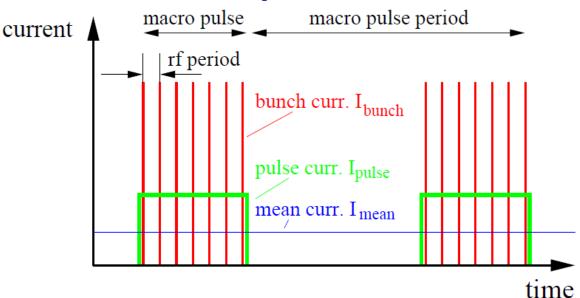
Measurement of Beam Current

The beam current is the basic quantity of the beam.

- ➤ It this the first check of the accelerator functionality
- ➤ It has to be determined in an absolute manner
- ➤ Important for transmission measurement and to prevent for beam losses.

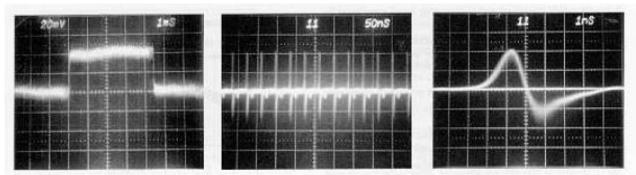
Different devices are used:

- Transformers: Measurement of the beam's magnetic field
 They are non-destructive. No dependence on beam energy
 They have lower detection threshold.
- Faraday cups: Measurement of the beam's electrical charges
 They are destructive. For low energies only
 Low currents can be determined.
- ➤ Particle detectors: Measurement of the particle's energy loss in matter


 Examples are scintillators, ionization chambers, secondary e− emission monitors

 Used for low currents at high energies e.g. for slow extraction from a synchrotron.

Beam Structure of a pulsed LINAC



One distinguish between:

- \triangleright Mean current I_{mean}
- \rightarrow long time average in [A]
- \triangleright Pulse current I_{pulse}
- \rightarrow during the macro pulse in [A]
- ► Bunch current *I*_{bunch}
- → during the bunch in [C/bunch] or [particles/bunch]

Remark: Van-de-Graaff (ele-static):

→ no bunch structure

Example:

Pulse and bunch structure at GSI LINAC:

Magnetic field of the beam and the ideal Transformer

Beam current of
$$N_{part}$$
 charges with velocity β

$$I_{beam} = qe \cdot \frac{N_{part}}{t} = qe \cdot \beta c \cdot \frac{N_{part}}{l}$$

- > cylindrical symmetry
- → only azimuthal component

$$\vec{B} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{e_{\varphi}}$$

Example: $I = 1 \mu A$, $r = 10 \text{cm} \Rightarrow B_{heam} = 2 \text{pT}$, earth $B_{earth} = 50 \mu T$

Idea: Beam as primary winding and sense by sec. winding.

⇒ Loaded current transformer

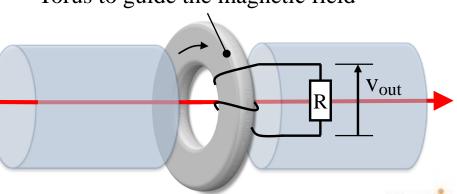
$$I_1/I_2 = N_2/N_1 \Rightarrow I_{sec} = 1/N \cdot I_{beam}$$

 \triangleright Inductance of a torus of μ_r

$$L = \frac{\mu_0 \mu_r}{2\pi} \cdot lN^2 \cdot \ln \frac{r_{out}}{r_{in}}$$

 \triangleright Goal of torus: Large inductance Land guiding of field lines.

Definition: $U = L \cdot dI/dt$

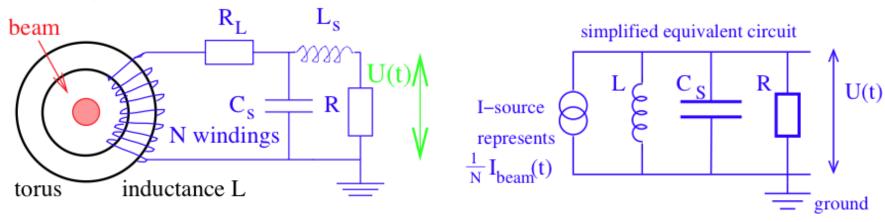

Torus to guide the magnetic field

magnetic field B

at radius r:

 $B \sim 1/r$

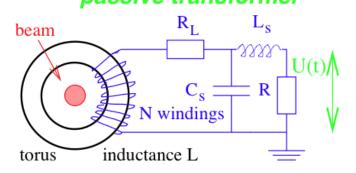
 $\overrightarrow{B} \parallel \overrightarrow{e}_{0}$

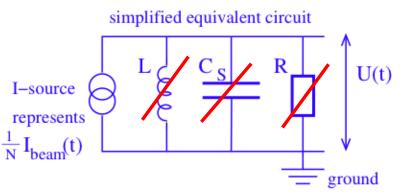


Passive Transformer (or Fast Current Transformer FCT)

Simplified electrical circuit of a passively loaded transformer:

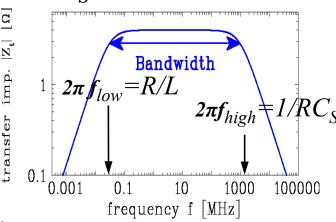
passive transformer


A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with S sensitivity [V/A], equivalent to transfer function or transfer impedance Z


Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)

Bandwidth of a Passive Transformer

Analysis of a simplified electrical circuit of a passively loaded transformer: passive transformer


For this parallel shunt:

$$\frac{1}{Z} = \frac{1}{i\omega L} + \frac{1}{R} + i\omega C_S \Leftrightarrow Z = \frac{i\omega L}{1 + i\omega L/R - \omega L/R \cdot \omega RC_S}$$

$$\geq Low frequency \omega \ll R/L : Z \rightarrow i\omega L$$

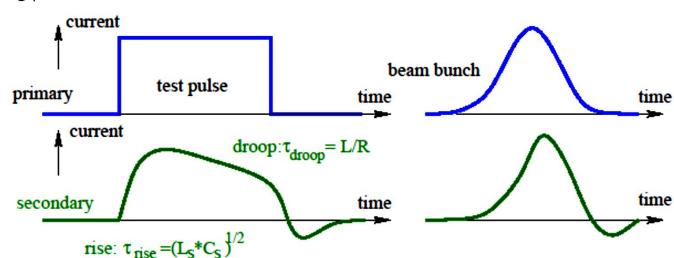
- - i.e. no dc-transformation
- \gt High frequency $\omega \gt\gt 1/RC_S: Z\to 1/i\omega C_S$
 - i.e. current flow through $C_{\rm s}$
- \triangleright Working region $R/L < \omega < 1/RC_S : Z \simeq R$
 - i.e. voltage drop at R and sensitivity S=R/N.

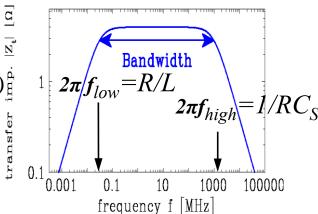
No oscillations due to over-damping by low $R = 50 \Omega$ to ground.

Response of the Passive Transformer: Rise and Droop Time

Time domain description:

Droop time: $\tau_{droop} = 1/(2\pi f_{low}) = L/R$

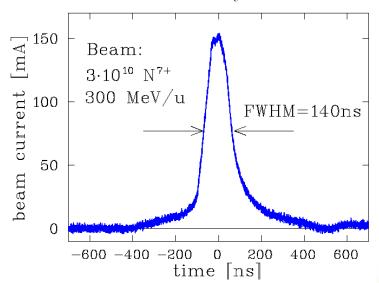

Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = 1/RC_S$ (ideal without cables)


Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_S C_s}$ (with cables)

 R_L : loss resistivity, R: for measuring.

