Pick-Ups for bunched Beams

Outline:

- > Signal generation \rightarrow transfer impedance
- > Capacitive *button* BPM for high frequencies
- > Capacitive *shoe-box* BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Usage of BPMs

A Beam Position Monitor is an non-destructive device for bunched beams

It has a low cut-off frequency i.e. dc-beam behavior can not be monitored The abbreviation BPM and pick-up PU are synonyms

1. It delivers information about the transverse center of the beam

- > *Trajectory:* Position of an individual bunch within a transfer line or synchrotron
- Closed orbit: central orbit averaged over a period much longer than a betatron oscillation
- Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- > Bunch position on a large time scale: bunch-by-bunch \rightarrow turn-by-turn \rightarrow averaged position
- > Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- Feedback: fast bunch-by-bunch damping *or* precise (and slow) closed orbit correction

2. Information on longitudinal bunch behavior (see next chapter)

- Bunch shape and evolution during storage and acceleration
- ➢ For proton LINACs: the beam velocity can be determined by two BPMs
- ➢ For electron LINACs: Phase measurement by Bunch Arrival Monitor
- *Relative* low current measurement down to 10 nA.

Excurse: Time Domain \leftrightarrow Frequency Domain

Time domain: Recording of a voltage as a function of time:

Frequency domain: Displaying of a voltage as a function of frequency:

Instrument: Spectrum Analyzer

Fourier Transformation of time domain data <u>Care:</u> Contains amplitude <u>and</u> phase

Peter Forck, JUAS Archamps

Excurse: Properties of Fourier Transformation

Fourier Transform.: $\widetilde{f}(\omega) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$ **Inv. F. T.:** $f(t) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widetilde{f}(\omega)e^{i\omega t} d\omega$ tech. *DFT(f)* or *FFT(f)* tech. *DFT(f)* or *FFT(f)* \Rightarrow a process can be described either with f(t) 'time domain' or $\tilde{f}(\omega)$ 'frequency domain' \rightarrow tech.: DFT is discrete FT, FFT is a dedicated algorithm for **fast** calculation with 2ⁿ increments **No loss of information:** If $\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int f(t)e^{-i\omega t} dt$ exists, than $f(t) = \frac{1}{2\pi} \int \int f(\tau)e^{i\omega(t-\tau)} d\omega d\tau$ FT is complex: $\tilde{f}(\omega) \in C \rightarrow \text{tech. amplitude } A(\omega) = |\tilde{f}(\omega)| \text{ and phase } \varphi$ For $f(t) \in R \Rightarrow A(\omega)$ is even and $\varphi(\omega)$ is odd function of ω Similarity Law: For $a \neq 0$ it is for f(at): $|1/a| \cdot \tilde{f}(\omega/a) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(at)e^{-i\omega t} dt$ \rightarrow the properties can be called to $\tilde{f}(at) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(at)e^{-i\omega t} dt$ Re(z) \rightarrow the properties can be scaled to any frequency range; 'shorter time signal have wider FT' **Differentiation Law:** $(i\omega)^n \cdot \tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int f^{(n)}(t) e^{-i\omega t} dt$ \rightarrow differentiation in time domain corresponds to multiplication with $i\omega$ in frequency domain **Convolution Law:** For $f(t) = f_1(t) * f_2(t) \equiv \int f_1(\tau) \cdot f_2(t-\tau) d\tau$ $\Rightarrow \quad \widetilde{f}(\omega) = \widetilde{f}_1(\omega) \cdot \widetilde{f}_2(\omega) \quad \rightarrow \text{ convolution}^\circ \text{ be expressed as multiplication of FT}$ Peter Forck, JUAS Archamps Pick-Ups for bunched Beams

Excurse: Properties of Fourier Trans. \rightarrow technical Realization

Convolution Law: For
$$f(t) = f_1(t) * f_2(t) \equiv \int_{\infty}^{\infty} f_1(\tau) \cdot f_2(t-\tau) d\tau$$

 $\Rightarrow \quad \tilde{f}(\omega) = \tilde{f}_1(\omega) \cdot \tilde{f}_2(\omega)$

→ convolution in time domain can be expressed as multiplication of FT in frequency domain Application: Chain of electrical elements calculated in frequency domain more easily parameters are more easy in frequency domain (bandwidth, *f*-dependent amplification....) amplifier high pass filter low pass filter rectifier

Engineering formulation for <u>finite</u> number of discrete samples:

Digital Fourier Transformation.: *DFT(f)*

Fast Fourier Transformation: FFT(f), special numerical algorithm for 2^n samples

Transfer function $H(\omega)$ and h(t) describe of electrical elements

Calculation with $H(\omega)$ in frequency domain or

h(t) time domain \rightarrow 'Finite Impulse Response' FIR filter or 'Infinite Impulse Response' IIR filter

Pick-Ups for bunched Beams

The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor **BPM** equals Pick-Up **PU**

Most frequent used instrument!

