ez ˆ z + E x − vBy( ) ˆ x + E y + vBx( ) ˆ y [ ] ≡ F// + F⊥ 

Thus, there can be two effects on the test charge: a longitudinal force which changes its 
energy, and a transverse force which deflects its trajectory. If we consider a device of length 
L, the energy gain (joule) is: 
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U = Fz
0

L
∫ ds        

and the transverse deflecting kick (newton·meter) is : 

    

€ 

M = F⊥
0

L
∫ ds  

These quantities, normalised to the two charges, are called wake-fields (volt/coulomb) and 
are both function of the distance z. Note that the integration is performed over a given path 
of the trajectory. In many cases, we deal with structures having particular symmetric shapes, 
generally cylindrical. It is possible to demonstrate that with a multipole expansion of the 
wake fields, the dominant term in the longitudinal wake field depends only on the distance z 
between the two charges, while the dominant one in the transverse wake field is still 
function of the distance z, but it is also linear with the transverse position of the source 



charge r0. If we then divide the transverse wake field by r0 we obtain the transverse dipole 
wake field, which is the transverse wake per unit of transverse displacement, depending only 
on z: 

Longitudinal wake field (volt/coulomb) 
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w// = −
U
qoq

 

Transverse  dipole wake field  (volt/coulomb meter) 

  

€ 

w⊥ =
1
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M
qoq

 

The sign minus in the longitudinal wake-field means that the test charge loses energy when 
the wake is positive. Positive transverse wake means that the transverse force is defocusing. 

 

Example : Longitudinal wake field of “space charge”.  

Even if in the ultra-relativistic limit with γ ⟶ ∞, there is no space charge effect, we can still 
define a wake field by considering a moderately relativistic beam with γ>>1 but not infinite. It turns 
out that the space charge forces can fit into the definition of wake field, and when that is done, we 
find that the wake depends on beam properties such as the transverse beam radius a and the beam 
energy γ. Let us consider a relativistic beam with cylindrical symmetry and uniform transverse 
distribution. The longitudinal force acting on a charge of the beam travelling inside a cylindrical 
pipe of radius b is given by [13]: 
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with λ(z) the longitudinal distribution (z > 0 at the bunch head). Note that, since the space charge 
forces move together with the beam, they are constant along the accelerator if the beam pipe 
remains constant. We can therefore define the longitudinal wake field per unit length (V/Cm). To 
get the longitudinal wake field of a piece of pipe, we just multiply by the pipe length. Assuming 
r®0 (particle on axis), and a charge line density given by λ(z) = q0δ(z)  we obtain: 
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Example :  Longitudinal wake field of a resonant HOM 

When a charge crosses a resonant structure, it excites the fundamental mode and high order 
modes (HOM). Each mode can be treated as an electric RLC circuit loaded by an impulsive 
current. 
 

 
 

 
 

 



Just after the charge passage, the capacitor is charged with a voltage Vo=qo/C and the 
electric field is Eso= Vo/lo. The time evolution of the electric field is governed by the same 
differential equation of the voltage: 
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The passage of the impulsive current charges only the capacitor, which changes its potential 
by an amount Vc(0). This potential will oscillate and decay producing a current flow in the 
resistor and inductance. For t>0 the potential satisfies the following equation and boundary 
conditions: 
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putting z= -ct (z is assumed negative behind the charge), we get the longitudinal wake field 
of a resonant HOM: 
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In an analogous way, it is possible to obtain the transverse wake field of a HOM 

w⊥(z) = R⊥ωr

Q
e−Γ  z/c sin(ωz / c)                                                   

3.2 Loss factor 
It is also useful to define the loss factor as the normalised energy lost by the source charge 
qo: 
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k = −
U(z = 0)
qo
2  

Although in general the loss factor is given by the longitudinal wake at z=0,  for charges 
travelling with the light velocity the longitudinal wake potential is discontinuous at z=0. 



The exact relationship between k and w(z®0) is given by the  beam loading theorem. 
 

 
 

 
 

  
 

3.3 Beam loading theorem 
When the source charge travels with the light velocity v=c, it leaves the e.m. fields mainly 
on the back, reason why we call these fields “wake fields”. Any e.m. perturbation produced 
by the charge cannot overtake the charge itself. This means that the longitudinal wake field 
vanishes in the region z>0.  This property is a consequence of the “causality principle”. 
Causality requires that the longitudinal wake field of a charge travelling with the velocity of 
light is discontinuous at the origin.  
The beam loading theorem states that: 
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k =
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Example : Show that the beam loading theorem is fulfilled by the wake field of the resonant 
mode. 

