Conclusion for Beam Diagnostics Course

Diagnostics is the 'organ of sense' for the beam.

It required for operation and development of accelerators

Four types of demands leads to different installations:

- ➤ Quick, non-destructive measurements leading to a single number or simple plots.
- ➤ Instrumentation for daily check, malfunction diagnosis and wanted parameter variation.
- > Complex instrumentation used for hard malfunction and accelerator development.
- ➤ Automated measurement and control of beam parameters i.e. feedback

A clear interpretation of the results is a important design criterion.

General comments:

- ➤ Good knowledge of accelerators, general physics and technologies needed.
- ➤ Quite different technologies are used, based on various physics processes.
- Each task and each technology calls for an expert.
- ➤ Accelerator development goes parallel to diagnostics development.
- ⇒ Interesting and challenging subject!

Beam Quantities and their Diagnostics I

LINAC & transport lines: Single pass ↔ **Synchrotron:** multi pass

Electrons: always relativistic \leftrightarrow **Protons/Ions:** non-relativistic for $E_{kin} < 1$ GeV/u

Depending on application: Low current ↔ high current

Overview of the most commonly used systems:

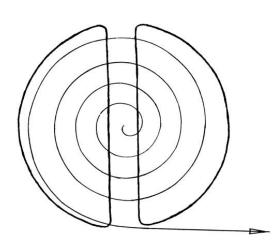
Beam quantity		LINAC & transfer line	Synchrotron
Current I	General	Transformer, dc & ac	Transformer, dc & ac
		Faraday Cup	
	Special	Particle Detectors	Pick-up Signal (relative)
Profile x _{width}	General	Screens, SEM-Grids	Ionization Profile Monitor
,,, ,,,,,		Wire Scanners, OTR Screen	Wire Scanner,
			Synchrotron Light Monitor
	Special	MWPC, Fluorescence Light	
Position x _{cm}	General	Pick-up (BPM)	Pick-up (BPM)
	Special	Using position measurement	
Transverse Emittance ε_{tran}	General	Slit-grid	Ionization Profile Monitor
		Quadrupole Variation	Wire Scanner
	Special	Pepper-Pot	Transverse Schottky

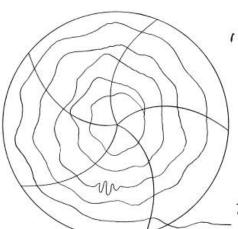
Beam Quantities and their Diagnostics II

Beam quantity		LINAC & transfer line	Synchrotron
Bunch Length Δφ	General	Pick-up	Pick-up
	Special	Secondary electrons	Wall Current Monitor Streak Camera Electro-optical laser mod.
Momentum p and	General	Pick-ups (Time-of-Flight)	Pick-up (e.g. tomography)
Momentum Spread <i>∆p/p</i>	Special	Magnetic Spectrometer	Schottky Noise Spectrum
Longitudinal Emittance	General	Buncher variation	
ϵ_{long}	Special	Magnetic Spectrometer	Pick-up & tomography
Tune and Chromaticity Q , ξ	General		Exciter + Pick-up
	Special		Transverse Schottky Spectrum
Beam Loss r _{loss}	General	Particle Detectors	
Polarization P	General	Particle Detectors	
	Special	Laser Scattering (Compton scattering)	
Luminocity L	General	Particle Detectors	

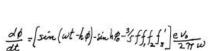
- ➤ Destructive and non-destructive devices depending on the beam parameter.
- ➤ Different techniques for the same quantity ↔ Same technique for the different quantities.

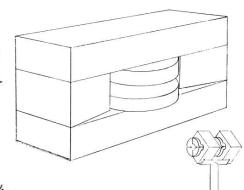
Conclusion for Beam Diagnostics Course



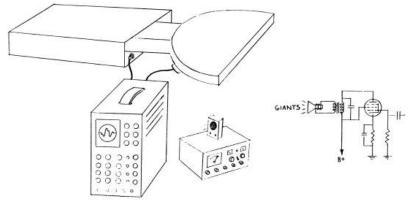


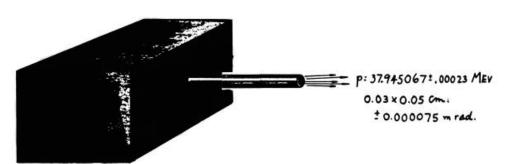
For a successful construction and operation of an accelerator, the understand and right balance of all disciplines is required!


An Cyclotron Accelerator Facility as seen by....



 $I = I_{0} \left[1 + \left(\frac{f_{rw}}{c} \right) \cos(30 + \delta_{0} + \delta_{1} r) + \left(\frac{f_{rw}}{c} \right)^{2} \cos(50 + \delta_{3} - \delta_{5} r^{3}) + \left(\frac{f_{rw}}{c} \right)^{2} \cos(70 + \delta_{7} - \delta_{7} r^{3}) + \cdots \right] \times \left\{ \frac{e^{2/5} r^{2} \ln Z}{1 + \left(\frac{a}{r} \right)^{2/4}} \right\}$

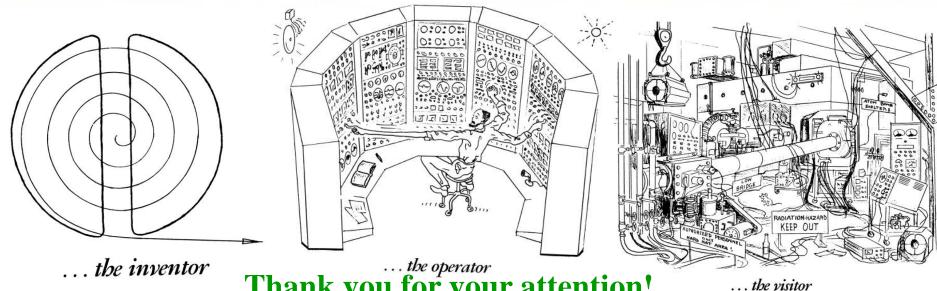



... the inventor

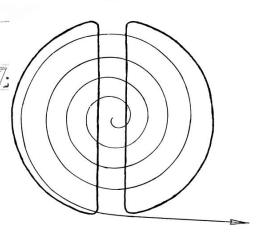
... the theoretical physicist

... the mechanical engineer

... the electrical engineer



... the experimental physicist


Cartoons by Dave Judd and Ronn Mackenzie

A Cyclotron Accelerator Facility as seen by....

Thank you for your attention!

... the laboratory director

... the governmental funding agency

... the student

Cartoons by Dave Judd and Ronn Mackenzie