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EQUATION OF MOTION

Charged particles in a transport channel or in a circular/linear accelerator are
accelerated, guided and confined by external electromagnetic fields. The motion of
a single charge is governed by the Lorentz force through the equation:

Where m0 is the rest mass, g is the relativistic factor and v is the particle velocity.

Acceleration is usually provided by the electric field inside of RF cavities. Magnetic
fields are produced in the bending magnets for guiding the charges on the reference
trajectory (orbit), in the quadrupoles for the transverse confinement, in the sextupoles
for the chromaticity correction.

However, there is another source of e.m. fields, the beam itself…

  

 

d m0g v( )
dt

= Fe.m.
ext = e E + v ´ B( )



In a real accelerator, in particular at high currents, there is an important source of e.m.
fields to be considered, the beam itself, which circulating inside the pipe, produces
additional e.m. fields:

Direct space charge

Image space charge

Wake  fields  

SPACE CHARGE AND WAKE FIELDS

Space Charge



• betatron tune shift
• synchrotron tune shift   
• energy loss
• energy spread and emittance degradation
• instabilities.

These self induced fields depend on:
• the beam current and beam distribution
• the surrounding geometry and the beam pipe 
• the surrounding  material.

They are responsible of many phenomena of beam dynamics:



Fields of a point charge with uniform motion
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• In O� the charge is at rest
• The electric field is radial with spherical symmetry
• The magnetic field is zero
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vt is the position of the point charge in the system O.
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Relativistic transforms of the fields and coordinates from O� to O
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" r = x2 + y2 +γ 2(z − vt)2[ ]1/2
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The electric field has lost the spherical symmetry but still keeps a 
symmetry with respect the z-axis.
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x2 + y2 + γ 2z2[ ]3/2
The field pattern is moving
with the charge. For example,
at t=0 we have



Electric field lines of a charge moving with velocity of 0.9c
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Bz = 0
Bx = -vE y /c

2

By = vEx /c
2

B is transverse to the motion direction
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g >> 1

€ 

E x = γ( # E x + v # B y )
E y = γ( # E y − v # B x )
Ez = # E z

Bx = γ( # B x − v # E y /c
2)

By = γ( # B y + v # E x /c
2)

Bz = # B z

Bθ =
vEρ

c2
=
βEρ

cEρ

B⊥ ≡ Bθ



q

q In the frame O�in which
charges are at rest
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Relativistic transforms 

Lorentz force

Two point charges with same velocity on parallel trajectories



Space Charge
The effect of the Coulomb interactions in a multi-particle system can be classified  
into two regimes:

1) Collisional Regime ==> dominated by binary collisions between particles ==> 
Single Particle Effects (e.g. intra-beam scattering)

2) Space Charge Regime ==> dominated by the self fields produced by the entire 
distribution ==> Collective Effects



Collisional and Space Charge regimes

• The interaction of the charged particles in a beam can be represented by the sum of a
“collisional” and a “smooth” force. The collisional part of the interaction force arises
when a particle “sees” its immediate neighbours and is affected by their individual
positions. This force will cause small random displacements of the particle’s trajectory
and statistical fluctuations in the particle distribution as a whole. In most practical
beams, however, this is a small effect, and the mutual interaction between particles is
described largely by a smoothed force.

• A measure for the relative importance of collisional versus smoothed interaction, of
single-particle versus collective effects, is the Debye length, λD: it is a distance over
which a local perturbation in the equilibrium charge distribution of a beam with
transverse temperature T and density n, confined by external focusing fields, is
screened off.



Collisional and Space Charge regimes

If the Debye length is large compared with the beam radius (λD >>a), the screening
will be ineffective and single-particle behaviour will dominate (motion of particles
is influenced by local perturbations): collisional regime.

On the other hand, if the Debye length is small compared to the beam radius (λD
<<a), smooth functions for the charge and field distributions can be used, and
collective effects due to the self fields of the entire beam will play an important role:
space charge regime.

The charges sourrounding a test particle have a screening effect at a distance λD
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λD =
εokBT
e2n

kB= Boltzman constant
T = Temperature
kB T = average kinetic energy of the particles
n = particle density (N/V)

= γmo v⊥
2

lD



Example 1. Relativistic Uniform Cylindrical Beam
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Lorentz Force

Fr r( ) = e Er −βcBθ( ) = e 1−β 2( )Er =
eEr r( )
γ 2

The attractive magnetic force, which becomes significant at high velocities,
tends to compensate the repulsive electric force. Therefore, space charge
defocusing is primarily a non-relativistic effect.