The energy lost by the charge qo loading the capacitor is: 
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compare with  w//(z→0) =
1
C

 

 
3.4 Relationship between transverse and longitudinal forces 

Another important feature worth mentioning, is the differential relationship existing between 
longitudinal and transverse forces: 
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F⊥
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The above relations are known as “Panofsky-Wenzel theorem”. 
 

3.5 Coupling Impedance 
The wake potentials are used for to study the beam dynamics in the time domain (s=vt). If 
we take the equation of motion in the frequency domain, we need the Fourier transform of 
the wake potentials. Since these quantities have ohms units they are called coupling 
impedances: 



Longitudinal impedance (W) 
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Example : Coupling impedances (W/m) of the “ space charge” 

∂  Z // ω( )
∂  s

=
1
v

∂  w// z( )
∂  s

e
iωz
v dz

−∞

∞

∫ =
1+2 lnb

a( )
v4πεoγ

2
d
dz
δ(z)e

iωz
v dz

−∞

∞

∫

                            use→ δ '(z) f (z)dz
−∞

∞

∫ = f '(0)
 

 ∂  Z // ω( )
∂  s

=
iω  Zo

4πcβ 2γ 2 1+ 2 ln b
a

!

"
#

$

%
&
 

 

Example: Coupling impedances of a HOM resonant 

Longitudinal Impedance: 
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where 
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Rs =
w0
2γ  

is the shunt impedance, and 
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Qr =
ω r
2γ

 is the quality factor; quantities that 

we can obtain with the computer codes. Note that the loss factor is also determined:
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Transverse Impedance: 
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3.6 Wake potentials and energy loss of a bunched distribution. 

When we have a bunch with density l(z), such that q = λ(z ')dz '
−∞

∞

∫ we may wonder what is the 

amount of energy lost or gained by a single unit charge e in the beam. 
 

 
 



 

 
 

 
 

 
 

To this end we calculate the effect on the charge from the whole bunch by means of the 
convolution integral: 

U(z) = −e w// z '− z( )λ(z ')dz '
−∞

∞

∫  

which allows to define the wake potential of a distribution: 

W// (z) = −
U(z)
qe

 

The total energy lost by the bunch is computed summing up the losses of all particles: 
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4. WAKE FIELDS EFFECTS  IN  LINEAR 

ACCELERATORS 
 

We study the effect of the wake fields on the dynamics of a beam in a LINAC, assuming a high 
energy such that the motion is “frozen” in the longitudinal phase space. 

 
4.1 Energy Spread 

The longitudinal wake forces change the energy of individual particles depending on their 
position in the beam. As consequence the wake can induce an energy spread in the beam. 

 

Example: Energy spread induced by the space charge force in a Gaussian bunch. 
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The bunch head gains energy (z>0), while the tail loses energy: 

z! z’!

λ(z)" dz’!



 

Exercise : Compute the energy loss induced by a resonant HOM on the charges inside a rectangular 
uniform bunch. 
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4.2 Parasitic loss 
Because of the wake fields, the beam loses a certain amount of energy, called parasitic loss. There 
is no loss in a perfectly conducting pipe, while the beam deposits energy in the pipe with resistive 
wall, in the resonant devices and in the high frequency fields propagating inside the pipe. 

Exercise : Parasitic loss of a rectangular uniform bunch in a resonant HOM 
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4.3 Beam Break Up 
A beam injected off-center in a LINAC, because of the focusing quadrupoles, executes betatron 
oscillations. The displacement produces a transverse wake field in all the devices crossed during the 
flight, which deflects the trailing charges. In order to understand the effect, we consider a simple 
bunch model with only two charges q1=Ne/2 (leading = half bunch) and q2=e (trailing = single 
charge). 

 

n the leading charge executes free betatron oscillations: 
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n the trailing charge, at a distance z behind, over a length Lw experiences a deflecting force 
proportional to the displacement y1, and dependent on the distance z: 
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Notice that Lw is the length of the device for which the transverse wake has been computed. For 
example, in the case of a cavity cell Lw is the length of the cell. This force drives the motion of the 
trailing charge: 
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This is the  typical equation of a resonator driven at the resonant frequency. 