For the working region the voltage output is

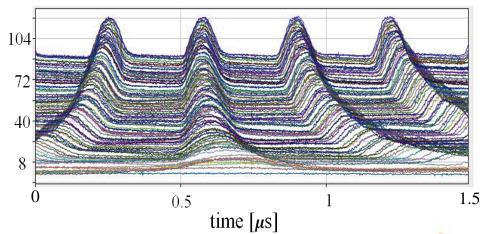
$$U(t) = \frac{R}{N} \cdot e^{-t/\tau_{droop}} \cdot I_{beam}$$


Example for passive Transformer

For bunch beams e.g. transfer between synchrotrons typical bandwidth of 2 kHz < f < 1 GHz $\Leftrightarrow 1 \text{ ns} < t \approx 1/f < 200 \text{ µs}$ is well suited *Example GSI type:*

Inner / outer radius	70 / 90 mm
Torus thickness	16 mm
Torus material	(CoFe) _{70%} (MoSiB) _{30%}
Permeability	$\mu_r \approx 10^5 \text{ for } f < 100 \text{kHz}$
	$\mu_{\rm r} \propto 1/{\rm f}$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{\text{rise}} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 300 MHz

Fast extraction from GSI synchrotron:

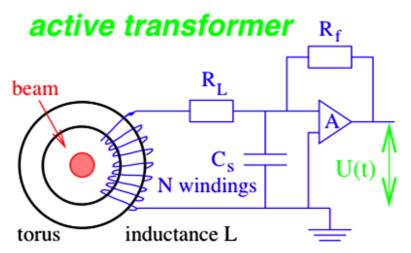

Example for passive Transformer

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz $\Leftrightarrow 1 \text{ ns} < t \approx 1/f < 200 \text{ µs}$ is well suited *Example GSI type:*

	1 71		
	Inner / outer radius	70 / 90 mm	
RMS bunch length $[\mu s]$	Torus thickness	16 mm	
	Torus material	(CoFe) _{70%} (MoSiB) _{30%}	
	Permeability	$\mu_r \approx 10^5 \text{ for } f < 100 \text{kHz}$ $\mu_r \propto 1/f \text{ above}$	
	Windings	10	
	Sensitivity	4 V/A for R = 50Ω	
	Droop time $\tau_{droop} = L/R$	0.2 ms)31
	Rise time $\tau_{\text{rise}} = \sqrt{L_S C_S}$	1 ns	CIC18 [103
	Bandwidth	2 kHz 300 MHz	× - ×
	0,10		evolutions in STS
SMS bunc	0,06		Pevolut
	0 30 Revolution	$\frac{60}{10^3}$ 90 s in SIS18 [10^3]	ľ

Example: U⁷³⁺ from 11 MeV/u (β = 15 %) to 350 MeV/u within 300 ms (displayed every 0.15 ms)

'Active' Transformer with longer Droop Time



Active Transformer or Alternating Current Transformer ACT:

uses a trans-impedance amplifier (I/U converter) to $R \approx 0 \Omega$ load impedance i.e. a current sink

- + compensation feedback
- \Rightarrow longer droop time au_{droop}

Application: measurement of longer $t > 10 \mu s$ e.g. at pulsed LINACs

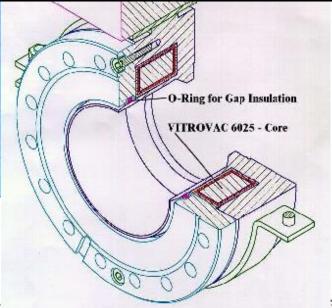
The input resistor is for an op-amp: $R_f/A \ll R_L$

$$\Rightarrow au_{droop} = L/(R_f/A + R_L) \simeq L/R_L$$

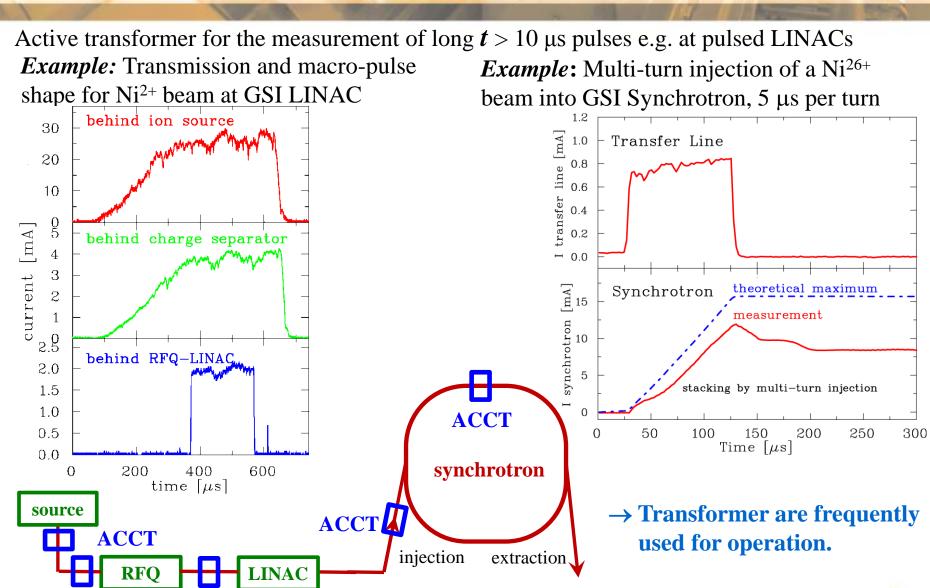
Droop time constant can be up to 1 s!

The feedback resistor is also used for range switching.

An additional active feedback loop is used to compensate the droop.

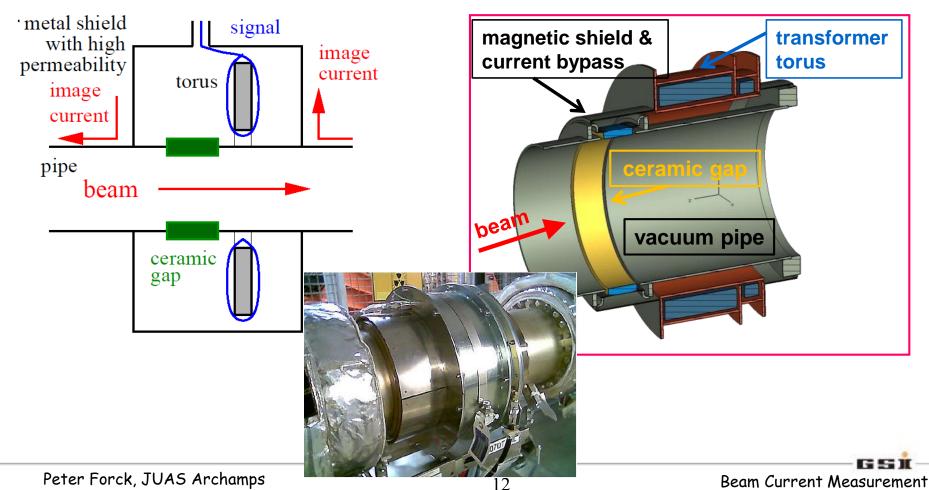

'Active' Transformer Realization

Active transformer for the measurement of long $t > 10 \mu s$ pulses e.g. at pulsed LINACs



Torus inner radius $r_i=30 \text{ mm}$ $r_o=45 \text{ mm}$ **Torus outer radius Core thickness** *l*=25 mm Vitrovac 6025 Core material (CoFe)_{70%} (MoSiB)_{30%} $u_r = 10^5$ **Core permeability Number of windings** 2x10 crossed Max. sensitivity $10^6 \, \text{V/A}$ Beam current range $10 \mu A$ to 100 mA**Bandwidth** 1 MHz 0.5 % for 5 ms Droop rms resolution 0.2 μA for full bw

'Active' Transformer Measurement



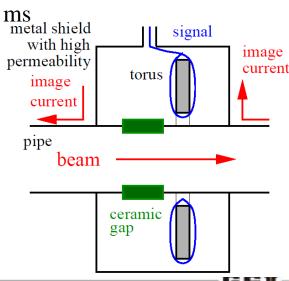
Shielding of a Transformer

Task of the shield:

- ➤ The image current of the walls have to be bypassed by a gap and a metal housing.
- This housing uses μ -metal and acts as a shield of external B-field (remember: $I_{beam} = 1 \mu A$, $r = 10 \text{ cm} \Rightarrow B_{beam} = 2 \text{pT}$, earth field $B_{earth} = 50 \mu \text{T}$)

Design Criteria for a Current Transformer

Criteria:

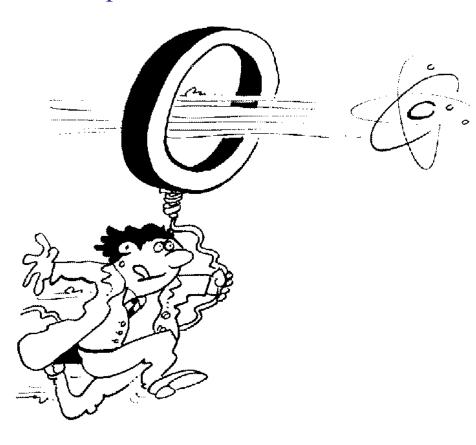

- 1. The output voltage is $U \propto 1/N \Rightarrow$ low number of windings for large signal.
- 2. For a low droop, a large inductance L is required due to $\tau_{droop} = L/R$: $L \propto N^2$ and $L \propto \mu_r (\mu_r \approx 10^5 \text{ for amorphous alloy})$
- 3. For a large bandwidth the integrating capacitance C_s should be low $\tau_{rise} = \sqrt{L_s C_s}$

Depending on applications the behavior is influenced by external elements:

- Passive transformer: $R = 50 \Omega$, $\tau_{rise} \approx 1$ ns for short pulses Application: Transfer between synchrotrons : 100 ns $< t_{pulse} < 10$ μs
- Active transformer: Current sink by I/U-converter, $\tau_{droop} \approx 1$ s for long pulses *Application:* macro-pulses at LINACs : 100 µs $< t_{pulse} < 10$ ms metal shield