For relativistic velocities, the electric field is transversal:

$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

Signal treatment for capacitive pick-ups:

Longitudinal bunch shape

Overview of processing electronics for Beam Position Monitor (BPM)

> Measurements:

- Trajectory and closed orbit determination
- > Tune and lattice function measurements (synchrotron only).

6

Principle of Signal Generation of capacitive BPMs

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor **R** the voltage U_{im} from the image current is measured. The transfer impedance Z_t is the ratio between voltage U_{im} and beam current I_{beam} in *frequency domain*: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega, \beta) \cdot I_{beam}(\omega)$.

Capacitive BPM:

1

- ➤ The pick-up capacitance C: plate ↔ vacuum-pipe and cable.
- > The amplifier with input resistor R.

> The beam is a high-impedance current source:

$$U_{im} = \frac{R}{1 + i\omega RC} \cdot I_{im}$$
$$= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam}$$
$$\equiv Z_t(\omega, \beta) \cdot I_{beam}$$

This is a high-pass characteristic with $\omega_{cut} = 1/RC$:

Amplitude:
$$|Z_t(\omega)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega / \omega_{cut}}{\sqrt{1 + \omega^2 / \omega_{cut}^2}}$$
 Phase: $\varphi(\omega) = \arctan(\omega_{cut} / \omega)$

Peter Forck, JUAS Archamps

 $I_{im}(t)$

Pick-Ups for bunched Beams

ground

equivalent circuit

 $\frac{1}{Z} = \frac{1}{R} + i\omega C \Leftrightarrow Z = \frac{R}{1 + i\omega BC}$

Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

Large signal strength \rightarrow high impedance Smooth signal transmission \rightarrow 50 Ω

Signal Shape for capacitive BPMs: differentiated \leftrightarrow proportional

Depending on the frequency range *and* termination the signal looks different: \Rightarrow High frequency range $\omega \gg \omega_{cut}$: $1 \quad 1 \quad A$

$$Z_t \propto \frac{i\omega/\omega_{cut}}{1+i\omega/\omega_{cut}} \to 1 \Longrightarrow U_{im}(t) = \frac{1}{C} \cdot \frac{1}{\beta c} \cdot \frac{A}{2\pi a} \cdot I_{beam}(t)$$

 \Rightarrow direct image of the bunch. Signal strength $Z_t \propto A/C$ i.e. nearly independent on length

$$\sum_{t} \sum_{t} \frac{i\omega}{\omega_{cut}} + i\omega/\omega_{cut} \rightarrow i\frac{\omega}{\omega_{cut}} \Rightarrow U_{im}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot i\omega I_{beam}(t) = R \cdot \frac{A}{\beta c \cdot 2\pi a} \cdot \frac{dI_{beam}}{dt}$$

 \Rightarrow derivative of bunch, single strength $Z_t \propto A$, i.e. (nearly) independent on C

> Intermediate frequency range $\omega \approx \omega_{cut}$: Calculation using Fourier transformation

Example from synchrotron BPM with 50 Ω termination (reality at p-synchrotron : $\sigma >>1$ ns): intermediate proportional derivative $\sigma = 100 \text{ns}$ $\sim \sigma = 10$ ns $\sigma = 1 \text{ns}$ $I_{beam}(t)$ $U_{im}(t)$ ×10 im 0.6 0.8 1.0 20 80 40 100 2 8 10 0.0 0.2 0.4 60 4 time $[\mu s]$ time [ns] time [ns]

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Calculation of Signal Shape (here single bunch)

The transfer impedance is used in frequency domain! The following is performed:

1. Start: Time domain Gaussian function $I_{heam}(t)$ having a width of σ_t

Peter Forck, JUAS Archamps

Calculation of Signal Shape: Bunch Train

Example for low energy proton synchr.: Train of bunches with R=1 M $\Omega \Rightarrow f >> f_{cut}$

 $\mathbf{Calculation:} I_{beam}(t) \xrightarrow{\mathsf{FFT}} I_{beam}(\omega) \to U_{im}(\omega) = Z_{tot}(\omega) \cdot I_{beam}(\omega) \xrightarrow{\mathsf{invFFT}} U_{im}(t)$

