Pick-Ups for bunched Beams

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies
$>$ Capacitive shoe-box BPM for low frequencies
$>$ Electronics for position evaluation
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

Usage of BPMs

A Beam Position Monitor is an non-destructive device for bunched beams

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored
The abbreviation BPM and pick-up PU are synonyms

1. It delivers information about the transverse center of the beam
> Trajectory: Position of an individual bunch within a transfer line or synchrotron
$>$ Closed orbit: central orbit averaged over a period much longer than a betatron oscillation
$>$ Single bunch position \rightarrow determination of parameters like tune, chromaticity, $\boldsymbol{\beta}$-function
$>$ Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
$>$ Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
$>$ Feedback: fast bunch-by-bunch damping or precise (and slow) closed orbit correction
2. Information on longitudinal bunch behavior (see next chapter)
$>$ Bunch shape and evolution during storage and acceleration
$>$ For proton LINACs: the beam velocity can be determined by two BPMs
$>$ For electron LINACs: Phase measurement by Bunch Arrival Monitor
$>$ Relative low current measurement down to 10 nA .

Excurse: Time Domain \leftrightarrow Frequency Domain

Time domain: Recording of a voltage as a function of time:

Instrument:
Oscilloscope

Fourier
Transformation:

$$
\tilde{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

Frequency domain: Displaying of a voltage as a function of frequency:

Instrument:
Spectrum Analyzer

Fourier Transformation of time domain data
Care: Contains amplitude and phase

Excurse: Properties of Fourier Transformation

Fourier Transform.: $\tilde{f}(\omega) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \begin{aligned} & \text { Inv. F. T.: } \quad f(t) \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i \omega t} d \omega \\ & \text { tech. } \operatorname{IDFT}(f) \\ & \text { tech. } D F T(f) \text { or } F F T(f)\end{aligned}$ \Rightarrow a process can be described either with $f(t)$ 'time domain' or $\tilde{f}(\omega)$ 'frequency domain' \rightarrow tech.: DFT is discrete FT, FFT is a dedicated algorithm for fast calculation with 2^{n} increments No loss of information: If $\tilde{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int f(t) e^{-i \omega t} d t$ exists, than $f(t)=\frac{1}{2 \pi} \iint f(\tau) e^{i \omega(t-\tau)} d \omega d \tau$ FT is complex: $\tilde{f}(\omega) \in C \rightarrow$ tech. amplitude $A(\omega)=|\tilde{f}(\omega)|$ and phase φ
For $f(t) \in R \Rightarrow \boldsymbol{A}\left(\overline{\boldsymbol{I m}} \boldsymbol{\uparrow}^{A} \boldsymbol{A}^{A}\right.$ is even and $\varphi(\omega)$ is odd function of ω
φ Similarity Law: For $\boldsymbol{a} \neq 0$ it is for $f(a t)$: $\quad|1 / a| \cdot \tilde{f}(\omega / a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(a t) e^{-i e t} d t$
\rightarrow the properties can be scaled to any frequency range; 'shorter time signal have wider FT' Differentiation Law: $(i \omega)^{n} \cdot \tilde{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{(n)}(t) e^{-i \omega t} d t$
\rightarrow differentiation in time domain corresponds to multiplication with $\boldsymbol{i} \omega$ in frequency domain Convolution Law: For $\underset{\sim}{\tilde{f}}(t)=f_{1}(t) * f_{2}(t) \equiv \int f_{1}(\tau) \cdot f_{2}(t-\tau) d \tau$ $\Rightarrow \tilde{f}(\omega)=\tilde{f}_{1}(\omega) \cdot \tilde{f}_{2}(\omega) \quad \rightarrow$ convolutioñ ${ }^{\circ}$ be expressed as multiplication of FT

Convolution Law: For $f(t)=f_{1}(t) * f_{2}(t) \equiv \int_{\infty}^{\infty} f_{1}(\tau) \cdot f_{2}(t-\tau) d \tau$
$\Rightarrow \tilde{f}(\omega)=\tilde{f}_{1}(\omega) \cdot \tilde{f}_{2}(\omega)$
$\Rightarrow \quad \tilde{f}(\omega)=\tilde{f}_{1}(\omega) \cdot \tilde{f}_{2}(\omega)$
\rightarrow convolution in time domain can be expressed as multiplication of FT in frequency domain Application: Chain of electrical elements calculated in frequency domain more easily parameters are more easy in frequency domain (bandwidth, \boldsymbol{f}-dependent amplification.....) amplifier high pass filter low pass filter
 rectifier

Engineering formulation for finite number of discrete samples:

Digital Fourier Transformation.: DFT(f)

Fast Fourier Transformation: $\boldsymbol{F F T}(\boldsymbol{f})$, special numerical algorithm for $2^{\boldsymbol{n}}$ samples
Transfer function $\boldsymbol{H}(\boldsymbol{\omega})$ and $\boldsymbol{h}(\boldsymbol{t})$ describe of electrical elements
Calculation with $\boldsymbol{H}(\omega)$ in frequency domain or
$\boldsymbol{h}(\boldsymbol{t})$ time domain \rightarrow 'Finite Impulse Response' FIR filter or 'Infinite Impulse Response' IIR filter

Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis
i.e. the ac-part given by the bunched beam.