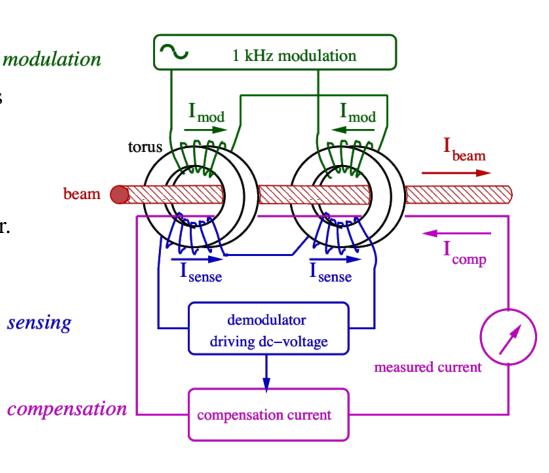
General:

- The beam pipe has to be intersected to prevent the flow of the image current through the torus
- ➤ The torus is made of 25 μm isolated flat ribbon spiraled to get a torus of ≈15 mm thickness, to have large electrical resistivity
- ➤ Additional winding for calibration with current source

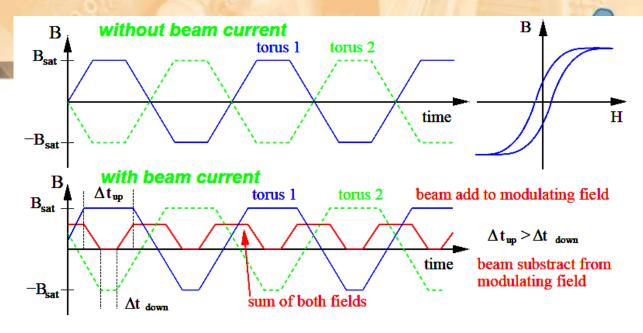

The Artist' View of Transformers

The active transformer ACCT

The passive, fast transformer FCT


Cartoons by Company Bergoz, Saint Genis

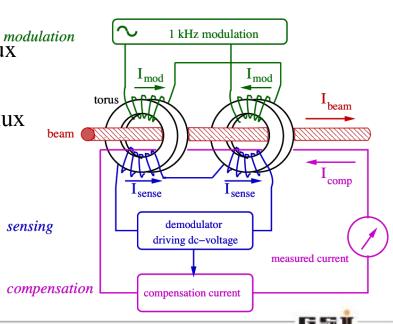
The dc Transformer



How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow look at the magnetic saturation of two torii.

- ➤ Modulation of the primary windings forces both torii into saturation twice per cycle
- ➤ Sense windings measure the modulation signal and cancel each other.
- \triangleright But with the I_{beam} , the saturation is shifted and I_{sense} is not zero
- ightharpoonup Compensation current adjustable until I_{sense} is zero once again

The dc Transformer


➤ Modulation without beam:

typically about 1 kHz to saturation \rightarrow **no** net flux

➤ Modulation with beam:

saturation is reached at different times, \rightarrow net flux

- ➤ Net flux: double frequency than modulation
- ➤ Feedback: Current fed to compensation winding for larger sensitivity
- ➤ Two magnetic cores: Must be very similar.

The dc Transformer Realization

Example: The DCCT at GSI synchrotron (designed 1990 at GSI):

Core radii $r_i = 135 \text{ mm}, r_o = 145 \text{mm}$

Core thickness 10 mm

Core material Vitrovac 6025: (CoFe)_{70%} (MoSiB)_{30%}

Core permeability $\mu_r \simeq 10^5$ Saturation $B_{sat} \simeq 0.6 \text{ T}$ Isolating cap Al_2O_3

Number of windings 16 for modulation and sensing

12 for feedback

Ranges for beam current 300 μ A to 1 A

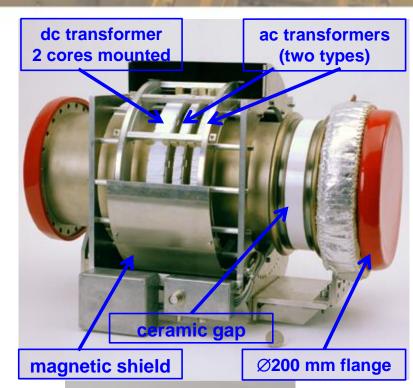
Resolution $2 \mu A$

Bandwidth dc to 20 kHz

rise time $20 \mu s$

Offset compensation $\pm 2.5 \mu A$ in auto mode

 $< 15 \,\mu\text{A/day}$ in free run

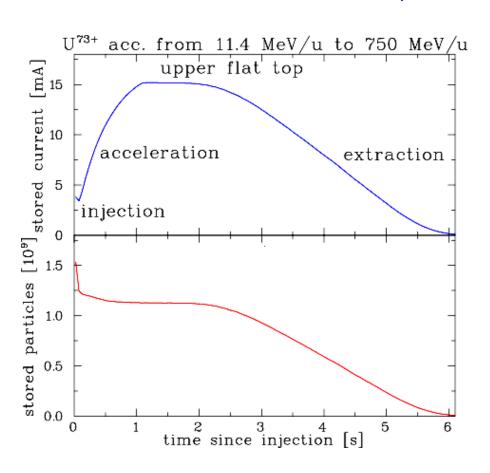

temperature coeff. $1.5 \,\mu\text{A}/^{\circ}\text{C}$

Recent commercial product specification (Bergoz NPCT):

Most parameters are comparable the GSI-model

Temperature coefficient $0.5 \,\mu\text{A}/^{\circ}\text{C}$

Resolution $\approx 10 \,\mu\text{A}$ (i.e. not optimized)

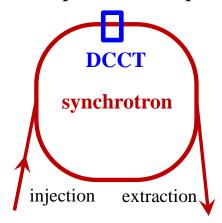


Measurement with a dc Transformer

Example: The DCCT at GSI synchrotron:

 \Rightarrow Observation of beam behavior with 20 µs time resolution \rightarrow important operation tool.

Important parameter:

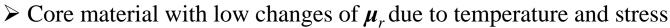

Detection threshold: 1 μA (= resolution)

Bandwidth: dc to 20 kHz

Rise-time: 20 µs

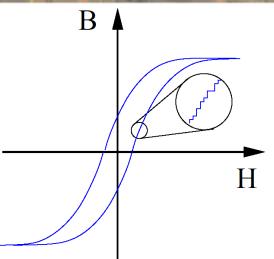
Temperature drift: $1.5 \,\mu\text{A}/^{0}\text{C}$

 \Rightarrow compensation required.



Design Criteria and Limitations for a dc Transformer

Careful shielding against external fields with μ -metal.

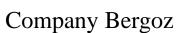

- ➤ High resistivity of the core material to prevent for eddy current
 - \Rightarrow thin, insulated strips of alloy.
- ➤ Barkhausen noise due to changes of Weiss domains
 - \Rightarrow unavoidable limit for **DCCT**.

- ⇒ low micro-phonic pick-up.
- \triangleright Thermal noise voltage $U_{eff} = \sqrt{4k_BT \cdot R \cdot f}$
 - \Rightarrow design for only required bandwidth f, low input resistor R preferred.
- > Preventing for flow of secondary electrons through the core
 - ⇒ need for well controlled beam centering close to the transformer.
 - ⇒ The current limits are: ≈ 1 µA for DCCT

 ≈ 30 µA for FCT with 500 MHz bandwidth

 $\approx 0.3 \mu A$ for ACT with 1 MHz bandwidth.

The Artist' View of Transformers



The passive, fast transformer FCT

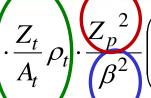
The dc transformer DCCT

100,001

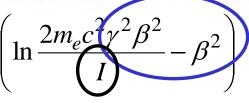
Measurement of Beam Current

The beam current is the basic quantity of the beam.

- ➤ It this the first check of the accelerator functionality
- ➤ It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.

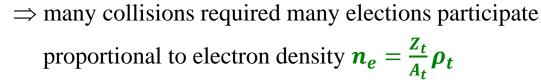

Different devices are used:

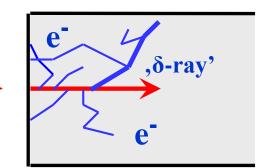
- Transformers: Measurement of the beam's magnetic field
 They are non-destructive. No dependence on beam energy
 They have lower detection threshold.
- Faraday cups: Measurement of the beam's electrical charges
 They are destructive. For low energies only
 Low currents can be determined.
- ➤ Particle detectors: Measurement of the particle's energy loss in matter Examples are scintillators, ionization chambers, secondary e− emission monitors Used for low currents at high energies e.g. for slow extraction from a synchrotron.


