Measurement of longitudinal Parameters

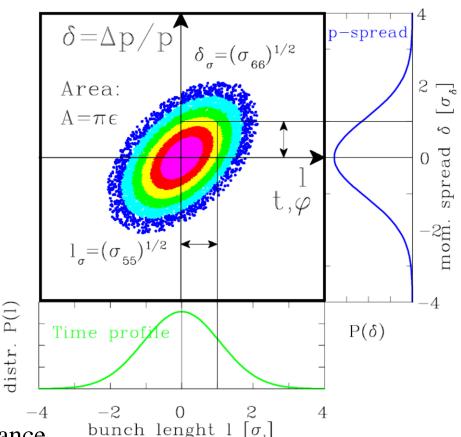
Measurement of longitudinal parameter:

- > Definition of longitudinal phase space
- > Proton LINAC: Determination of mean energy
- > Determination of longitudinal emittance
- > Bunch length measurement for non-relativistic beams
- > Bunch length measurement for relativistic beams
- > Summary

Longitudinal ↔ transverse correspondences:

- \triangleright position relative to rf \longleftrightarrow transverse center-of-mass
- ➤ momentum or energy spread ↔ transverse divergence

Measurement of longitudinal Parameters


The longitudinal dynamics is described by the longitudinal emittance as given by:

- Spread of the bunches *l* in time, length *or* rf-phase.
- Momentum spread $\delta = \Delta p/p$, or energy spread $\Delta W/W$

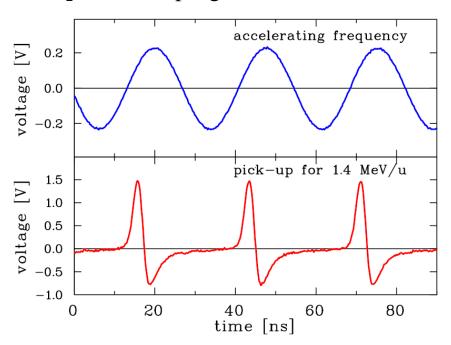
$$\Rightarrow \varepsilon_{long} = \frac{1}{\pi} \int_{A} dl \cdot d\delta$$

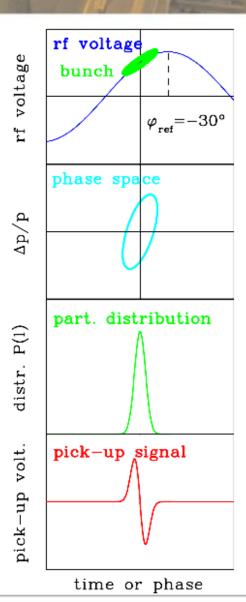
The normalized value is preserved:

$$\varepsilon_{long}^{norm} = \beta \gamma \cdot \varepsilon_{long}$$

Discussed devices:

- ➤ Pick-ups for bunch length and emittance.
- \triangleright Special detectors (low E_{kin} protons), streak cameras & ele.-optical modulation (e⁻)


The Bunch Position measured by a Pick-Up



The *bunch position* is given relative to the accelerating rf.

e.g. φ_{ref} =-30° inside a rf cavity must be well aligned for optimal acceleration Transverse correspondence: Beam position

Example: Pick-up signal and 36 MHz rf at GSI-LINAC:

Outline:

- > Definition of longitudinal phase space
- ➤ Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- > Determination of longitudinal emittance
- > Bunch length measurement for non-relativistic beams
- > Bunch length measurement for relativistic beams
- > Summary

Determination of non-relativistic mean Energy using Pick-Ups

The energy delivered by a LINAC is sensitive to the mechanics, rf-phase and amplitude.

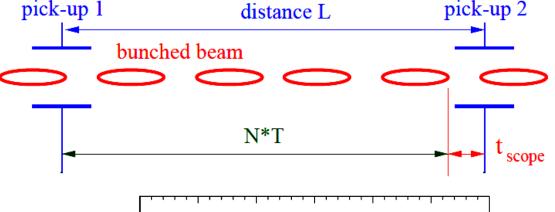
For non-relativistic energies at proton LINACs time-of-flight (TOF) with two pick-ups is used:

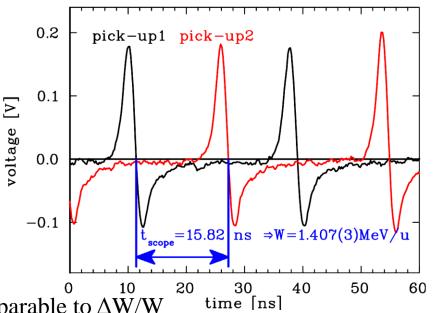
$$\beta c = \frac{L}{NT + t_{\text{scope}}}$$

 \rightarrow the velocity β is measured.