Parameter: R=1 M $\Omega \Rightarrow f_{cut}=2$ kHz, $Z_t=5\Omega$ all buckets filled, no amp

C=100pF, *l*=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_l$ =15m

- > Fourier spectrum is composed of lines separated by acceleration f_{rf}
- Envelope given by single bunch Fourier transformation
- ➤ Baseline shift due to ac-coupling

Remark: 1 MHz $< f_{rf} <$ 10MHz \Rightarrow Bandwidth \approx 100MHz=10 $\cdot f_{rf}$ for broadband observation

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

Synchrotron filled with 8 bunches accelerated with $f_{acc}=1$ MHz BPM terminated with $R=50 \Omega \Rightarrow f_{acc} \ll f_{cut}$:

Parameter: $R=50 \ \Omega \Rightarrow f_{cut}=32 \text{ MHz}$, all buckets filled C=100 pF, l=10 cm, $\beta=50\%$, $\sigma_t=100 \text{ ns} \Rightarrow \sigma_l=15 \text{m}$

Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.

> Bandwidth up to typically $10*f_{acc}$

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $R=50 \Omega$:

> Fourier spectrum is more complex, harmonics are broader due to sidebands

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Pick-Ups for bunched Beams

Examples for differentiated & proportional Shape

Proton LINAC, e⁻-LINAC&synchtrotron: 100 MHz $< f_{rf} < 1$ GHz typically R=50 Ω processing to reach bandwidth $C \approx 5$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 700$ MHz *Example:* 36 MHz GSI ion LINAC

Proton synchtrotron:

1 MHz $< f_{rf} < 30$ MHz typically R=1 M Ω for large signal i.e. large Z_t $C\approx 100$ pF $\Rightarrow f_{cut} = 1/(2\pi RC) \approx 10$ kHz *Example:* non-relativistic GSI synchrotron $f_{rf}: 0.8$ MHz $\rightarrow 5$ MHz

Remark: During acceleration the bunching-factor is increased: 'adiabatic damping'.

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

G 55 H

Principle of Position Determination by a BPM

The difference voltage between plates gives the beam's center-of-mass \rightarrow most frequent application

'Proximity' effect leads to different voltages at the plates:

S is a geometry dependent, non-linear function, which have to be optimized Units: S = [%/mm] and sometimes S = [dB/mm] or k = [mm].

The Artist View of a BPM

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive <u>button</u> BPM for high frequencies

used at most proton LINACs and electron accelerators

- Capacitive shoe-box BPM for low frequencies
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

2-dim Model for a Button BPM

'Proximity effect': larger signal for closer plate Ideal 2-dim model: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

a

button

beam

Peter Forck, JUAS Archamps

Button BPM Realization

LINACs, e⁻-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Button BPM at Synchrotron Light Sources

The button BPM can be rotated by 45^0 to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

horizontal:
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical: $y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

Example: Booster of ALS, Berkeley

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for 72 x 28 mm² chamber **Optimization:** horizontal distance and size of buttons

GSI

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive <u>shoe-box</u> BPM for low frequencies

used at most proton synchrotrons due to linear position reading

- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

Shoe-box BPM for Proton Synchrotrons

Frequency range: 1 MHz $< f_{rf} < 10$ MHz \Rightarrow bunch-length >> BPM length.

Peter Forck, JUAS Archamps

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Technical Realization of a Shoe-Box BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	\varnothing 1 to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 M Ω or \approx 1 k Ω (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons, $f_{rf} < 10 \text{ MHz}$	All electron acc., proton Linacs, $f_{rf} > 100 \text{ MHz}$
horizontal vertical beam		
Peter Forck, JUAS Archamps	guard rings on ground potential	

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
 - analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions
 > Summary

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1/S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R,\Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

 \Rightarrow Signal-to-noise $\Delta U_{im}/U_{eff}$ is influenced by:

- > Input signal amplitude \rightarrow large or matched Z_t
- \blacktriangleright Thermal noise at *R*=50 Ω for *T*=300 K (for shoe box $\mathbf{R} = 1 \text{ k}\Omega \dots 1 \text{ M}\Omega$)
- \succ Bandwidth Δf

 \Rightarrow Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}

Comparison: Filtered Signal ↔ Single Turn

Example: GSI Synchr.: U^{73+} , $E_{inj}=11.5$ MeV/u \rightarrow 250 MeV/u within 0.5 s, 10⁹ ions

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

FE 55 11

Broadband Signal Processing

> Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$

- Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- ightarrow ADC: digitalization \rightarrow followed by calculation of of $\Delta U/\Sigma U$
- Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100 \ \mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture,

resolution is worse than narrowband processing

Narrowband Processing for improved Signal-to-Noise

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- → ADC: digitalization → followed calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Mixer: A passive rf device with