Excurse: Energy Loss of Ions in Copper

Bethe Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \left(\frac{Z_t}{A_t} \rho_t \right) \cdot \frac{Z_p^2}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} \right)$$




beam



Semi-classical approach:

- > Projectiles of mass *M* collide
- with free electrons of mass *m*

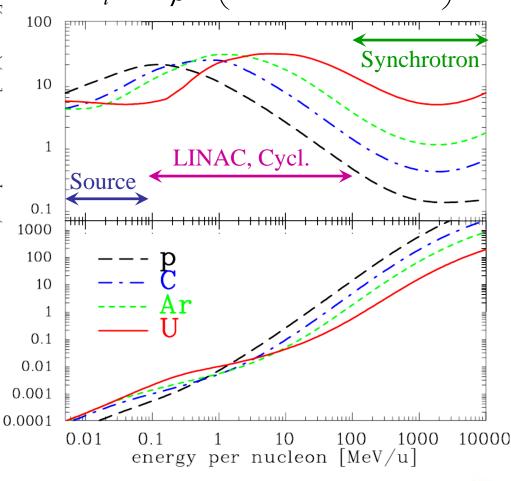
- ⇒ low straggling for the heavy projectile i.e. 'straight trajectory'
- \triangleright If projectile velocity $\beta \approx 1$ low relative energy change of projectile (γ is Lorentz factor)
- \triangleright I is mean ionization potential including kinematic corrections $I \approx Z_t \cdot 10 \ eV$ for most metals
- \triangleright Strong dependence an projectile charge \mathbb{Z}_p
- Constants: N_A Advogadro number, r_e classical e⁻ radius, m_e electron mass, c velocity of light

Excurse: Energy Loss of Ions in Copper

Bethe Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot \frac{Z_p^2}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 \right)$$

Range:
$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$

with approx. scaling $R \propto E_{max}^{1.75}$

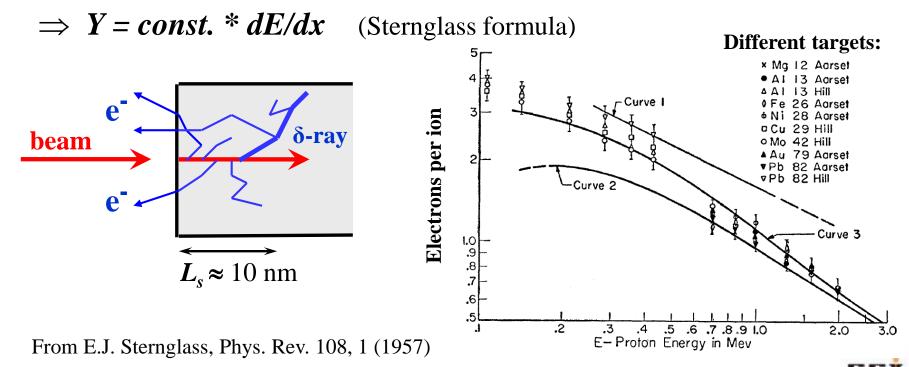

Numerical calculation

with semi-empirical model e.g. SRIM

Main modification $Z_p o Z^{eff}_{p}(E_{kin})$

 \Rightarrow Cups only for

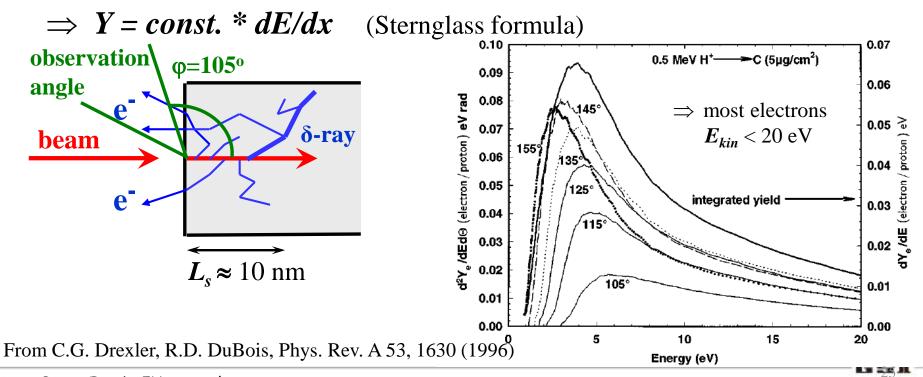
 E_{kin} < 100 MeV/u due to R < 10 mm


Excurse: Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:

- Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} >> 100 \text{ eV}$
- Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \le 10 \text{ eV}$
- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface ≈ 90 % probability for escape

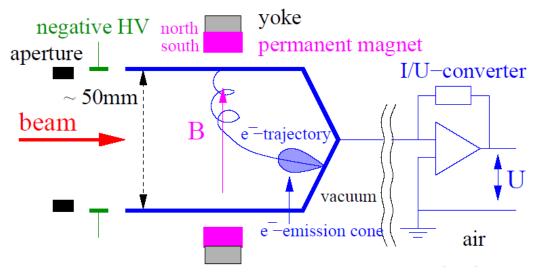
Secondary electron yield and energy distribution comparable for all metals!


Excurse: Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:

- Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} >> 100 \text{ eV}$
- Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \le 10 \text{ eV}$
- \rightarrow 'diffusion' & scattering with other e: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface ≈ 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!



Faraday Cups for Beam Charge Measurement

The beam particles are collected inside a metal cup

 \Rightarrow The beam's charge are recorded as a function of time.

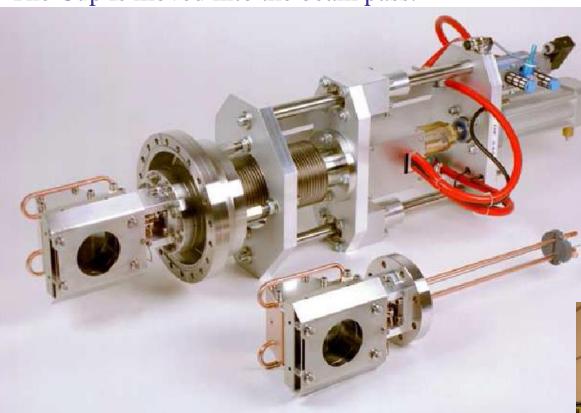
Currents down to 10 pA with bandwidth of 100 Hz!

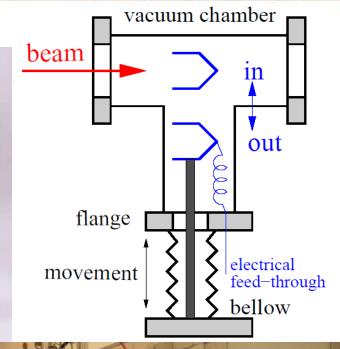

Magnetic field:

To prevent for secondary electrons leaving the cup *and/or*

Electric field:

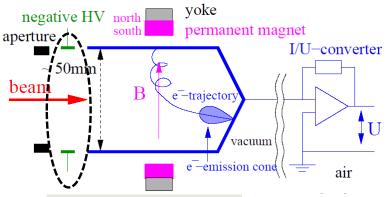
Potential barrier at the cup entrance.

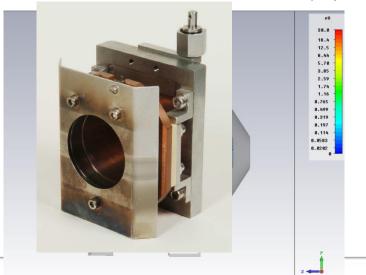

The cup is moved in the beam pass → destructive device

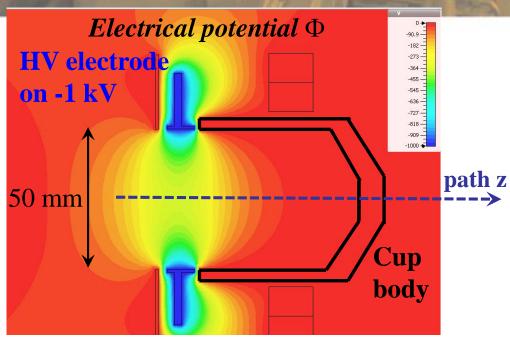


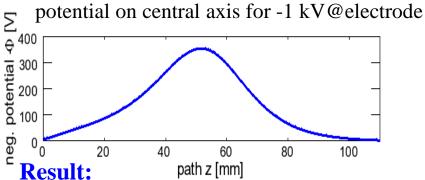
Realization of a Faraday Cup at GSI LINAC

The Cup is moved into the beam pass.