Beam Position Monitor BPM equals Pick-Up PU

Most frequent used instrument!
$>$ Signal treatment for capacitive pick-ups:
For relativistic velocities, the electric field is transversal:

$$
E_{\perp, l a b}(t)=\gamma \cdot E_{\perp, r e s t}\left(t^{\prime}\right)
$$

$>$ Longitudinal bunch shape
$>$ Overview of processing electronics for Beam Position Monitor (BPM)
$>$ Measurements:
$>$ Trajectory and closed orbit determination
$>$ Tune and lattice function measurements (synchrotron only).

Principle of Signal Generation of capacitive BPMs

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam.

Animation by Rhodri Jones (CERN)

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry:
$I_{i m}(t)=-\frac{d Q_{i m}(t)}{d t}=\frac{-A}{2 \pi a l} \cdot \frac{d Q_{\text {beam }}(t)}{d t}=\frac{-A}{2 \pi a} \cdot \frac{1}{\beta \mathrm{c}} \cdot \frac{d I_{\text {beam }}(t)}{d t}=\frac{A}{2 \pi a} \cdot \frac{1}{\beta \mathrm{c}} \cdot i \omega I_{\text {beam }}(\omega)$
Using a relation for Fourier transformation: $I_{\text {beam }}=I_{0} e^{-i \omega t} \Rightarrow d I_{\text {beam }} / d t=-i \omega I_{\text {beam }}$.

Transfer Impedance for a capacitive BPM

At a resistor \boldsymbol{R} the voltage $\boldsymbol{U}_{\boldsymbol{i m}}$ from the image current is measured.
The transfer impedance $\boldsymbol{Z}_{\boldsymbol{t}}$ is the ratio between voltage $\boldsymbol{U}_{\boldsymbol{i m}}$ and beam current $\boldsymbol{I}_{\text {beam }}$ in frequency domain: $U_{i m}(\omega)=\boldsymbol{R} \cdot \boldsymbol{I}_{\text {im }}(\omega)=Z_{t}(\omega, \beta) \cdot I_{\text {beam }}(\omega)$.

Capacitive BPM:

equivalent circuit
$>$ The pick-up capacitance \boldsymbol{C} : plate \leftrightarrow vacuum-pipe and cable.
$>$ The amplifier with input resistor \boldsymbol{R}.
$>$ The beam is a high-impedance current source:

$$
\begin{aligned}
U_{i m} & =\frac{R}{1+i \omega R C} \cdot I_{i m} \\
& =\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i \omega R C}{1+i \omega R C} \cdot I_{\text {beam }} \\
& \equiv Z_{t}(\omega, \beta) \cdot I_{\text {beam }}
\end{aligned}
$$

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:
$U_{i m}(\omega)=Z_{t}(\omega) \cdot I_{\text {beam }}(\omega)$

$$
\begin{aligned}
& \left|Z_{t}\right|=\frac{A}{2 \pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega}{\sqrt{1+\omega^{2} /}} \\
& \varphi=\arctan \left(\omega_{\text {cut }} / \omega\right) \\
& \text { Parameter for shoe-box BPM: } \\
& \boldsymbol{C}=100 \mathrm{pF}, \boldsymbol{l}=10 \mathrm{~cm}, \boldsymbol{\beta}=50 \% \\
& \boldsymbol{f}_{\text {cut }}=\boldsymbol{\omega} / 2 \boldsymbol{\pi}=(2 \pi \boldsymbol{R} \boldsymbol{C})^{-1} \\
& \text { for } \boldsymbol{R}=\mathbf{5 0} \Omega \Rightarrow \boldsymbol{f}_{\text {cut }}=32 \mathrm{MHz} \\
& \text { for } \boldsymbol{R}=\mathbf{1} \mathbf{M} \boldsymbol{\mathrm { C }} \boldsymbol{\mathrm { f }} \boldsymbol{f}_{\text {cut }}=1.6 \mathrm{kHz}
\end{aligned}
$$