• has only radial component

• is a linear function of the transverse coordinate
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Space charge with image

charges/currents



Static Fields: conducting or magnetic screens

Let us consider a point charge q close to a conducting screen. 

The electrostatic field can be derived through the "image method". Since 
the metallic screen is an equi-potential plane, it can be removed provided 
that a "virtual" charge is introduced such that the potential is constant at the 
position of the screen

q q - q



A constant current in the free space produces a circular magnetic field. 

If µr»1, the material, even in the case of a good conductor, does not affect 
the field lines.

I



For ferromagnetic materials, with µr>>1, the very high magnetic
permeability makes the tangent magnetic field zero at the boundary so that
the magnetic field is perpendicular to the surface, just like the electric field
lines close to a conductor.

In analogy with the image method we get the magnetic field, in the region
outside of the material, as superposition of the fields due to two symmetric
equal currents flowing in the same direction.

Law of refraction of 
magnetic field lines:

tanθ1
tanθ2

=
µr1

µr2

µr2 →∞⇒θ1→ 0



Satisfying a magnetic boundary condition by an image current.

ferromagnetic
wall

direct
current

image
current
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Time-varying fields

Static electric fields vanish inside a conductor for any finite conductivity,
while magnetic fields pass through unless of high permeability.
This is no longer true for time changing fields, which can penetrate
inside the material in a region dw called skin depth. Inside the conducting
material we write the following Maxwell’s equations:

Copper s = 5.8 107 (Wm)-1

Aluminium s = 3.5 107 (Wm)-1

Stainless steel s = 1.4 106 (Wm)-1
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Consider a plane wave (Hy, Ex) propagating in the material
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(the same equation holds for Hy). Assuming that fields propagate  
in the z-direction with the law:

Hy = H 0e
iωt−kz

Ex = E0e
iωt−kz

(k2 +εµω 2 − iωµσ ) Eoe
iωt−kz = 0

We say that the material behaves like a conductor if  s >>we thus:

k ≅ (1+ i) σµω
2

z

Ex
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Dw

ℜ(k) = σµω
2 Exponential decay

∇2E = µσ ∂E
∂t

+µε
∂2E
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∂H
∂t

+µε
∂2H
∂t2



Fields propagating along “z” are attenuated. 
The attenuation constant measured in meters is called skin depth dw:

δw ≅
1

ℜ(k)
=

2
ωσµ

The skin depth depends on the material properties and on the frequency.
Fields pass through the conductor wall if the skin depth is larger than 
the wall thickness Dw. This happens at relatively low frequencies.

At higher frequencies, for a good conductor  dw<< Dw and both 
electric and magnetic fields vanish inside the wall.  
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δw ≅
6.6
f (Hz)

(cm);       ω = 2πf

For a pipe 2mm thick, the fields pass through the wall up to 1 kHz.
(Skin depth of Aluminium is larger by a factor 1.28)

For the copper

Dw

dw
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Ratio σ/ωε as a function of frequency f for some common media (log-log plot)

Note that copper behaves
like a conductor at
frequencies far above the
microwave region. On the
other hand, fresh water acts
like a dielectrics at
frequencies above about
10MHz

M = log σ
εω

=

= log σ
ε2π

− log f

= log σ
ε2π

− N



• Compare the wall thickness and the skin depth (region of penetration
of the e.m. fields) in the conductor.

• If the fields penetrate and pass through the material, they can  
interact with bodies in the outer region. 

• If the skin depth is very small (rapidly varying fields), fields do not 
penetrate, the electric field lines are perpendicular to the wall, as in the 
static case, while the magnetic field lines are tangent to the surface.

I -II



Example 2: Circular  Perfectly Conducting  Pipe 
(Uniform Beam at Center)

If we take the previous uniform cylindrical beam and
enclose it into a cylindric perfectly conducting pipe, the
field lines are not perturbed because the electric ones are
already radial and then perpendicular to the pipe, and the
magnetic ones remain circular. The presence of the pipe
does not affect the fields.
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2πa2ε0

r

In the case of cylindrical charge distribution, with g>>1, the electric field lines can be
considered perpendicular to the direction of motion. The transverse fields intensity can
be computed as in the static case, applying the Gauss’s and Ampere’s laws.

This direct space charge force does not depend on the longitudinal
position along the beam. If l is not constant, one should consider
the local charge density l(z) (some examples in the exercises)
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Defocusing transverse self induced forces produced by direct space
charge in case of uniform (left) and Gaussian (right) distributions.