- > Input RF (radio frequency): Signal of investigation $A_{RF}(t) = A_{RF} \cos \omega_{RF} t$
- > Input LO (local oscillator): Fixed frequency $A_{LO}(t) = A_{LO} \cos \omega_{LO} t$
- ✓ Output IF (intermediate frequency) $A_{IF}(t) = A_{RF} \cdot A_{LO} \cos \omega_{RF} t \cdot \cos \omega_{LO} t$ $= A_{RF} \cdot A_{LO} \left[\cos(\omega_{RF} \omega_{LO})t + \cos(\omega_{RF} + \omega_{LO})t \right]$

 \Rightarrow Multiplication of both input signals, containing the sum and difference frequency.

Synchronous detector: A phase sensitive rectifier

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- ➢ Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier & filter or mixing unit
- ➢ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification **Disadvantage of DSP: non**, good engineering skill requires for development, expensive

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC \rightarrow undersampling complex and expensive

Outline:

- \succ Signal generation \rightarrow transfer impedance
- Capacitive *button* BPM for high frequencies used at most proton LINACs and electron accelerators
- Capacitive shoe-box BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- > Summary

Trajectory Measurement with BPMs

Trajectory:

The position delivered by an **individual bunch** within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation !

Peter Forck, JUAS Archamps

Close Orbit Measurement with BPMs

Single bunch position averaged over 1000 bunches \rightarrow closed orbit with ms time steps. It differs from ideal orbit by misalignments of the beam or components. *Example: GSI-synchrotron at two BPM locations, 1000 turn average during acceleration:*

Closed orbit:

Beam position averaged over many turns (i.e. betatron oscillations). The result is the basic tool for alignment & stabilzation

Remark as a <u>role of thumb</u>: Number of BPMs within a synchrotron: $N_{BPM} \approx 4 \cdot Q$ Relation BPMs \leftrightarrow tune due to close orbit stabilization feedback (justification outside of the scope of this lecture)

Peter Forck, JUAS Archamps

42

Tune Measurement: General Considerations

Coherent excitations are required for the detection by a BPM Beam particle's *in-coherent* motion \Rightarrow center-of-mass stays constant Excitation of **all** particles by rf \Rightarrow *coherent* motion \Rightarrow center-of-mass variation turn-by-turn

Peter Forck, JUAS Archamps

The tune Q is the number of betatron oscillations per turn. The betatron frequency is $f_{\beta} = Qf_{0}$. **Measurement:** excitation of *coherent* betatron oscillations + position from one BPM.

From a measurement one gets only the non-integer part q of Q with $Q=n\pm q$. Moreover, only 0 < q < 0.5 is the unique result.

Example: Tune measurement for six turns with the three lowest frequency fits:

Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation → the beam position measured each revolution ('turn-by-turn') → Fourier Trans. gives the non-integer tune *q*.

Short kick compared to revolution.

The de-coherence time limits the **resolution**:

- N non-zero samples
- \Rightarrow General limit of discrete FFT: $\Delta q > \frac{1}{2N}$

Peter Forck, JUAS Archamps

The particles are excited to betatron oscillations, but due to the spread in the betatron frequency, they getting out of phase ('Landau damping'):

Scheme of the individual trajectories of four particles after a kick (top) and the resulting *coherent* signal as measured by a pick-up (bottom). \Rightarrow Kick excitation leads to limited resolution

Remark: The tune spread is much lower for a real machine.

Tune Measurement: Beam Transfer Function in Frequency Domain

Instead of one kick, the beam can be excited by a sweep of a sine wave, called 'chirp'

 \rightarrow Beam Transfer Function (BTF) Measurement as the velocity response to a kick

Prinziple:

Beam acts like a driven oscillator!

Using a network analyzer:

- \triangleright RF OUT is feed to the beam by a kicker (reversed powered as a BPM)
- \blacktriangleright The position is measured at one BPM
- > Network analyzer: amplitude and phase of the response
- \blacktriangleright Sweep time up to seconds due to de-coherence time per band
- \blacktriangleright resolution in tune: up to 10^{-4}

Tune Measurement: Result for BTF Measurement

From the position of the sidebands q = 0.306 is determined. From the width $\Delta f/f \approx 5 \cdot 10^{-4}$ the tune spread can be calculated via $\Delta f_h^- = \eta \frac{\Delta p}{p} \cdot h f_0 \left(h - q + \frac{\xi}{\eta} Q \right)$

Advantage: High resolution for tune and tune spread (also for de-bunched beams) Disadvantage: Long sweep time (up to several seconds).