Large signal strength \rightarrow high impedance
 Smooth signal transmission $\boldsymbol{\rightarrow} \mathbf{5 0} \Omega$

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional
Depending on the frequency range and termination the signal looks different:
$>$ High frequency range $\omega \gg \omega_{\text {cut }}{ }^{\circ}$

$$
Z_{t} \propto \frac{i \omega / \omega_{c u t}}{1+i \omega / \omega_{\text {cut }}} \rightarrow 1 \Rightarrow U_{\text {im }}(t)=\frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2 \pi a} \cdot I_{\text {beam }}(t)
$$

\Rightarrow direct image of the bunch. Signal strength $Z_{t} \propto A / C$ i.e. nearly independent on length
$>$ Low frequency range $\omega \ll \omega_{\text {cut }}$.
$Z_{t} \propto \frac{i \omega / \omega_{\text {cut }}}{1+i \omega / \omega_{\text {cut }}} \rightarrow i \frac{\omega}{\omega_{\text {cut }}} \Rightarrow U_{\text {im }}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot i \omega I_{\text {beam }}(t)=R \cdot \frac{A}{\beta c \cdot 2 \pi a} \cdot \frac{d I_{\text {beam }}}{d t}$
\Rightarrow derivative of bunch, single strength $Z_{t} \propto A$, i.e. (nearly) independent on \boldsymbol{C}
$>$ Intermediate frequency range $\omega \approx \omega_{\text {cut }}$. Calculation using Fourier transformation
Example from synchrotron BPM with 50Ω termination (reality at p-synchrotron : $\sigma \gg 1 \mathrm{~ns}$):

Calculation of Signal Shape (here single bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{\text {heram }}(t)$ having a width of σ_{t}

2. FFT of $I_{\text {beam }}(t)$ leads to the frequency domain Gaussian $I_{\text {beam }}(f)$ with $\sigma_{f}=\left(2 \pi \sigma_{t}\right)^{-1}$

3. Multiplication with $\boldsymbol{Z}_{\boldsymbol{t}}(f)$ with $\boldsymbol{f}_{\boldsymbol{c} \boldsymbol{u} \boldsymbol{t}}=32 \mathrm{MHz}$ leads to $\boldsymbol{U}_{\boldsymbol{i m}}(f)=\boldsymbol{Z}_{\boldsymbol{t}}(f) \cdot \boldsymbol{I}_{\boldsymbol{b e a m}}(f)$
4. Inverse FFT leads to $\boldsymbol{U}_{\boldsymbol{i m}}(\boldsymbol{t})$

Calculation of Signal Shape: Bunch Train

Example for low energy proton synchr.: Train of bunches with $\mathrm{R}=1 \mathrm{M} \Omega \Rightarrow f \gg f_{\text {cut }}$

Calculation: $I_{\text {beam }}(t) \xrightarrow{\mathrm{FFT}} I_{\text {beam }}(\omega) \rightarrow U_{\text {im }}(\omega)=Z_{\text {tot }}(\omega) \cdot I_{\text {beam }}(\omega) \xrightarrow{\text { invFFT }} U_{\text {im }}(t)$
Parameter: $R=1 \mathrm{M} \Omega \Rightarrow f_{\text {cut }}=2 \mathrm{kHz}, Z_{t}=5 \Omega$ all buckets filled, no amp

$$
C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma_{t}=100 \mathrm{~ns} \Rightarrow \sigma_{l}=15 \mathrm{~m}
$$

$>$ Fourier spectrum is composed of lines separated by acceleration $f_{r f}$
$>$ Envelope given by single bunch Fourier transformation
$>$ Baseline shift due to ac-coupling
Remark: $1 \mathrm{MHz}<f_{r f}<10 \mathrm{MHz} \Rightarrow$ Bandwidth $\approx 100 \mathrm{MHz}=10 \cdot f_{r f}$ for broadband observation

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with $f_{\text {acc }}=1 \mathrm{MHz}$
BPM terminated with $\boldsymbol{R}=50 \Omega \Rightarrow f_{\text {acc }} \ll f_{\text {cut }}$:

Parameter: $R=\mathbf{5 0} \Omega \Rightarrow f_{\text {cut }}=\mathbf{3 2} \mathbf{~ M H z}$, all buckets filled

$$
C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma_{t}=100 \mathrm{~ns} \Rightarrow \sigma_{l}=15 \mathrm{~m}
$$

$>$ Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
$>$ Bandwidth up to typically $10 * f_{\text {acc }}$

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $\mathrm{R}=50 \Omega$:

Parameter: $\boldsymbol{R}=\mathbf{5 0} \Omega \Rightarrow f_{\text {cut }}=\mathbf{3 2} \mathbf{~ M H z}, 2$ empty buckets

$$
C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma_{t}=100 \mathrm{~ns} \Rightarrow \sigma_{l}=15 \mathrm{~m}
$$

$>$ Fourier spectrum is more complex, harmonics are broader due to sidebands

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here bandpass:

Parameter: $R=50 \Omega, 4^{\text {time }}$ order Butterworth filter at $f_{\text {cut }}=\mathbf{2} \mathbf{~ M H z}$
$C=100 \mathrm{pF}, l=10 \mathrm{~cm}, \beta=50 \%, \sigma=100 \mathrm{~ns}$
$>$ Ringing due to sharp cutoff
$>$ Other filter types more appropriate

$$
\left\lvert\, \begin{aligned}
& n^{\text {th }} \text { order Butterworth filter, math. simple, but not well suited: } \\
& \left|H_{\text {low }}\right|=\frac{1}{\sqrt{1+\left(\omega / \omega_{\text {cut }}\right)^{2 n}}} \text { and }\left|H_{\text {high }}\right|=\frac{\left(\omega / \omega_{\text {cut }}\right)^{2}}{\sqrt{1+\left(\omega / \omega_{c u t}\right)^{2 n}}} \\
& H_{\text {filter }}=H_{\text {high }} \cdot H_{\text {low }}
\end{aligned}\right.
$$

Generally: $\quad Z_{\text {tot }}(\omega)=H_{\text {cable }}(\omega) \cdot H_{\text {filter }}(\omega) \cdot H_{a m p}(\omega) \cdot \ldots \cdot Z_{t}(\omega)$
Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Examples for differentiated \& proportional Shape

Proton LINAC, e^{-}-LINAC\&synchtrotron:

 $100 \mathrm{MHz}<f_{r f}<1 \mathrm{GHz}$ typically $\boldsymbol{R}=50 \Omega$ processing to reach bandwidth $C \approx 5 \mathrm{pF} \Rightarrow f_{\text {cut }}=1 /(2 \pi R C) \approx 700 \mathrm{MHz}$ Example: 36 MHz GSI ion LINAC

Proton synchtrotron:
$1 \mathrm{MHz}<f_{r f}<30 \mathrm{MHz}$ typically $\boldsymbol{R}=1 \mathrm{M} \Omega$ for large signal i.e. large Z_{t}
$C \approx 100 \mathrm{pF} \Rightarrow f_{\text {cut }}=1 /(2 \pi R C) \approx 10 \mathrm{kHz}$
Example: non-relativistic GSI synchrotron $\boldsymbol{f}_{\boldsymbol{r} \boldsymbol{f}}: 0.8 \mathrm{MHz} \rightarrow 5 \mathrm{MHz}$

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass

\rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

y	$=\frac{1}{S_{y}(\omega)} \cdot \frac{U_{u p}-U_{\text {down }}}{U_{u p}+U_{\text {down }}}+\delta_{y}(\omega)$
	$\equiv \frac{1}{S_{y}} \cdot \frac{\Delta U_{y}}{\Sigma U_{y}}+\delta_{y}$
x	$=\frac{1}{S_{x}(\omega)} \cdot \frac{U_{\text {right }}-U_{\text {leam pipe }}}{U_{\text {right }}+U_{\text {left }}}+\delta_{x}(\omega)$

$\boldsymbol{S}(\boldsymbol{\omega}, \boldsymbol{x})$ is called position sensitivity, sometimes the inverse is used $\boldsymbol{k}(\boldsymbol{\omega}, \boldsymbol{x})=\mathbf{1 / S}(\boldsymbol{\omega}, \boldsymbol{x})$
S is a geometry dependent, non-linear function, which have to be optimized
Units: $\boldsymbol{S}=[\% / \mathrm{mm}]$ and sometimes $\boldsymbol{S}=[\mathrm{dB} / \mathrm{mm}]$ or $\boldsymbol{k}=[\mathrm{mm}]$.