If the transverse distribution is not uniform, we can still apply 
Gauss’s and Ampere’s laws (example in the exercises).



Relativistic  Uniform Cylindrical Beam – finite length 

δs ≅ b
γ

l0 >> δs

γ >>
b
l0Beam pipe radius b

Bunch length l0

Widening at the wall ds 

dsl0

e.g.: 
b = 1 cm 
l0 = 100 μm

γ >> 100

ds

∝
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b
∝
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Parallel Plates (Beam at Center)

In some cases, the beam pipe cross
section is such that we can consider
only the surfaces closer to the beam,
which behave like two parallel plates. In
this case, we use the image method to a
charge distribution of radius a between
two conducting plates 2h apart. By
applying the superposition principle we
get the total image field at a position y
inside the beam.
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Where we have assumed h>>a≥y. 

For d.c. or slowly varying currents, the boundary conditions imposed by
the conducting plates do not affect the magnetic field.

There is no magnetic field which can compensate the electric field due to
the "image" charges.
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From the divergence equation                              we derive also the other 
transverse component:
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Therefore, for g>>1, and for d.c. or slowly varying currents the cancellation effect applies
only for the direct space charge forces. There is no cancellation of the electric and magnetic
forces due to the "image" charges.
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Usually, the frequency spectrum of a beam is quite rich of harmonics, especially
for bunched beams.

To simplify our study it is convenient to decompose the current into a d.c.
component, I, for which dw >>Dw, and an a.c. component, Î, for which dw<< Dw.

The d.c. component of the magnetic field does not perceive the presence of the
material, and only the ‘image’ electric field must be considered.

The a.c. component of the magnetic field must be tangent to the pipe wall, and it
can be obtained by using an infinite sum of image currents with alternating
directions as we did for the electric field.

We can see that this magnetic field is able to cancel the effect of the electric
force.

Parallel Plates (Beam at Center) a.c. currents
Dw

dw
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For the a.c. current there is cancellation of the electric and
magnetic forces.
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Parallel Plates - General expression of the force

Taking into account all the boundary conditions for d.c. and a.c.
currents, considering also the presence of ferromagnetic materials in
dipoles, we can write the expression of the force as:
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u = x, y

where l is the total current divided by βc, l its d.c. part, g the gap in a 
dipole, and we take the sign (+) if u=y, and the sign (–) if u=x.

It is interesting to note that these forces are linear in the transverse
displacement x and y.

 

-L. J. Laslett, LBL Document PUB-616, 1987, vol III



Space Charge Force - General expression

One often finds the space charge force written in terms of the Laslett
form factors f0, f1 and f2

where the Laslett form factors can be obtained for several beam pipe 
geometries. 

For example, for our case of parallel plates, we have:
f0=1/2, f1=π2/48, f2=π2/24
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Space charge effects in 

circular accelerators



Consider a perfectly circular accelerator with radius rx. The beam
circulates inside the beam pipe. The transverse single particle motion in
the linear regime, is derived from the equation of motion. Including the
self field forces in the motion equation, we have:

d mγ  v( )
dt

= F ext r( )+F self r( )
dv
dt
=
F ext r( )+F self r( )

mγ

Self fields and betatron motion
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Following the same steps of the "transverse dynamics" lectures, we 
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We assume a small transverse displacement x so that:
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The external force is due to the magnetic guiding fields. We suppose to
have only dipoles and quadrupoles, or, equivalently, we expand the
external guiding fields in a Taylor series up to the quadrupole component:
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the dipolar magnetic field By0 is responsible of the circular motion along
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qvzBy0 =
m0γvz

2

ρx



We finally get:

where we have introduced the normalized gradient

!!x +
1
ρx
2 +

q
m0vzγ

∂By

∂x
#

$
%

&

'
(
0

)

*
+

,

-
.x =

1
m0vz

2γ
Fx

self

which can also be written as:

!!x +
1
ρx
2 − k

#

$
%

&

'
(x =

1
m0vz

2γ
Fx

self

k = g
p / q

= −
q

m0vzγ
∂By

∂x
#

$
%

&

'
(

with g the quadrupole gradient in [T/m] and p the charge momentum 



Both the curvature radius and the normalized gradient depend on the 
azimuthal position ‘s’. By using the focusing constant Kx(s) we then 
should write:

Putting vz= bzc�bc (small beam divergence), we get

where E0 is the particle energy.

In absence of self fields, the solution of the free equation, known as 
Hill’s equation gives the betatron oscillation.
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1

m0vz
2γ
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self (x, s)

!!x (s)+Kx (s)x(s) =
1

β 2E0
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• In the analysis of the motion of the particles in presence of the self
fields, we will adopt a simplified model where particles execute simple
harmonic oscillations around the reference orbit.