The solution is given by the superposition of the “free” oscillation and a “forced” oscillation which, 
being driven at the resonant frequency, grows linearly with s: 
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At the end of the LINAC of length LL, the oscillation amplitude is grown by (
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ˆ y 1=
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If the transverse wake is given per cell, the relative displacement of the tail with respect to the 
head of the bunch, depends on the number of cells. It depends, of course, on the focusing 
strength through the frequency wy.  
 
4.4 BNS Damping 

The BBU instability is quite harmful and hard to take under control even at high energy with a 
strong focusing, and after a careful injection and steering. A simple method to cure it has been 
proposed observing that the strong oscillation amplitude of the bunch tail is mainly due to the 
“resonant” driving. If the tail and the head move with a different frequency, this effect can be 
significantly removed.  

Let us assume that the tail oscillates with a frequency wy+Dwy; the equation of motion reads: 
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the solution of which is: 
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where the amplitude of the oscillation is limited. Furthermore, by a suitable choice of Dwy, it is 
possible to fully depress the oscillations of the tail. In fact, by setting: 
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if ŷ2 = ŷ1 , we get:  
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The extra focusing at the bunch tail can be obtained by: 
1. Using an RFQ, where head and tail see a different focusing strength, 



2. Exploit the energy spread across the bunch which, because of the chromaticity, induces 
a spread in the betatron frequency. An energy spread correlated with the position is 
attainable with the external accelerating voltage, or with the wake fields. 

 
 

5. WAKE FIELDS  EFFECTS  IN  STORAGE RINGS  
 
We study here some effects in the longitudinal beam dynamics of bunched beams in storage rings. 

 
5.1 Beam loading 

When a charge crosses a resonant structure, it excites the fundamental mode and high order modes 
(HOMs). We limit our analysis to the fundamental accelerating mode in order to see how the voltage 
induced by the beam interferes with the accelerating voltage. To this end, we schematise the cavity 
with an RLC parallel circuit, fed by the generator current Ig and by the beam current Ib. 

 
 

 
 

 
 

 
The voltage in the cavity is given by a combined effect of the two currents. The beam current is 
impulsive, and repeats itself at each beam passage. The generator current feeding the cavity is an 
alternating signal at the RF frequency: 
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The time evolution of the voltage in the cavity is governed by the same differential equation found in 
chapter 3: 

€ 

˙ ̇ V + 1
RC

˙ V + 1
LC

V =
1
C

˙ I g + ˙ I b( ) 

It is possible to solve separately the equation for the two sources, and apply the superposition 
principle. The steady state voltage induced by the generator current is of the type: 
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where the amplitude and the phase depend on the amplitude of the driving current and on the circuit 
parameters: 

Ib Ig 
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Notice that if wg=wr , i.e. when the generator drives the cavity at the resonance, the phase of the 
generator voltage is zero, and the amplitude is just given by the current amplitude times the shunt 
impedance. The phase js is called "detuning angle" and it is usually chosen in order to ensure the 
stability of the beam and to maximise the power transfer from the generator to the cavity.  
 

 
The synchronous phase of the particle without the effect of beam loading is given by: 
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For the moment, we consider the generator operating at the resonance wg=wr, and we want to evaluate 
the effect of the beam loading on the accelerating field in the cavity and on the synchronous phase. 
The expression of the beam current can be expanded in Fourier harmonics: 
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Ib(t) =
qb
To
1+ 2cos nωo(t − ts)( )[ ]  

Since the cavity is a high Q resonator, the term at n=h (harmonic number) is much stronger than the 
others, and we approximate the beam current with the harmonic signal at the resonant frequency: 
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This current oscillates at the resonant frequency and therefore induces a voltage 
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The total voltage in the cavity is therefore: 
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The synchronous phase: 
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is obtained by imposing that the charge gains the energy lost per turn: 
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Both the total voltage amplitude and the synchronous phase are affected by the voltage induced by the 
beam. In the real life, the operation on the cavity is more complex, since the frequency of the generator 
is usually detuned with respect to the resonant frequency, and the amplitude of the total voltage is also 
kept under control with a feedback system. 
 

5.2 Robinson instability 
Let us assume now that the beam oscillates around the synchronous phase:  
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This is nothing else than a phase modulation of the signal of the beam around the harmonic hwo 
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The voltage induced by such a signal is: 
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Because of the synchronous oscillations, the energy gain per turn is 
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where the low varying term sin(wst) has been considered constant in a revolution time. Since 
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including this term of energy gain per turn in the equation of motion, we get: 
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Where we recognise that the motion is damped or unstable depending on the sign of the coefficient 
of dj/dt.. We can introduce a strong damping on the synchronous motion if we make this term 



negative and high. Above the transition energy this can be done by operating with a generator 
frequency higher than the resonant frequency.  
 