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
$>$ Capacitive shoe-box BPM for low frequencies
$>$ Electronics for position evaluation
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

2-dim Model for a Button BPM

'Proximity effect': larger signal for closer plate

Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:
$j_{\text {im }}(\phi)=\frac{I_{\text {beam }}}{2 \pi a} \cdot\left(\frac{a^{2}-r^{2}}{a^{2}+r^{2}-2 a r \cdot \cos (\phi-\theta)}\right)$

Image current: Integration of finite BPM size: $I_{i m}=a \cdot \int_{-\alpha / 2}^{\alpha / 2} j_{i m}(\phi) d \phi$

2-dim Model for a Button BPM

Ideal 2-dim model: Non-linear behavior and hor-vert coupling: Sensitivity: $x=1 / S \cdot \Delta U / \Sigma U$ with $S[\% / \mathrm{mm}]$ or $[\mathrm{dB} / \mathrm{mm}]$
For this example: center part $S=7.4 \% / \mathrm{mm} \Leftrightarrow k=1 / S=14 \mathrm{~mm}$

The measurement of U delivers: $x=\frac{1}{S_{x}} \cdot \frac{\Delta U}{\Sigma U} \rightarrow$ here $S_{x}=S_{x}(x, y)$ i.e. non-linear.

Button BPM Realization

LINACs, e^{-}-synchrotrons: $100 \mathrm{MHz}<f_{r f}<3 \mathrm{GHz} \rightarrow$ bunch length \approx BPM length
$\rightarrow 50 \Omega$ signal path to prevent reflections

Button BPM with $50 \Omega \Rightarrow U_{i m}$ (i
Example: LHC-type inside cryc $\varnothing 24 \mathrm{~mm}$, half aperture $a=25 \mathrm{~m}$ $\Rightarrow f_{\text {cut }}=400 \mathrm{MHz}, Z_{t}=1.3 \Omega \mathrm{ab}$ From C. Boccard (C)

Button BPM at Synchrotron Light Sources

The button BPM can be rotated by 45^{0} to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

horizontal : $x=\frac{1}{S} \cdot \frac{\left(U_{1}+U_{4}\right)-\left(U_{2}+U_{3}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$
vertical : $\quad y=\frac{1}{S} \cdot \frac{\left(U_{1}+U_{2}\right)-\left(U_{3}+U_{4}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

PEP-realization

horizontal : $x=\frac{1}{S_{x}} \cdot \frac{\left(U_{1}+U_{4}\right)-\left(U_{2}+U_{3}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$
vertical: $y=\frac{1}{S_{y}} \cdot \frac{\left(U_{1}+U_{2}\right)-\left(U_{3}+U_{4}\right)}{U_{1}+U_{2}+U_{3}+U_{4}}$

Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for $72 \times 28 \mathrm{~mm}^{2}$ chamber
Optimization: horizontal distance and size of buttons

Result: non-linearity and $\boldsymbol{x y}$-coupling occur in dependence of button size and position

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
$>$ Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
$>$ Electronics for position evaluation
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

Shoe-box BPM for Proton Synchrotrons

Frequency range: $1 \mathrm{MHz}<f_{r f}<10 \mathrm{MHz} \Rightarrow$ bunch-length \gg BPM length.

Signal is proportional to actual plate length: $l_{\text {right }}=(a+x) \cdot \tan \alpha, \quad l_{\text {left }}=(a-x) \cdot \tan \alpha$

$$
\Rightarrow x=a \cdot \frac{l_{\text {right }}-l_{\text {left }}}{l_{\text {right }}+l_{\text {left }}}
$$

In ideal case: linear reading $x=a \cdot \frac{U_{\text {right }}-U_{\text {left }}}{U_{\text {right }}+U_{\text {left }}} \equiv a \cdot \frac{\Delta U}{\Sigma U}$

Size: $200 \times 70 \mathrm{~mm}^{2}$

Shoe-box BPM:
Advantage: Very linear, low frequency dependence i.e. position sensitivity \boldsymbol{S} is constant

Disadvantage: Large size, complex mechanics high capacitance

Technical realization at HIT synchrotron of 46 m length for $7 \mathrm{MeV} / \mathrm{u} \rightarrow 440 \mathrm{MeV} / \mathrm{u}$ BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm .

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for $7 \mathrm{MeV} / \mathrm{u} \rightarrow 440 \mathrm{MeV} / \mathrm{u}$ BPM clearance: $180 \times 70 \mathrm{~mm}^{2}$, standard beam pipe diameter: 200 mm .