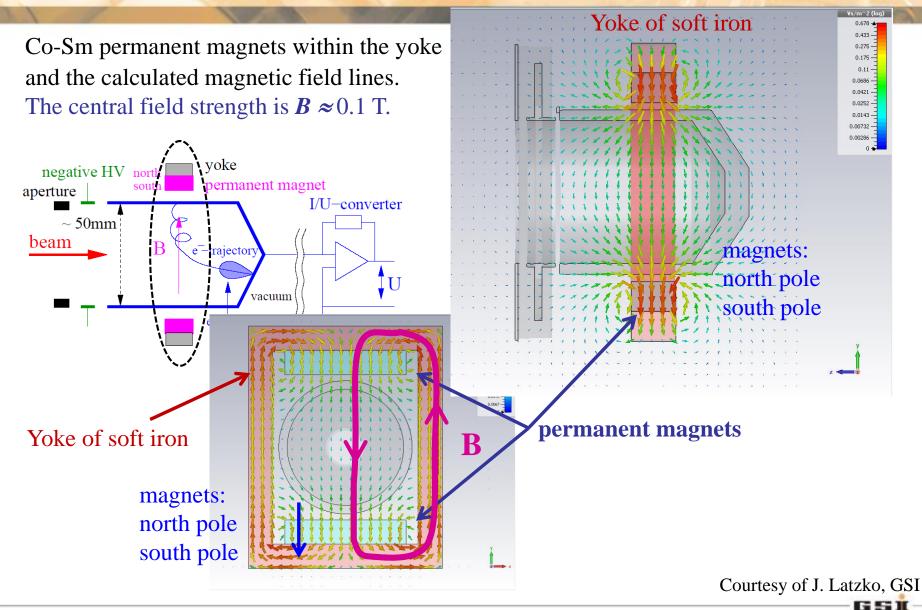





Secondary Electron Suppression: Electric Field



A ring shaped electrode is used at the entrance of Faraday Cup: Typical voltage 100 to 1000 V


here: potential at center ≈ 35 % of applied voltage

Courtesy of J. Latzko, GSI

Beam Current Measurement

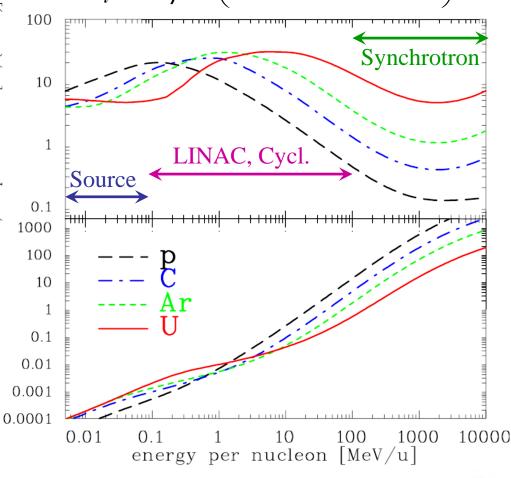
Secondary Electron Suppression: Magnetic Field

Energy Loss of Ions in Copper

Bethe Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot \frac{Z_p^2}{\beta^2} \left(\ln \frac{2m_e c^2 \gamma^2 \beta^2}{I} - \beta^2 \right)$$

Range:
$$R = \int_{0}^{E_{\text{max}}} \left(\frac{dE}{dx}\right)^{-1} dE$$

with approx. scaling $R \propto E_{max}^{1.75}$


Numerical calculation

with semi-empirical model e.g. SRIM

Main modification $Z_p o Z^{eff}_{p}(E_{kin})$

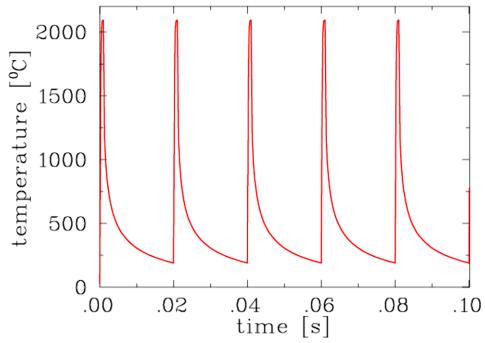
 \Rightarrow Cups only for

 E_{kin} < 100 MeV/u due to R < 10 mm

Faraday Cups for high Intensity Ion Beam -> Surface Heating

The heating of material has to be considered, given by the energy loss. The cooling is done by radiation due to Stefan-Boltzmann: $P_r = \varepsilon \sigma T^4$

Example: Beam current: 11.4 MeV/u Ar¹⁰⁺ with 10 mA and 1 ms beam delivery

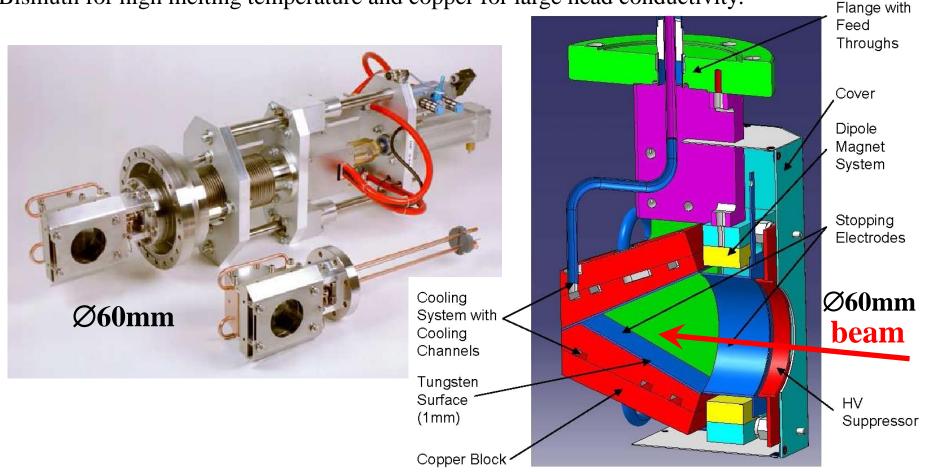

Beam size: 5 mm FWHM \rightarrow 23 kW/mm², $P_{peak} = 450$ kW total power during 1ms delivery

Foil: 1 μ m Tantalum, emissivity $\varepsilon = 0.49$

Temperature increase:

T > 2000 0 C during beam delivery

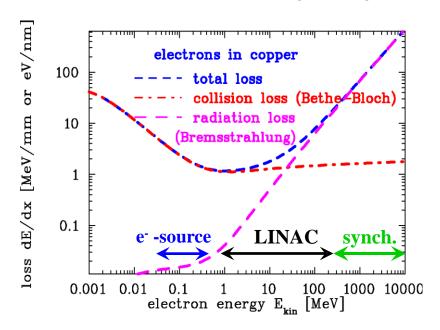
Even for low average power, the material should survive the peak power!


High Power Faraday Cups

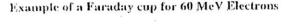
Connecting

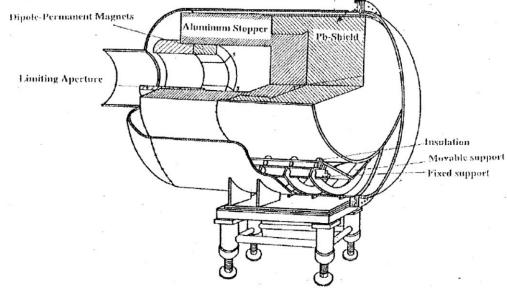
Cups designed for 1 MW, 1 ms pulse power → cone of Tungsten-coated Copper

Bismuth for high melting temperature and copper for large head conductivity.



Energy Loss of Electrons in Copper & Faraday Cups of e-




Collisional loss by Bethe-Bloch formula $dE/dx \mid_{col} \propto f(E_{kin}) \cdot Z_t$ is valid for all charged particles. However, radiation loss $dE/dx \mid_{rad}$ by Bremsstrahlung (i.e. γ -rays of some MeV) dominates for energies above $E_{kin} > 10$ MeV with the scaling $dE/dx \mid_{rad} \propto E_{kin} \cdot Z_t^2$.

Moreover, e- shows much larger longitudinal and transverse straggling.

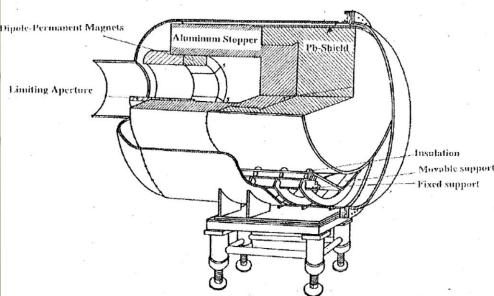
Minimum of Bethe-Bloch dE/dx /_{col} roughly at $E_{kin} \approx m_0 c^2 = 511$ keV (rest mass) $\Leftrightarrow \beta \approx 90 \%$ and $\gamma = \frac{1}{\sqrt{1-\beta^2}} \approx 2$

Al stopper: Stopping of e⁻ gently in low-Z material Pb-shield: Absorption of Bremsstrahlungs-γ

 \Rightarrow Used as beam dump

33

Energy Loss of Electrons in Copper & Faraday Cups of e-



Collisional loss by Bethe-Bloch formula $dE/dx \mid_{col} \propto f(E_{kin}) \cdot Z_t$ is valid for all charged particles. However, radiation loss $dE/dx \mid_{rad}$ by Bremsstrahlung (i.e. γ -rays of some MeV) dominates for energies above $E_{kin} > 10$ MeV with the scaling $dE/dx \mid_{rad} \propto E_{kin} \cdot Z_t^2$.

Moreover, e- shows much larger longitudinal and transverse straggling.