  



6. LANDAU  DAMPING 
 

6.1  Driven  oscillators 
There is a fortunate stabilising effect against the collective instabilities called “Landau Damping”. 
The basic mechanism relies on the fact that if the particles in the beam have a spread in their natural 
frequencies (synchrotron or betatron), their motion can’t be coherent for a long time.  

In order to understand the physical nature of this effect, we consider a simple harmonic oscillator, at 
rest for t<0, driven by an oscillatory force for t>0. 
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The general solution is given by the superposition of the free and forced solutions: 
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Let us assume now that the external force is driving a particle population characterised by a spread 
of natural frequency of oscillation around a mean value wx. Furthermore, let the forcing frequency 
W be inside the spectrum such that   d º W - w << wx. 
The motion of a given particle in the bunch can be approximated by: 
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x(t) ≅ At
2ω x

sin(ω xt)
sin δ
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Let us observe now two particles in the bunch, one with  d=0, and the other with d¹0. Both are at 
rest, and at t=0 they start to oscillate with the same amplitude and phase (coherency). However, 
while the amplitude of the former charge growths indefinitely, (driven at resonance), the latter 
reaches a maximum amplitude (beating of two close frequencies). We say that the system of the 
particles has lost the coherency at the time when the beating amplitude is maximum, i.e. for t=p/d .  

time

Am
pl
itu
de

Figure 4: ”On resonance” and ”out of resonance” oscillations of two particles

due to a sinusoidal external force in arbitrary units.

Since ⌦� ! ⌧ !0, we can justify the approximation
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If we make a change of variable from ! to �
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In order to evaluate the average displacement as the time growths, we

first note that[14]

lim
t!1

sin xt

x

= ⇡�(x) (63)

since, as t increases, the function sin(xt)/x is peaked around x = 0 and its

integral is ⇡, independent on t.
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We can also say that at any time t*, only those oscillators inside the bandwidth ½d½< p/ t*, oscillate 
coherently. The longer we wait, the narrower is the coherent bandwidth and therefore the less is the 
number of “coherent” particles. 
 

 
6.2 Amplitude of oscillations 

At any instant we can divide the bunch population in two groups: the coherent particles, oscillating 
all together with an amplitude growing linearly with time, and the “incoherent” particles which 
have different phases and a saturated amplitude of oscillation. 
It is interesting to see that, albeit the amplitude of the coherent oscillators growths linearly with 
time, the average amplitude of the whole system remains bounded. The reason is that the number of 
coherent particles decreases inversely with time. 
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x(t) max =
1
N
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We consider the time when the coherent particles have the maximum amplitude. The amplitudes of 
the incoherent particles, being uncorrelated, have a zero average. For the coherent particles we have: 

€ 

x(t) max =
Ncoh
N

xmax(t) =
Ncoh
N

A
2ω x

t  

On the other hand, the number of oscillators keeping the coherency decreases with time: 

€ 

Ncoh =
N
Δω

π
t

  ⇒   x(t) max =
π
Δω

A
2ω x

     

 
6.3 Energy of the system 

What happens to the energy of the system? Also in this case we distinguish between the coherent 
and incoherent particles. The energy of the coherent particles growths quadratically with time, 
while the energy of the incoherent particles is bounded. In this case, although the number of 
coherent oscillators decreases with time, the total energy still grows linearly. 
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Ε(t) =Εcoh (t) +Εincoh (t)  
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In conclusions when a force drives such a system, only at beginning the whole system follows the 
external force. Afterwards, fewer and fewer particles are driven at the resonance. The result is that 
although the system absorbs energy, the average amplitude remains bounded.  

This mechanism works also when the driving force is produced by the bunch itself. In order to make 
the coherent instability to start, the rise time of the instability has to be shorter than the “de-
coherency” time of the bunch: 

€ 

τinst < τdecoh =
2π
Δω

 

A rigorous analysis of the beam dynamics in the frequency domain shows that, because of the 
Landau damping, a new stability region appears in the impedance plane, whose shape depends on 



distribution of the energy spread in the beam (form factor F).  For instance, for a beam with a 
parabolic energy spread distribution we have the following figures: 
 

 
 

 
 

 
 

 
 