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	$\varnothing 1$ to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	$1 \mathrm{M} \Omega$ or $\approx 1 \mathrm{k} \Omega$ (transformer)	50Ω
Cutoff frequency (typical)	$0.01 \ldots 10 \mathrm{MHz}(C=30 \ldots 100 \mathrm{pF})$	$0.3 \ldots 1 \mathrm{GHz}(C=2 \ldots 10 \mathrm{pF})$
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, $f_{r f}<10 \mathrm{MHz}$	All electron acc., proton Linacs, $f_{r f}>100 \mathrm{MHz}$

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
> Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
$>$ Electronics for position evaluation analog signal conditioning to achieve small signal processing
$>$ BPMs for measurement of closed orbit, tune and further lattice functions
$>$ Summary

General: Noise Consideration

1. Signal voltage given by: $\quad U_{\text {im }}(f)=Z_{t}(f) \cdot I_{\text {beam }}(f)$
2. Position information from voltage difference: $x=1 / S \cdot \Delta U / \Sigma U$
3. Thermal noise voltage given by: $U_{e f f}(R, \Delta f)=\sqrt{4 k_{B} \cdot T \cdot R \cdot \Delta f}$
\Rightarrow Signal-to-noise $\Delta U_{\text {im }} / U_{\text {eff }}$ is influenced by: Example: GSI-LINAC with $f_{r f}=36 \mathrm{MHz}$
$>$ Input signal amplitude
\rightarrow large or matched Z_{t}
$>$ Thermal noise at $\boldsymbol{R}=50 \Omega$ for $\boldsymbol{T}=300 \mathrm{~K}$ (for shoe box $\boldsymbol{R}=1 \mathrm{k} \Omega \ldots 1 \mathrm{M} \Omega$)
$>$ Bandwidth $\boldsymbol{\Delta f}$
\Rightarrow Restriction of frequency width because the power is concentrated on the harmonics of $f_{r f}$

Remark: Additional contribution by non-perfect electronics typically a factor 2
Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

Comparison: Filtered Signal \leftrightarrow Single Turn

However: not only noise contributes but additionally beam movement by betatron oscillation \Rightarrow broadband processing i.e. turn-by-turn readout for tune determination.

Broadband Signal Processing

$>$ Hybrid or transformer close to beam pipe for analog $\boldsymbol{\Delta} \boldsymbol{U} \& \boldsymbol{\Sigma} \boldsymbol{U}$ generation or $\boldsymbol{U}_{\text {left }} \& \boldsymbol{U}_{\text {right }}$
$>$ Attenuator/amplifier
$>$ Filter to get the wanted harmonics and to suppress stray signals
$>$ ADC: digitalization \longrightarrow followed by calculation of of $\boldsymbol{\Delta} \boldsymbol{U} / \boldsymbol{\Sigma} \boldsymbol{U}$
Advantage: Bunch-by-bunch possible, versatile post-processing possible
Disadvantage: Resolution down to $\approx 100 \mu \mathrm{~m}$ for shoe box type , i.e. $\approx 0.1 \%$ of aperture, resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)
$>$ Attenuator/amplifier
$>$ Mixing with accelerating frequency $f_{r f} \Rightarrow$ signal with sum and difference frequency
$>$ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
$>$ Rectifier: synchronous detector
$>$ ADC: digitalization \longrightarrow followed calculation of $\boldsymbol{\Delta} \boldsymbol{U} / \boldsymbol{\Sigma} \boldsymbol{U}$
Advantage: spatial resolution about 100 time better than broadband processing
Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'
For non-relativistic p-synchrotron: \rightarrow variable $\boldsymbol{f}_{r f}$ leads via mixing to constant intermediate freq.

Mixer and Synchronous Detector

Mixer: A passive rf device with
$>$ Input RF (radio frequency): Signal of investigation $A_{R F}(t)=A_{R F} \cos \omega_{R F} t$
$>$ Input LO (local oscillator): Fixed frequency $A_{L O}(t)=A_{L O} \cos \omega_{L O} t$
$>$ Output IF (intermediate frequency)

$$
\begin{aligned}
A_{I F}(t) & =A_{R F} \cdot A_{L O} \cos \omega_{R F} t \cdot \cos \omega_{L O} t \\
& =A_{R F} \cdot A_{L O}\left[\cos \left(\omega_{R F}-\omega_{L O}\right) t+\cos \left(\omega_{R F}+\omega_{L O}\right) t\right]
\end{aligned}
$$

\Rightarrow Multiplication of both input signals, containing the sum and difference frequency.
Synchronous detector: A phase sensitive rectifier
Input Output

Analog versus Digital Signal Processing

Modern instrumentation uses digital techniques with extended functionality.
Traditional analog processing

Digital Digital processing (triggered by telecommunication development)

Digital receiver as modern successor of super heterodyne receiver
$>$ Basic functionality is preserved but implementation is very different
$>$ Digital transition just after the amplifier \& filter or mixing unit
$>$ Signal conditioning (filter, decimation, averaging) on FPGA
Advantage of DSP: Versatile operation, flexible adoption without hardware modification Disadvantage of DSP: non, good engineering skill requires for development, expensive

Comparison of BPM Readout Electronics (simplified)

Type	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	complex and expensive by ADC \rightarrow undersampling

Outline:

$>$ Signal generation \rightarrow transfer impedance
$>$ Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
> Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
$>$ Electronics for position evaluation analog signal conditioning to achieve small signal processing
$>$ BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
$>$ Summary

Trajectory Measurement with BPMs

Trajectory:

The position delivered by an individual bunch within a transfer line or a synchrotron.
Main task: Control of matching (center and angle), first-turn diagnostics
Example: LHC injection 10/09/08 i.e. first day of operation !