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied

 \rightarrow beam picks out its resonance frequency: *Example:* Vertical tune within 4096 turn

- ➢ broadband excitation with white noise of ≈ 10 kHz bandwidth
- ➤ turn-by-turn position measurement by fast ADC
- \blacktriangleright Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance vertical tune at fixed time ≈ 15ms

Advantage:

Fast scan with good time resolution **Disadvantage:** Lower precision

Example: Vertical tune within 4096 turn duration ≈ 15 ms at GSI synchrotron 11 \rightarrow 300 MeV/u in 0.7 s vertical tune versus time

Excurse: Example of Lattice Functions

The position of dipoles and quadrupoles

- ➢ give the linear lattice functions
- \blacktriangleright at injection point D = 0 is favored
- \blacktriangleright chromatic correction with sextupoles,

Definition of dispersion *D*(*s*):

 $x_D(s) = D(s) \cdot \Delta p/p_0$ Definition of chromaticity ξ per turn:

 $\Delta Q/Q_0 = \xi \cdot \Delta p/p_0$

Example: GSI SIS100 ion synchrotron

Length [m]		1086
Energy [GeV]		$0.2 \rightarrow 2$
Tune	h/v	18.84 / 18.73
Max. dispersion /D/ [m]		1.73
Max. β –function [m]	h/v	19.6 / 19.6
Natural chromaticity ξ	h/v	-1.19 / -1.20
Injected emittance ε [mm mrad]	h/v	35 / 15
Injected $\Delta p/p_0$ [%]		0.05

Peter Forck, JUAS Archamps

Pick-Ups for bunched Beams

β -Function Measurement from Bunch-by-Bunch BPM Data

Excitation of coherent betatron oscillations: From the position deviation x_{ik} at the BPM *i* and turn *k* the β -function $\beta(s_i)$ can be evaluated.

The position reading is: (\hat{x}_i amplitude, μ_i phase at i, Q tune, s_0 reference location)

$$x_{ik} = \hat{x}_i \cdot \cos\left(2\pi Qk + \mu_i\right) = \hat{x}_0 \cdot \sqrt{\beta(s_i)/\beta(s_0)} \cdot \cos\left(2\pi Qk + \mu_i\right)$$

 \rightarrow a turn-by-turn position reading at many location (4 per unit of tune) is required. The ratio of β -functions at different location:

$$\frac{\beta(s_i)}{\beta(s_0)} = \left(\frac{\hat{x}_i}{\hat{x}_0}\right)^2$$

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

Without absolute calibration, β -function is more precise:

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$

Peter Forck, JUAS Archamps

Dispersion $D(s_i)$: Excitation of coherent betatron oscillations and change of momentum p by detuned rf-cavity: Δp

 \rightarrow Position reading at one location: $x_i = D(s_i) \cdot \frac{\Delta p}{p}$

 \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$.

Chromaticity ξ : Excitation of coherent betatron oscillations and change of momentum *p* by detuned rf-cavity:

→ Tune measurement (kick-method, BTF, noise excitation):

$$\frac{\Delta Q}{Q} = \xi \cdot \frac{\Delta p}{p}$$

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$ \Rightarrow slope is dispersion ξ .

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transfromers they are the most often used instruments! **Differentiated or proportional signal:** rf-bandwidth \leftrightarrow beam parameters **Proton synchrotron:** 1 to 100 MHz, mostly 1 M $\Omega \rightarrow$ proportional shape LINAC, e--synchrotron: 0.1 to 3 GHz, 50 $\Omega \rightarrow$ differentiated shape Important quantity: transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

Shoe-box (p-synch.), button (p-LINAC, e–-LINAC and synch.)*Remark:* Stripline BPM as traveling wave devices are frequently used**Position reading:** difference signal of four pick-up plates (BPM):

- Excitation of *coherent betatron oscillations* and response measurement excitation by short kick, white noise or sine-wave (BTF)
 - \rightarrow tune *q*, chromaticity ξ , dispersion *D* etc.

Appendix GSI Ion LINAC: Position and mean beam energy Meas.

Peter Forck, JUAS Archamps

Peter Forck, JUAS Archamps

Appendix: Synchrotron Light F.ALBA: 'Position, tune ect. Meas.

Beam position:

Center of mass
≻Many locations!
≻Frequent operating tool
≻For position stabilization i.e. closed otbit feedback

Abbreviation:

Meas. Stripline \rightarrow SMES Exc. Stripline \rightarrow SEXC Button BPMs \rightarrow BPM