• This is the case for which the focusing term is constant along the
machine. Although this condition in never fulfilled in a real accelerator,
it provides a reliable model for the description of the beam instabilities.
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Transverse incoherent effects

We take the linear term of the self induced transverse force in the 
betatron equation:
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Transverse incoherent effects

The shift of betatron wave number (tune shift) is negative since the
space charge forces are defocusing on both planes (the betatron
wavelength increases). Remember that the space charge force, and
then the tune shift, is, in general, function of “z”, λ(z), therefore this
expression represents a tune spread inside the beam. This is why we
call it incoherent. This conclusion is generally true also for more
realistic non-uniform transverse beam distributions, which are
characterized by a tune shift dependent also on the betatron
oscillation amplitude. When ΔQx is not constant in the beam, instead
of tune shift the effect is called tune spread.
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Example 3: incoherent betatron tune shift for a uniform electron
beam of radius a=100μm, length lo=100μm, inside a circular perfectly
conducting pipe (energy E0=1GeV, N=1010, ρx=20m, Qxo=4.15)
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Remember that for real bunched beams the space charge forces depend on the 
longitudinal and radial position of the charge => tune spread.
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DQ as function of beam emittance and filling factor of the ring

This expression is valid also in the general case of non-uniform focusing
along the accelerator for a uniform beam inside a circular pipe. The linear
effect of the self induced forces can be treated as a quadrupole error ΔK
distributed along the accelerator
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Shift and spread of the incoherent  tunes
If the beam is located at the centre of symmetry of the pipe, the e.m. forces
due to space charge and images cannot affect the motion of the centre of
mass (coherent), but change the trajectory of individual charges in the beam
(incoherent).

These forces may have a complicate dependence on the charge position.
Our simple analysis is done by considering only the linear expansion of
the self-fields forces around the equilibrium trajectory.

The consequences are a shift and a spread of the incoherent tunes.



Consequences of the space charge tune spreads

In circular accelerators the values of the betatron tunes should not be close to
rational numbers in order to avoid the crossing of linear and non-linear
resonances where the beam becomes unstable. The spread induced by the space
charge force can make hard to satisfy this basic requirement. Typically, in order
to avoid major resonances the stability requires

ΔQu < 0.5
*

If the tune spread exceeds this limit, it is possible to reduce the effects of space
charge tune spread, e.g. by increasing the injection energy or the transverse beam
size.

The incoherent tune spread produces also a beneficial effect, called Landau
damping, which can cure the coherent instabilities, provided that the coherent
tune remains inside the incoherent spread.

*See, for example, J. Rossbach, P. Schmüser, ‘Basic course on accelerator optics’, CAS Jyväskylä 1992, CERN 
94–01, p. 76.
J. P. Delahaye, et al., Proc. 11th Int. Conf. on High Energy Accelerators, Geneva, 1980, p. 299.



CERN PS Booster accelerates proton bunches
from 50 to 800 MeV in about 0.6 s. The tunes
occupied by the particles are indicated in the
diagram by the shaded area. As time goes on, the
energy increases and the space charge tune
spread gets smaller covering at t=100 ms the tune
area shown by the darker area. The point of
highest tune corresponds to the particles which
are least affected by the space charge. This point
moves in the Q diagram since the external
focusing is adjusted such that the reduced tune
spread lies in a region free of harmful
resonances.

The small red area shows the situation at t=600 ms when the beam has reached the
energy of 800 MeV. The tune spread reduction is lower than expected with the
energy increase (1/g3) dependence since the bunch dimensions also decrease during
the acceleration.

Example from A. Hofmann in CAS 1992 (General Course - Jyväskylä Finland)



Transverse coherent effects

If the beam experiences a transverse deflection kick, it starts to perform
betatron oscillations as a whole. The beam, source of the space charge
fields moves transversely inside the pipe, but its centre of mass (X), due to
simmetry, cannot be affected by the direct space charge. Only image space
charge can affect its motion.

X
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The image charge is at a distance “d” such that
the pipe surface is at constant voltage, and pulls
the beam away from the center of the pipe.