Faraday Cup at ALBA used as beam dump From U. Iriso (ALBA)

Example of a Faraday cup for 60 MeV Electrons

Al stopper: Stopping of e⁻ gently in low-Z material Pb-shield: Absorption of Bremstrahlungs-γ ⇒ Used as beam dump

Measurement of Beam Current

The beam current is the basic quantity of the beam.

- ➤ It this the first check of the accelerator functionality
- ➤ It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.

Different devices are used:

- Transformers: Measurement of the beam's magnetic field
 They are non-destructive. No dependence on beam energy
 They have lower detection threshold.
- Faraday cups: Measurement of the beam's electrical charges
 They are destructive. For low energies only
 Low currents can be determined.
- ➤ Particle detectors: Measurement of the particle's energy loss in matter

 Examples are scintillators, ionization chambers, secondary e− emission monitors

 Used for low currents at high energies e.g. for slow extraction from a synchrotron.

Low Current Measurement for slow Extraction

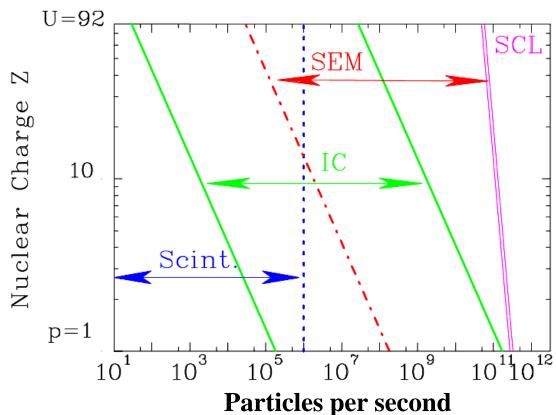
Slow extraction from synchrotron: lower current compared to LINAC, but higher energies and larger range R >> 1 cm.

Particle detector technologies for ions of 1 GeV/u, $A = 1 \text{ cm}^2$:

▶ Particle counting:

max:
$$r \simeq 10^6 \text{ 1/s}$$

Energy loss in gas (IC):


min: $I_{sec} \approx 1 \text{ pA}$ max: $I_{sec} \approx 1 \text{ µA}$

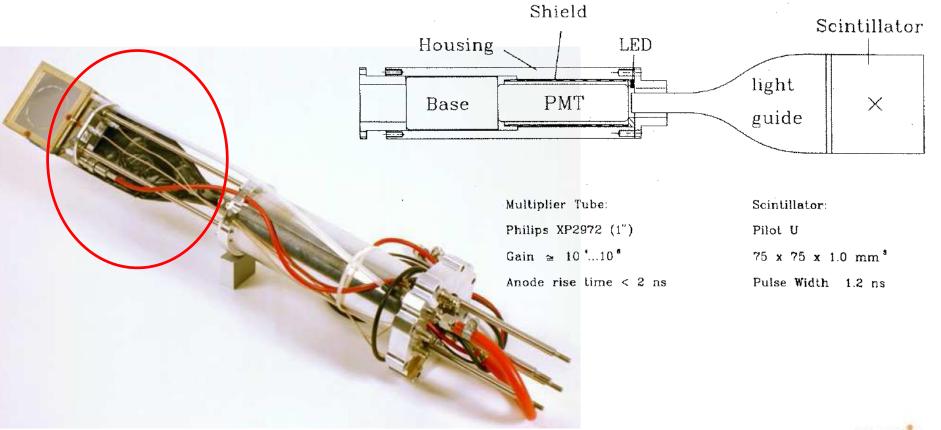
➤ Sec. e– emission:

min: $I_{sec} \approx 1 \text{ pA}$

➤ Max. synch. filling:

Space Charge Limit (SCL).

Example of Scintillator Counter



Example: Plastic Scintillator i.e. organic fluorescence molecules in a plastic matrix

Advantage: any mechanical from, cheap, blue wave length, fast decay time

Disadvantage: not radiation hard

Particle counting: PMT \rightarrow discriminator \rightarrow scalar \rightarrow computer

Low Current Measurement: Particle Detectors

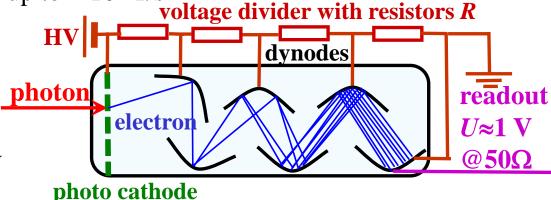
Electronic solid state amplifier have finite noise contribution

Theoretical limit:
$$U_{eff} = \sqrt{4k_B \cdot R \cdot \Delta f \cdot T}$$

Signal-to-Noise ratio limits the minimal detectable current

Idea: Amplification of single particles with photo-multiplier, sec. e⁻ multiplier or MCPs

and particle counting typically up to $\approx 10^6 \text{ 1/s}$

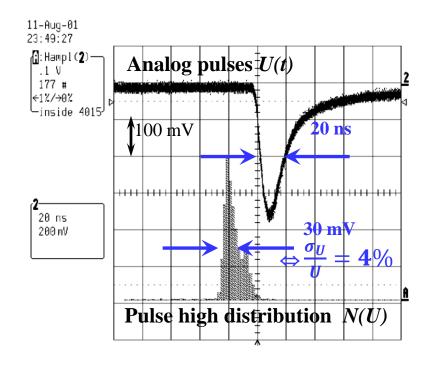

Scheme of a photo-multiplier:

> Photon hits photo cathode

Secondary electrons are acc. to next dynode $\Delta U \approx 100 \text{ V}$

> Typ. 10 dynodes \Rightarrow 10⁶ fold amplification

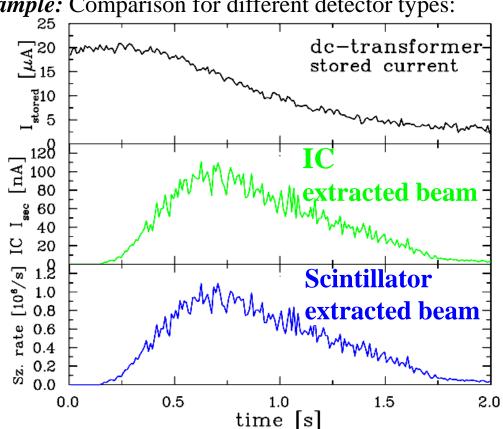
Advantage: no thermal noise due to electro static acceleration Typical 1 V signal output

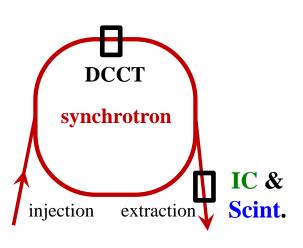

Properties of a good Scintillator

Properties of a good scintillator:

- ➤ Light output linear to energy loss
- \triangleright Fast decay time \rightarrow high rate
- ➤ No self-absorption
- Wave length of fluorescence $350 \text{ nm} < \lambda < 500 \text{ nm}$
- ➤ Index of refractivity $n \approx 1.5$ → light-guide
- Radiation hardness
 e.g. Ce-activated inorganic
 are much more radiation hard.

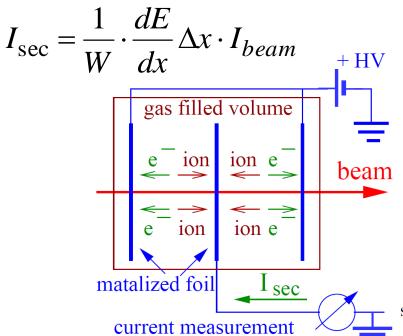
Analog pulses from a plastic sc. with a low current 300 MeV/u Kr beam.


The scaling is 20 ns/div and 100 mV/div.


Monitoring of Slow Extraction

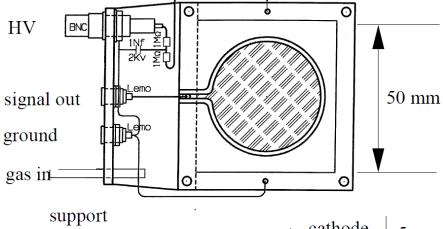
Slow extraction from a synchrotron delivers countable currents

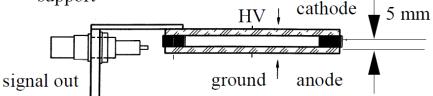
Example: Comparison for different detector types:



Parameters: dc-transformer inside the synch., ionization chamber and scintillator for a 250 MeV/u Pb $^{67+}$ beam with a total amount of 10^6 particles.

Ionization Chamber (IC): Electron Ion Pairs

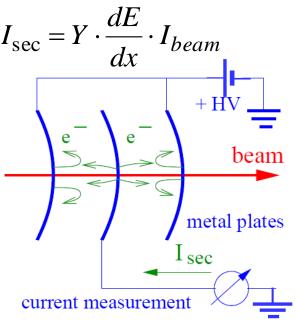

Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow low current meas.