Example: Time-of-flight signal from two pick-ups at 1.4 MeV/u:

The reading is $t_{scope} = 15.82(5)$ ns with


$$f_{rf} = 36.136 \text{MHz} \Leftrightarrow T = 27.673 \text{ns}$$


$$L = 1.629 \text{ m and } N = 3$$

$$\Rightarrow \beta = 0.05497(7)$$

$$\Rightarrow$$
 W=1.407(3) MeV/u

The accuracy is typically 0.1 % i.e. comparable to $\Delta W/W$

Precision of TOF Measurement for non-relativistic Energy

The precision of TOF is given by the accuracy in time and distance reading:

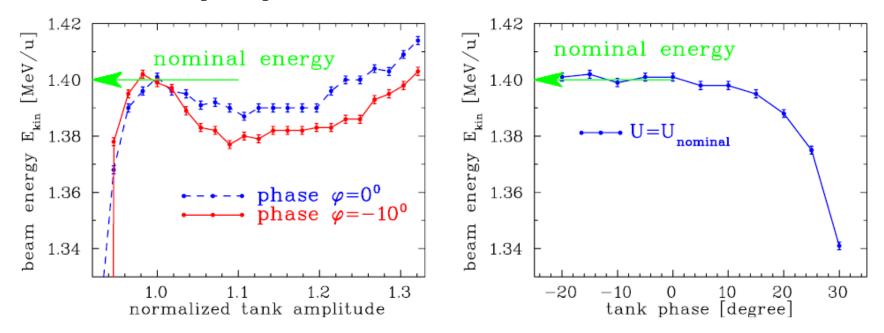
$$\frac{\Delta \beta}{\beta} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta t}{NT + t_{\text{scope}}}\right)^2}$$

Accuracy of scope reading $\Delta t \approx 100$ ps, uncertainty in distance $\Delta L \approx 1$ mm.

Example: GSI-LINAC: L = 3.25 m and $f_{rf} = 36$ MHz:

Location (LINAC module name)	unit	RFQ	IH1	IH2	AL4
Output energy W	MeV/u	0.12	0.75	1.4	11.4
Velocity $\boldsymbol{\beta}$	%	1.6	4.0	5.5	15.5
Total time-of-flight t_{ToF}	ns	677	271	197	70
Bunch spacing $\beta c/f_{rf}$	cm	13	33	45	129
Resolution \(\Delta W/W \)	%	0.07	0.10	0.12	0.22

- \triangleright The accuracy is typically 0.1 % (same order of magnitude as $\Delta W/W$)
- The length has to be matched to the velocity
- \triangleright Due to the distance of \approx 3 m, different solutions for the # of bunches N are possible
- → A third pick-up has to be installed closed by, to get an unique solution.


Cavity Alignment using a TOF Measurement

The mean energy is important for the matching between LINAC module. It depends on phase and amplitude of the rf wave inside the cavities.

Example: Energy at GSI LINAC (nominal energy 1.400 MeV/u):

(distance between pick-ups: $L = 1.97 \text{ m} \Rightarrow N = 4 \text{ bunches}$)

➤ Proton LINACs: Amplitude and phase should be carefully aligned by precise TOF

▶Electron LINACs: Due to relativistic velocity, TOF is not applicable.

Outline:

- > Definition of longitudinal phase space
- > Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- > Determination of longitudinal emittance
 - LINAC: variation of bunch length
 - **Synchrotron: Topographic reconstruction**
- **Bunch length measurement for non-relativistic beams**
- > Bunch length measurement for relativistic beams
- > Summary

6-dim Phase Space for Accelerators

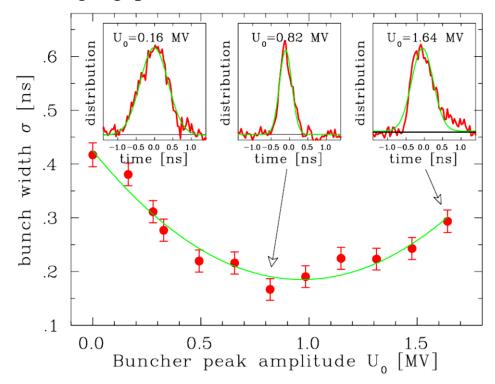
The particle trajectory is described with the 6-dim vector $\vec{x}^t = (x, x', y, y', l, \delta)$