Approximating the stable area with a circle, we get the stability criterion: 
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USEFUL CONSTANTS 

e unit electric charge 1.602 ´ 10-19 (C) 

c speed of light in vacuum 2.997 ´ 108      (m/s) 
mo rest mass of electron 0.511  (MeV) 

mo rest mass of proton 938.272       (MeV) 

re classical radius of electron 2.818 ´ 10-15 (m) 

rp classical radius of proton  1.534 ´ 10-18 (m) 

µo permeability of vacuum  4p ´ 10-7   (H/m) 

eo permittivity of vacuum  8.854 ´ 10-1  (F/m) 

Zo impedance of vacuum 120p (W) 

 

€ 

re,p =
e2 

4πεomoc
2

εoµo =  1/c2

εoZo =  1/c
 

 
 

 
 
 
 
 
 
  



APPENDIX 1.  BOUNDARY RELATIONS FOR CONDUCTORS. 

 
STATIC FIELDS 
When we have two materials with different relative permittivity, which we call εr1 and εr2, in the 
passage from one material to another, the tangential electric field and the normal electric 
displacement are preserved, so that we have the boundary relations: 

Et1 = Et2

εr1En1 = εr2En2

 

If one of the two materials is a conductor with a finite conductivity, then the electric field 
vanishes inside it, and the walls are equipotential surfaces. This implies that the electric field lines 
are orthogonal to the conductor surface, independently of the dielectric and magnetic properties of 
the material. The only condition is to have a finite conductivity.  

If we have a charge close to a conductor, in order to obtain the electric field, we need to 
include the effects of the induced charges on the conducting surfaces, and we must know how they 
are distributed. Generally this task is not easy, but if we have an infinite conducting screen, the 
problem can be easily solved by making use of the method of images: we can remove the screen 
and put at a symmetric location a charge with opposite sign, as shown in figure. 

 
Fig. A1: Method of images. 

 
The total electric field is the sum of the direct and the image field: 

!
Etot =

!
Edirect +

!
Eimages  

For the static magnetic field between two materials with different permeability, the following 
boundary relations hold: 

Ht1 = Ht2

µr1Hn1 = µr2Hn2

 

Thus, static magnetic fields do not perceive the presence of the conductor, if it has a magnetic 
permeability µr ≈ 1, as copper or aluminium, and the field lines behave as in the free space. 
However, a beam pipe in a real machine goes through many magnetic components (like dipoles and 
quadrupoles) made of ferromagnetic materials with high permeability (of the order of 103 - 105). 
For these materials, due to the boundary conditions, the magnetic field lines are practically 
orthogonal to the surface.  Similarly to electric field lines for a conductor, the total magnetic field 
can be derived by using the image method: we remove the magnetic wall and put a symmetric 
current with same sign, as shown in figure. 

!

conduc&ng(
wall(



 
Fig. A2: Method of image current. 

 
 

 

 
TIME VARYING FIELDS 
Static electric fields vanish inside a conductor for any finite conductivity, while static magnetic 
fields pass through unless of high permeability. This is no longer true for time changing fields, 
which can penetrate inside the material in a region dw called skin depth. In order to write the skin 
depth as a function of the material properties, we write the following Maxwell’s equations inside 
the conducting material together with the constitutive relations: 

∇×
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E = −∂
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B
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D
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B = µ
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Let us consider a plane wave linearly polarized with the electric field in the y direction 
propagating in the conducting material along x, as shown in Fig. A3.  

 
Fig. A3: Plane wave propagating inside a conducting material. 

 
From the Maxwell’s equations we get the wave equation for the electric field: 

∂ 2Ey

∂x2
−εµ

∂ 2Ey

∂t2
−σµ

∂Ey

∂t
= 0  



In order to find the solution of the wave equation, we assume that the electric field propagates 
in the x direction with the law 

Ey = !E0e
iωt−γx  

If we substitute the above expression in the wave equation, we get the equation for the 
complex amplitude of the electric field !E0  

(γ 2 +εµω 2 − iωµσ ) !E0e
iωt−γx = 0  

An analogous equation holds for Hz. In order to have non-zero electric field, the term inside 
the parentheses must be zero. If s>>we this reduces to 

γ ≅ (1+ i) σµω
2

 

Under such a condition we say that the material behaves like a conductor. Since γ has a real 
part, fields propagating in the material are attenuated. The attenuation constant, measured in meters, 
is called skin depth dw: 

δw ≅
1

ℜ(γ )
=

2
ωσµ

 

The skin depth depends on the material properties and the frequency. Time varying fields pass 
through the conductor wall if the skin depth is larger than the wall thickness. This happens at 
relatively low frequency when dw is large, while at higher frequencies, for a good conductor, the 
skin depth is very small and much lower than the wall thickness, so that we can consider that both 
electric and magnetic fields vanish inside the wall. In this condition, the electric field lines are 
perpendicular to the wall surface, as in the static case, while the magnetic field lines are tangent to 
the wall. As a consequence, in order to obtain the electric field which is time varying close to a 
good conductor, we can still use the method of the images, while for the magnetic field it is easy to 
see that we can use the method shown in Fig. A2, by changing the direction of the image current. 