W is average energy for one e^- -ion pair:

Gas	ioni. pot. [eV]	W-value [eV]
${\rm He}$	24.5	42.7
O_2	12.5	32.2
Ar	15.7	26.3
CH_4	14.5	29.1
CO_2	13.7	33.0

Example: GSI typeactive surface $64 \times 64 \text{ mm}^2$ active length Δx 5 mmelectrode material $1.5 \mu \text{m Mylar}$ coating $100 \mu \text{g/cm}^2 \text{ silver}$ gas (flowing) $80 \% \text{ Ar} + 20 \% \text{CO}_2$ pressure1 barvoltage $500 \dots 2000 \text{ V}$


Secondary Electron Monitor (SEM): Electrons from Surface

For higher intensities SEMs are used.

Due to the energy loss, secondary e⁻ are emitted from a metal surface.

The amount of secondary e⁻ is proportional to the energy loss

It is a *surface* effect:

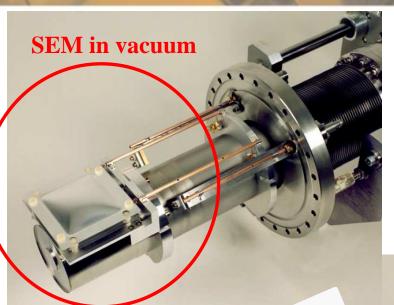
- → Sensitive to cleaning procedure
- → Possible surface modification by radiation

Example: GSI SEM type

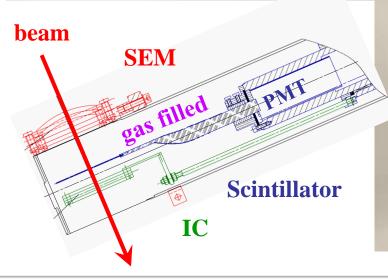
material	pure Al (≃99.5%)
# of electrodes	3
active surface	$80 \times 80 \text{ mm}^2$
distance	5 mm
voltage	100 V

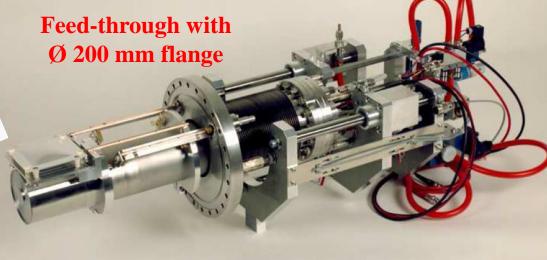
Advantage for Al: good mechanical properties.

Disadvantage: Surface effect!


e.g. decrease of yield *Y* due to radiation

 \Rightarrow Ti foils for a permanent insertion.


Sometimes they are installed permanently in front of an experiment.


GSI Installation for SEM, IC and Scintillator

P. Forck et al., DIPAC'97

Summary for Current Measurement

Current is the basic quantity for accelerators!

Transformer: → measurement of the beam's magnetic field

- > magnetic field is guided by a high μ toroid
- > types: passive (large bandwidth), active (low droop) and dc (two toroids + modulation)
- \triangleright lower threshold by magnetic noise: about $I_{beam} > 1 \,\mu\text{A}$
- > non-destructive, used for all beams

Faraday cup: \rightarrow measurement of beam's charge

- \triangleright low threshold by I/U-converter: $I_{beam} > 10 \text{ pA}$
- > totally destructive, used for low energy beams

Scintillator, \rightarrow measurement of the particle's energy loss

- *IC*, *SEM*: ➤ particle counting (Scintillator)
 - > secondary current: IC from gas ionization or SEM sec. e emission surface
 - > no lower threshold due to single particle counting
 - > partly destructive, used for high energy beams

Appendix: GSI Heavy Ion Research Center

German national heavy ion accelerator facility in Darmstadt

Accelerators:

Acceleration of all ions

LINAC: up to 15 MeV/u

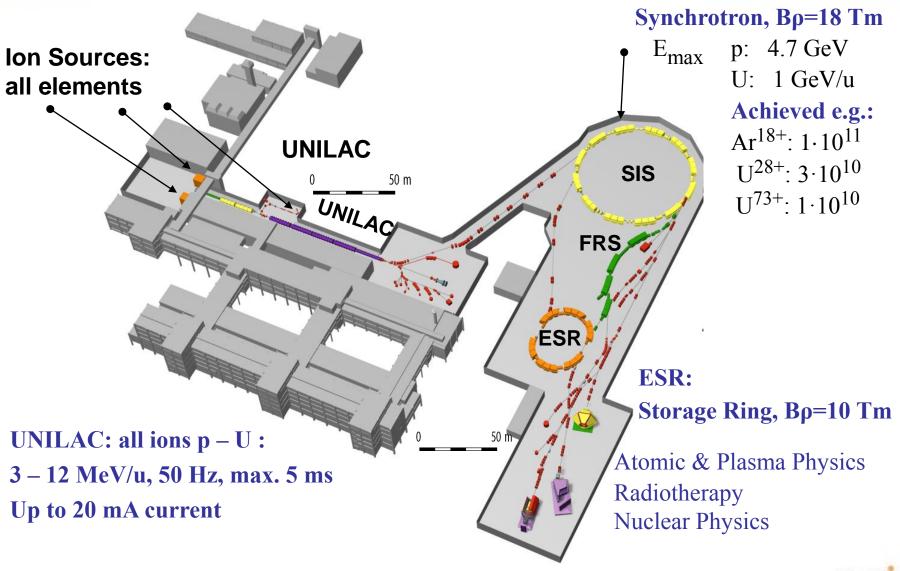
Synchrotron: up to 2 GeV/u

Research area:

 \triangleright Nuclear physics $\approx 60 \%$

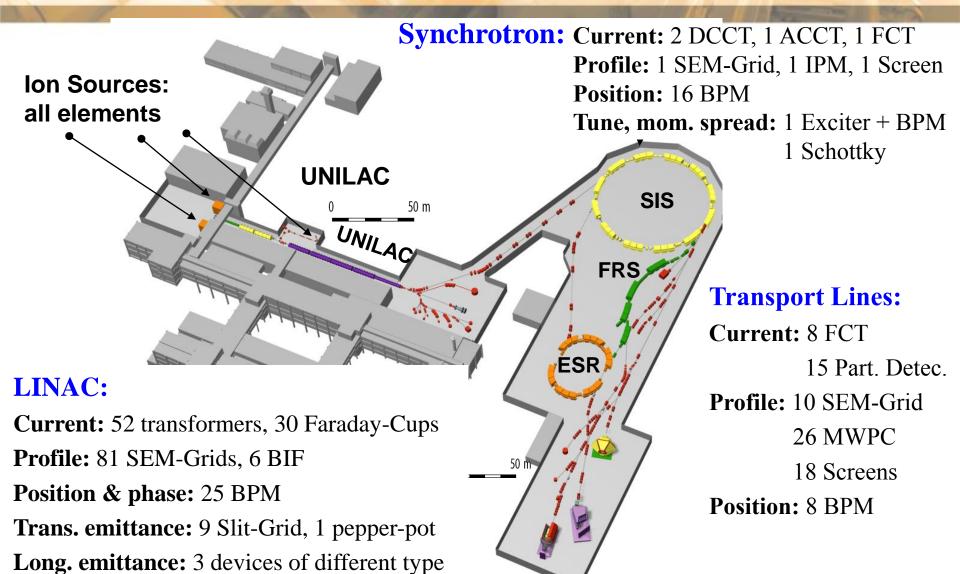
 \triangleright Atomic physics $\approx 20 \%$

➤ Bio physics (e.g. cell damage) incl. cancer therapy ≈ 10 %


➤ Material research ≈ 10 %

Extension by international FAIR facility

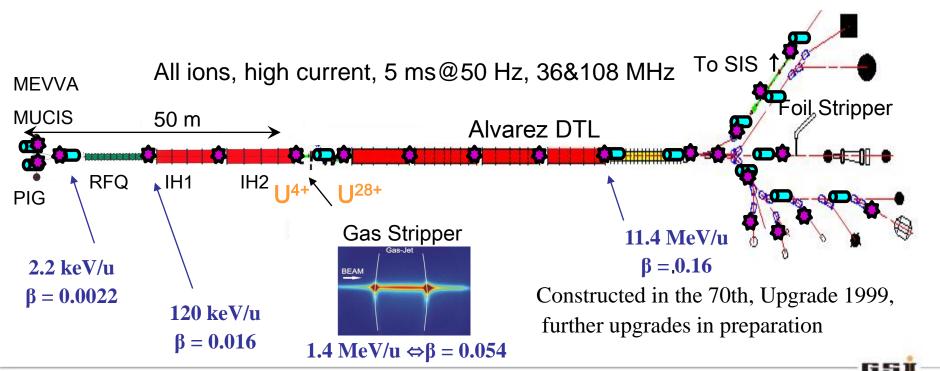
GSI is one of 18 German large scale research centers.