For linear beam behavior the 6x6 transport matrix R is used:

The transformation from location s_0 to s_1 is:

$$\vec{x}(s_1) = R \cdot \vec{x}(s_0)$$

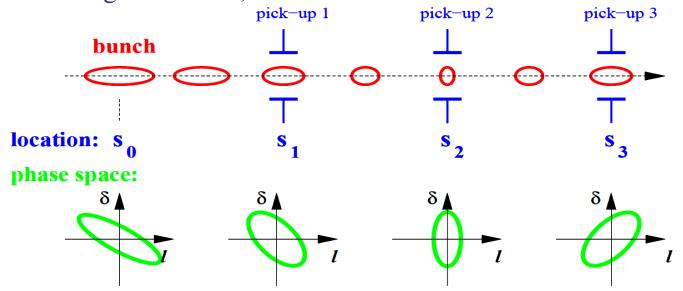
$$= \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ R_{21} & R_{22} & \dots & = 0 \dots & = 0 \dots \\ R_{31} & \dots & R_{33} & R_{34} & \dots & \dots \\ R_{41} = 0 \dots & R_{43} & R_{44} & \dots = 0 \dots \\ R_{51} & \dots & \dots & R_{55} & R_{56} \\ R_{61} = 0 \dots & \dots & R_{65} & R_{66} \end{pmatrix} \begin{pmatrix} x \\ x' \\ y' \\ y' \\ l \\ \delta \end{pmatrix}$$


R separates in 3 matrices only if the horizontal, vertical and longitudinal planes do **not** couple, e.g. no dispersion $D=-R_{16}=0$

Result of a longitudinal Emittance Measurement

Example GSI LINAC:

The voltage at the single gap -resonator is varied for $11.4 \text{ MeV/u Ni}^{14+}$ beam, 31 m drift:



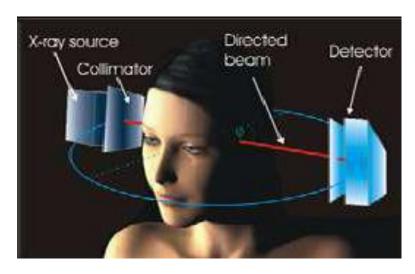
- > The structure of short bunches can be determined with special monitor
- \triangleright This example: The resolution is better than 50 ps or 2° for 108 MHz
- > Typical bunch length at proton LINACs: 30 to 200 ps

Longitudinal Emittance within a Transfer-Line

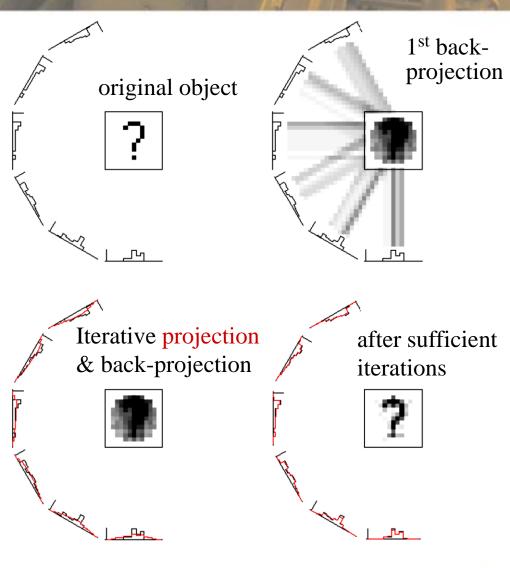
As for the 'three grid' method, the emittance can be determined in a transfer line.

The system of redundant linear equations with the transfer matrix $\mathbf{R}(\mathbf{i})$ to location s_i :

$$\begin{array}{lll} \sigma_{55}(1) & = & R_{55}^2(1) \cdot \sigma_{55}(0) + 2R_{55}(1)R_{56}(1) \cdot \sigma_{56}(0) + R_{56}^2(1) \cdot \sigma_{66}(0) & \mathbf{R}(1) : s_0 \to s_1 \\ & : \\ \sigma_{55}(n) & = & R_{55}^2(n) \cdot \sigma_{55}(0) + 2R_{55}(n)R_{56}(n) \cdot \sigma_{56}(0) + R_{56}^2(n) \cdot \sigma_{66}(0) & \mathbf{R}(n) : s_0 \to s_n \end{array}$$


Assumptions: \triangleright Bunches much longer than pick-up or relativistic E -field: $E_{\perp} >> E_{\parallel}$ \triangleright Gaussian distribution without space-charge effects.