The effect is defocusing: the horizontal electric image
field E and the horizontal force F are: 
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Example 4: coherent betatron tune shift for a uniform electron beam
of length lo=100μm, inside a circular perfectly conducting pipe of
radius b=14cm, (energy E0=1GeV, N=1010, ρx=20m, Qxo=4.15)

re =
e2

4πεomoc2  = 2.82×10−15m

ΔQxc = −
reρx

2

β 2γQx 0

N
 b2l0

≈ ?       -0.7



Consequences of the space charge forces on LINACS

For the stability it is required anyway that the defocusing space charge
forces must not be larger than the external focusing forces.

In a LINAC or a beam transport line, the space charge forces cause energy spread and
perturb the equilibrium beam size.

They can also lead to a significant longitudinal-transverse correlation of the bunch
parameters, which may produce mismatch with the focusing and accelerating devices,
thus contributing to emittance growth.

The dynamics can be studied by considering the beam as an ensemble of longitudinal
slices, for each of which it is possible to write a differential equation giving the behavior
of the transverse dimension along the machine (envelope equation).



LONGITUDINAL FORCES

E ⋅dl = − ∂
∂t!∫ B ⋅ndS

S
∫

We choose as path a rectangle
going through the beam pipe
and the beam, parallel to the
axis.

Longitudinal forces can be obtained from the knowledge of the transverse
ones.
In order to derive the relationship between the longitudinal and transverse
forces inside a beam, let us consider the case of cylindrical symmetry and
ultra-relativistic bunches. We know from Faraday's law of induction that a
varying magnetic field produces a rotational electric field:

z z+Dz
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where (1-b2)=1/g2. For perfectly conducting walls Ez=0. 
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Transverse uniform beam in a circular p.c. pipe. 



Longitudinal self fields and synchrotron motion
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Δϕ is the phase difference with respect to the synchronous particle. 
Including longitudinal space charge forces the equation becomes:

Longitudinal equations of motion for constant energy and circular machine, 
ignoring radiation damping

d ΔE( )
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ϕ is the RF phase, h the harmonic number, η the slippage factor, ΔE the
energy difference with respect to the synchronous particle
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There are numerical codes used to evaluate the space charge effects in circular accelerators and
Linacs:

ORBIT: Objective Ring Beam Injection and Tracking Code 
https://oraweb.cern.ch/pls/hhh/code_website.disp_code?code_name=ORBIT
ORBIT is a computer code designed for beam dynamics calculations in high-intensity rings. Its
intended use is the detailed simulation of realistic accelerator problems, although it is equally
applicable to idealized situations. ORBIT is a particle-in-cell tracking code in 6D phase space that
transports bunches of interacting particles through a series of nodes representing elements, dynamic
effects, or diagnostics that occur in the accelerator lattice. It can be used in combination with PTC, a
6D integrator as tracker.

GPT: General Particle Tracer
http://www.pulsar.nl/gpt/

GPT is based on full 3D particle tracking techniques, providing a basis for the study of all 3D and
non-linear effects of charged particles dynamics in electromagnetic fields. All built-in beam line
components and external 2D/3D field-maps can be arbitrarily positioned and oriented to simulate a
complicated setup-up and study the effects of misalignments. An embedded fifth order Runge-Kutta
driver with adaptive stepsize control ensures accuracy while computation time is kept to a minimum.
GPT provides various 2D and 3D space-charge models.

Numerical Analysis - 1



PARMELA: Phase and Radial Motion in Electron Linear Accelerators
http://laacg.lanl.gov/laacg/services/serv_codes.phtml#parmela

PARMELA is a multi-particle beam dynamics code used primarily for electron-linac beam
simulations. It is a versatile code that transports the beam, represented by a collection of particles,
through a user-specified linac and/or transport system. It includes several space-charge calculation
methods. Particle trajectories are determined by numerical integration through the fields. This
approach is particularly important for electrons where some of the approximations used by other
codes (e.g. the "drift-kick" method commonly used for low-energy protons) would not hold.

PARMILA: Phase And Radial Motion in Ion Linear Accelerators 
http://www.lanl.gov/projects/feynman-center/technologies/software/parmila.php

Parmila has been the standard code for the design of RF linacs for many years. The enhanced, second
generation, PARMILA 2 program is utilized in the PBO Lab PARMILA-2 Module. The Module is
ideally suited for the design of complex ion accelerator components such as drift tube linacs (DTLs),
coupled cavity linacs (CCLs), coupled-cavity drift tube linacs (CC-DTLs) and superconducting linacs
(SCLs). The program offers two different multi-particle space charge algorthims which permits
comparing different high beam current modeling approximations. The PARMILA-2 Module is also
useful for the simulation of intense beams in transport channels and for studying beam loss,
misalignments, cavity mispowering, and similar off-nominal operation.

Numerical Analysis - 2