From R. Jones (CERN)
Monitor number (530 BPMs on 27 km)

Close Orbit Measurement with BPMs

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components.
Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:

Closed orbit:

 Beam position averaged over many turns (i.e. betatron oscillations). The result is the basic tool for alignment \& stabilzationRemark as a role of thumb: Number of BPMs within a synchrotron: $N_{B P M} \approx 4 \cdot Q$ Relation BPMs \leftrightarrow tune due to close orbit stabilization feedback (justification outside of the scope of this lecture)

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM Beam particle's in-coherent motion \Rightarrow center-of-mass stays constant Excitation of all particles by rf \Rightarrow coherent motion
\Rightarrow center-of-mass variation turn-by-turn

Graphics by R. Singh, GSI

Tune Measurement: General Considerations

The tune Q is the number of betatron oscillations per turn.
The betatron frequency is $f_{\beta}=Q f_{0}$.
Measurement: excitation of coherent betatron oscillations + position from one BPM.
From a measurement one gets only the non-integer part \boldsymbol{q} of \boldsymbol{Q} with $\boldsymbol{Q}=\boldsymbol{n} \pm \boldsymbol{q}$.
Moreover, only $0<\boldsymbol{q}<0.5$ is the unique result.
Example: Tune measurement for six turns with the three lowest frequency fits:

Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation
\rightarrow the beam position measured each revolution ('turn-by-turn')
\rightarrow Fourier Trans. gives the non-integer tune \boldsymbol{q}. Short kick compared to revolution.

The de-coherence time limits the resolution:
N non-zero samples
\Rightarrow General limit of discrete FFT: $\quad \Delta q>\frac{1}{2 N}$

$N=200$ turn $\Rightarrow \Delta q>0.003$ as resolution (tune spreads are typically $\Delta q \approx 0.001$!)

Tune Measurement: De-Coherence Time

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

Scheme of the individual trajectories of four particles after a kick (top) and the resulting coherent signal as measured by a pick-up (bottom).
\Rightarrow Kick excitation leads to limited resolution
Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'
\rightarrow Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!
Using a network analyzer:
$>$ RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
$>$ The position is measured at one BPM
$>$ Network analyzer: amplitude and phase of the response
$>$ Sweep time up to seconds due to de-coherence time per band
$>$ resolution in tune: up to 10^{-4}

Tune Measurement: Result for BTF Measurement

BTF measurement at the GSI synchrotron, recorded at the 25th harmonics.

A wide scan with both sidebands at $h=25^{\text {th }}$-harmonics:

A detailed scan for the lower sideband
\rightarrow beam acts like a driven oscillator:

From the position of the sidebands $\boldsymbol{q}=0.306$ is determined. From the width $\Delta f / f \approx 5 \cdot 10^{-4}$ the tune spread can be calculated via $\Delta f_{h}^{-}=\eta \frac{\Delta p}{p} \cdot h f_{0}\left(h-q+\frac{\xi}{\eta} Q\right)$
Advantage: High resolution for tune and tune spread (also for de-bunched beams) Disadvantage: Long sweep time (up to several seconds).

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied
\rightarrow beam picks out its resonance frequency: Example: Vertical tune within 4096 turn
$>$ broadband excitation with white noise of $\approx 10 \mathrm{kHz}$ bandwidth
$>$ turn-by-turn position measurement by fast ADC
$>$ Fourier transformation of the recorded data
\Rightarrow Continues monitoring with low disturbance vertical tune at fixed time $\approx 15 \mathrm{~ms}$

Advantage:

Fast scan with good time resolution
Disadvantage: Lower precision
duration $\simeq 15 \mathrm{~ms}$
at GSI synchrotron $11 \rightarrow 300 \mathrm{MeV} / \mathrm{u}$ in 0.7 s vertical tune versus time