Appendix: The Accelerator Facility at GSI

Appendix: Beam Instruments at GSI Accelerator Facility

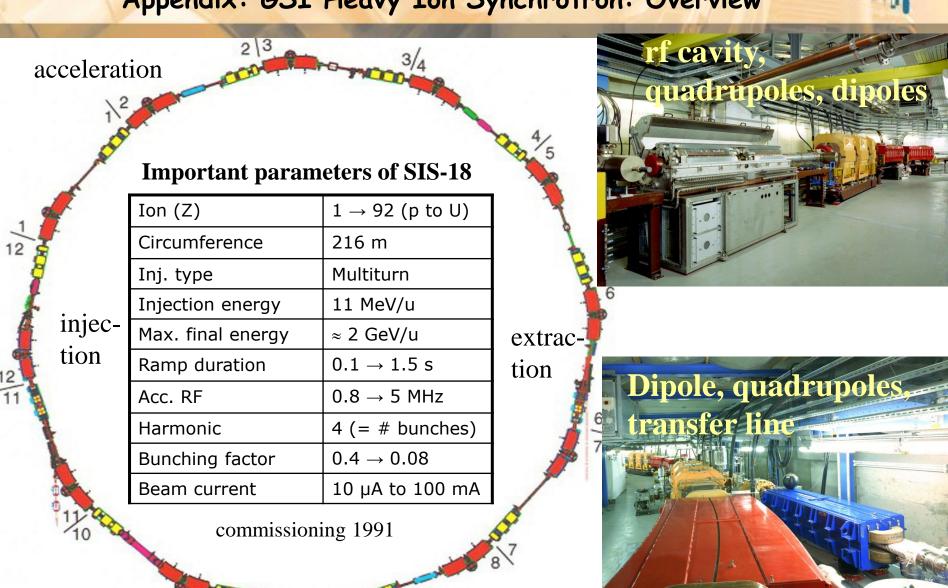
Appendix: UNILAC at GSI: Current Measurement

Faraday Cup: for low current measurement and beam stop, total 30



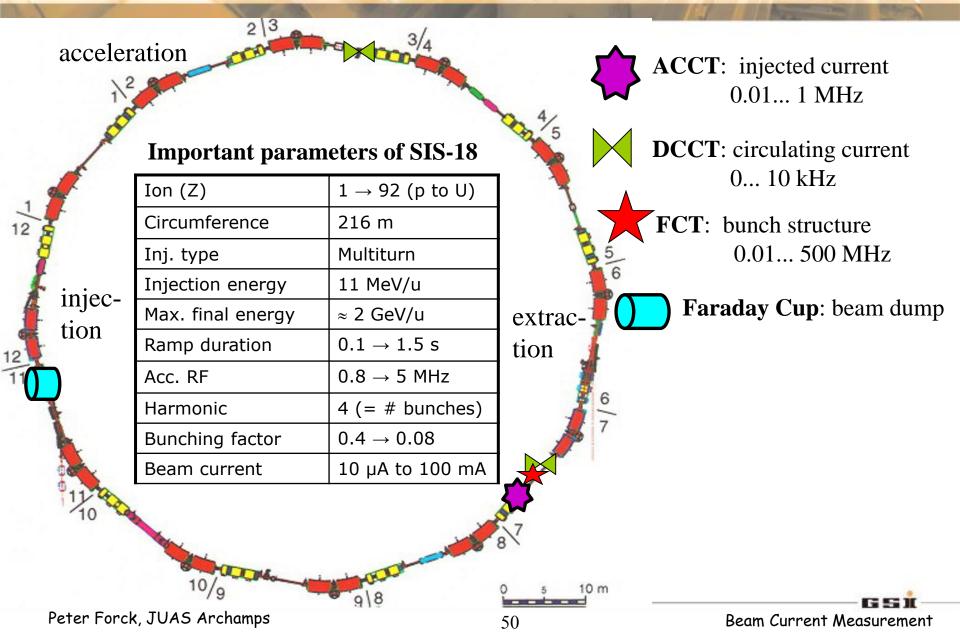
Transformer ACCT: for current measurement and transmission control

total 52 device


They are used for alignment and interlock generation

Transfer to Synchrotron

Appendix: GSI Heavy Ion Synchrotron: Overview



Peter Forck, JUAS Archamps 49 Beam Current Measurement

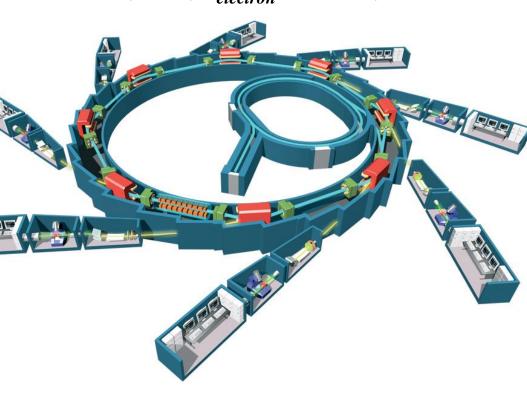
Appendix: GSI Heavy Ion Synchrotron: Current Measurement

Appendix: 3rd Generation Light Sources

Soleil, Paris, $E_{electron}$ = 2.5 GeV, C = 354 m

3rd Generation Light Sources:

Synchrotron-based


with $E_{electron} \approx 1...8 \text{ GeV}$

Light from undulators & wigglers, dipoles, with E_{γ} < 10 keV (optical to deep UV)

Users in:

- Biology(e.g. protein crystallography)
- Chemistry(e.g. observation of reaction dynamics)
- material science(e.g. x-ray diffraction)
- ➤ Basic research in solid state and atomic physics
- Unique setting: intense, broad-band light emission (monochromator for wavelength selection)

National facilities in many counties, some international facilities.

Appendix: The Spanish Synchrotron Light Facility ALBA

3rd generation Spanish national synchrotron light facility in Barcelona

Layout:

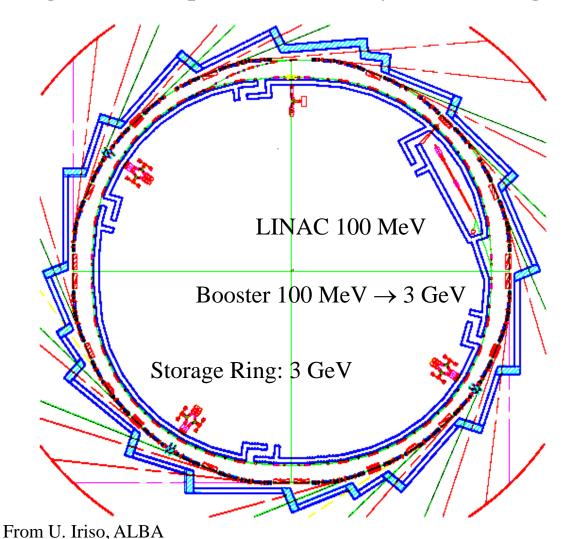
Beam lines: up to 30

Electron energy: 3 GeV

Top-up injection

Storage ring length: 268 m

Max. beam current: 0.4 A


Commissioning in 2011

Talk by Ubaldo Iriso: at DIPAC 2011, adweb.desy.de/mpy/DIPAC2011/html/sessi0n.htm see also www.cells.es/Divisions/Accelerators/RF_Diagnostics/Diagnostics

Appendix: The Spanish Synchrotron Light Facility ALBA: Overview

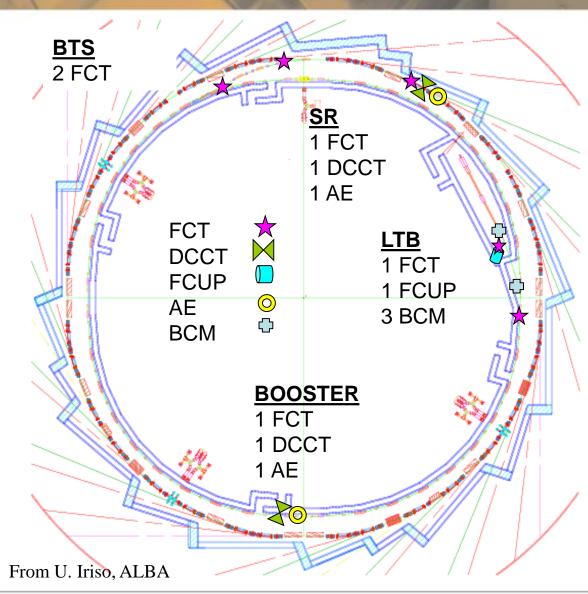
3rd generation Spanish national synchrotron light facility in Barcelona

Layout:

Beam lines: up to 30

Electron energy: 3 GeV

Top-up injection


Storage ring length: 268 m

Max. beam current: 0.4 A

Commissioning in 2011

Appendix: The Synchrotron Light Facility ALBA: Current Meas.

Beam current:

Amount of electrons accelerated, transported and stored

- > Several in transport lines
- One per ring

Abbreviation:

FCT: Fast Current Transformer

DCCT: dc transformer

FCUP: Faraday Cup

AE: Annular Electrode

BCM: Bunch Charge Monitor

Remark:

AE: Annular Electrode i.e. circular electrode acting like a high frequency pick-up