 Copper, for example, has a skin depth of 

δw ≅
6.66
f
(cm)  

If we assume a beam pipe 2 mm thick, we find that fields pass through the wall up to 
frequencies of 1 kHz. 

 

 
APPENDIX 2.   LONGITUDINAL FORCES 

In order to derive the relationship between the longitudinal and transverse forces inside a beam, let 
us consider the case of cylindrical symmetry and ultra-relativistic bunches. We know from 
Faraday’s law of induction that a varying magnetic field produces a rotational electric field: 

!
E ⋅d
!
l = − ∂

∂t!∫
"
B ⋅ n̂ dS

S
∫  

In order to obtain the longitudinal electric field, we choose, as path for the circulation, a 
rectangle going through the beam pipe (a cylinder of radius b) and the beam, parallel to the z axis 
and with radius a, as shown in Fig. A4. For a generic position r<a , and by considering Δz small 
enough so that we can consider the electric field constant, we have: 



Ez (r, z)Δz+ Er (r, z+
r

b

∫ Δz)dr −Ez (b, z)Δz − Er (r, z
r

b

∫ )dr = −Δz ∂
∂t

Bφ (r
r

b

∫ )dr  

We now write Er (r, z+Δz)−Er (r, z) =
∂Er (r, z)

∂z
Δz  so that from the above equation we get 

Ez (r, z) = Ez (b, z)−
∂Er (r, z)

∂z
+
∂Bφ (r, z)

∂t
"

#
$

%

&
'

r

b

∫ dr  

By considering that z = - βct, we can also write  

Ez (r, z) = Ez (b, z)−
∂
∂z

Er (r, z)−βcBφ (r, z)"# $%
r

b

∫ dr  

Since the transverse electric field and the azimuthal magnetic field are related by Bφ =
β
c
Er , 

we finally obtain  

Ez (r, z) = Ez (b, z)− 1−β
2( ) ∂
∂z

Er (r, z)
r

b

∫ dr  

Note that for perfectly conducting walls we have Ez(b,z) = 0, so that 

Ez (r, z) = −
1
γ 2

∂
∂z

Er (r, z)
r

b

∫ dr  

 

 
Fig. A4: Geometry for obtaining the longitudinal electric field due to space charge. 

 
APPENDIX 3.  DRIVEN OSCILLATORS 

Consider a harmonic oscillator with natural frequency w, with an external excitation at frequency 
W: 

€ 

˙ ̇ x +ω 2x = Acos(Ωt)  

General solution: 

€ 

x(t) = x free(t) + xdriven (t)

 cos(Ωt)⇒ eiΩt  

x free(t) = ˜ x m
f eiωt

xdriven (t) = ˜ x m
d eiΩt

 

The driven solution (steady state) is found by direct substitution in the differential equation: 



€ 

(ω 2 −Ω2) ˜ x m
d eiΩt = AeiΩt

xdriven (t) =
A

(ω 2 −Ω2)
eiΩt  

The general solution has to satisfy the initial condition at t=0. In our case we assume that the 
oscillator is at rest for t=0:  

€ 

x free(t = 0) = −xdriven (t = 0)

˜ x m
f = −

A
ω 2 −Ω2

 

thus we get: 

€ 

x(t) =
A

ω 2 −Ω2
eiΩt − eiωt[ ]  

taking only the real part: 

€ 

x(t) =
A

ω 2 −Ω2
cos(Ωt) − cos(ωt)[ ] 

This expression is suitable for deriving the response of the oscillator driven at resonance or at a 
frequency very close: 
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ω =Ω+δ,    δ →0
ω = (ω +Ω) /2; ω =ω +δ /2, Ω =ω −δ /2

x(t) =
A

2ω δ
 { cos(ω t)cos(δt /2) + sin(ω t)sin(δt /2)[ ] +

                 -  cos(ω t)cos(δt /2) + sin(ω t)sin(δt /2)[ ] }

x(t) =
A
ω δ

 sin(ω t)sin δt
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