Excurse: Example of Lattice Functions

The position of dipoles and quadrupoles Example: GSI SIS100 ion synchrotron
$>$ give the linear lattice functions
$>$ at injection point $\boldsymbol{D}=0$ is favored
$>$ chromatic correction with sextupoles,
Definition of dispersion $\boldsymbol{D}(\boldsymbol{s})$:

$$
x_{D}(s)=D(s) \cdot \Delta p / p_{0}
$$

Definition of chromaticity ξ per turn:
$\Delta Q / Q_{0}=\xi \cdot \Delta p / p_{0}$

β-Function Measurement from Bunch-by-Bunch BPM Data

Excitation of coherent betatron oscillations: From the position deviation $x_{i k}$ at the BPM \boldsymbol{i} and turn \boldsymbol{k} the $\boldsymbol{\beta}$-function $\boldsymbol{\beta}\left(s_{i}\right)$ can be evaluated.
The position reading is: (\hat{x}_{i} amplitude, μ_{i} phase at i, Q tune, s_{0} reference location)

$$
x_{i k}=\hat{x}_{i} \cdot \cos \left(2 \pi Q k+\mu_{i}\right)=\hat{x}_{0} \cdot \sqrt{\beta\left(s_{i}\right) / \beta\left(s_{0}\right)} \cdot \cos \left(2 \pi Q k+\mu_{i}\right)
$$

\rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required.
The ratio of $\boldsymbol{\beta}$-functions at different location:

$$
\frac{\beta\left(s_{i}\right)}{\beta\left(s_{0}\right)}=\left(\frac{\hat{x}_{i}}{\hat{x}_{0}}\right)^{2}
$$

The phase advance is:

$$
\Delta \mu=\mu_{i}-\mu_{0}
$$

Without absolute calibration, $\boldsymbol{\beta}$-function is more precise:

$$
\Delta \mu=\int_{S 0}^{S i} \frac{d s}{\beta(s)}
$$

Dispersion and Chromaticity Measurement

Dispersion $\boldsymbol{D}\left(s_{i}\right)$: Excitation of coherent betatron oscillations and change of momentum \boldsymbol{p} by detuned rf-cavity:
\rightarrow Position reading at one location: $x_{i}=D\left(s_{i}\right) \cdot \frac{\Delta p}{p}$
\rightarrow Result from plot of $\boldsymbol{x}_{\boldsymbol{i}}$ as a function of $\boldsymbol{\Delta p} / \boldsymbol{p} \Rightarrow$ slope is local dispersion $\boldsymbol{D}\left(\boldsymbol{s}_{\boldsymbol{i}}\right)$.
Chromaticity ξ : Excitation of coherent betatron oscillations and change of momentum \boldsymbol{p} by detuned rf-cavity:

Measurement at LEP

$$
\frac{\Delta Q}{Q}=\xi \cdot \frac{\Delta p}{p}
$$

Plot of $\Delta Q / Q$ as a function of $\Delta p / p$
\Rightarrow slope is dispersion ξ.

Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies
('frequency domain'). Beside transfromers they are the most often used instruments!
Differentiated or proportional signal: rf-bandwidth \leftrightarrow beam parameters
Proton synchrotron: 1 to 100 MHz , mostly $1 \mathrm{M} \Omega \rightarrow$ proportional shape
LINAC, e--synchrotron: 0.1 to $3 \mathrm{GHz}, 50 \Omega \rightarrow$ differentiated shape
Important quantity: transfer impedance $Z_{t}(\omega, \beta)$.
Types of capacitive pick-ups:
Shoe-box (p-synch.), button (p-LINAC, e--LINAC and synch.)
Remark: Stripline BPM as traveling wave devices are frequently used
Position reading: difference signal of four pick-up plates (BPM):
$>$ Non-intercepting reading of center-of-mass \rightarrow online measurement and control
slow reading \rightarrow closed orbit, fast bunch-by-bunch \rightarrow trajectory
$>$ Excitation of coherent betatron oscillations and response measurement
excitation by short kick, white noise or sine-wave (BTF)
\rightarrow tune \boldsymbol{q}, chromaticity $\boldsymbol{\xi}$, dispersion \boldsymbol{D} etc.

Appendix GSI Ion LINAC: Position and mean beam energy Meas.

\bigcirc
BPM: Capacitive type, for position and time-of-flight total 25 device

Appendix GSI Ion Synchrotron: Position, tune ect. Measurement ol

Appendix: Synchrotron Light F.ALBA: 'Position, tune ect. Meas.

Beam position:

Center of mass
$>$ Many locations!
$>$ Frequent operating tool
$>$ For position stabilization i.e. closed otbit feedback

Abbreviation:

Meas. Stripline \rightarrow SMES \uparrow Exc. Stripline \rightarrow SEXC Button BPMs \rightarrow BPM \circ