Longitudinal Emittance using tomographic Reconstruction


Tomography is medical image method Tomography:

2-dim reconstruction of sufficient 1-dim projections

Algebraic back projection:

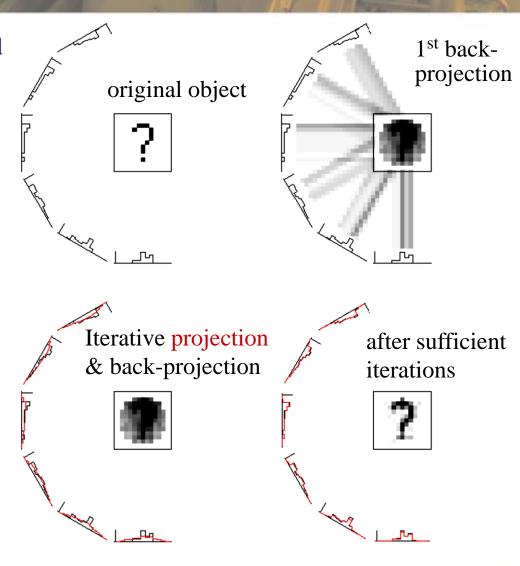
Iterative process by redistributing the 2-dim image and considering the differences to the previous iteration step.

Longitudinal Emittance using tomographic Reconstruction

Tomography is medical image method Tomography:

2-dim reconstruction of sufficient 1-dim projections

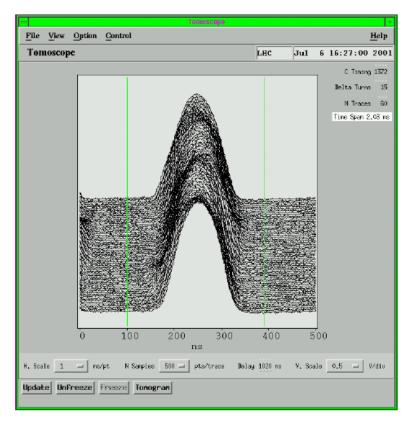
Application at accelerators:

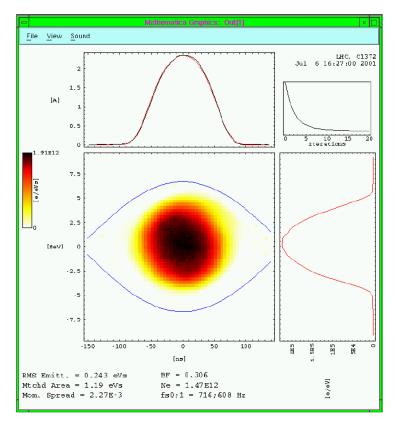

Longitudinal emittance evolution in synchrotrons.

Bunch observation:

Each revolution, the bunch shape changes a bit due to synchrotron oscillations. Fulfilled condition: $f_{synch} << f_{ref}$.

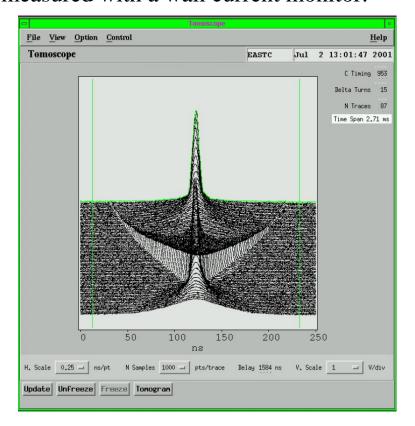
Algebraic back projection:

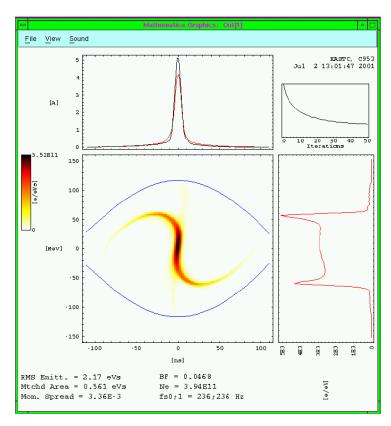

Iterative process by redistributing the 2-dim image and considering the differences to the previous iteration step.



Results of tomographic Reconstruction at a Synchrotron I

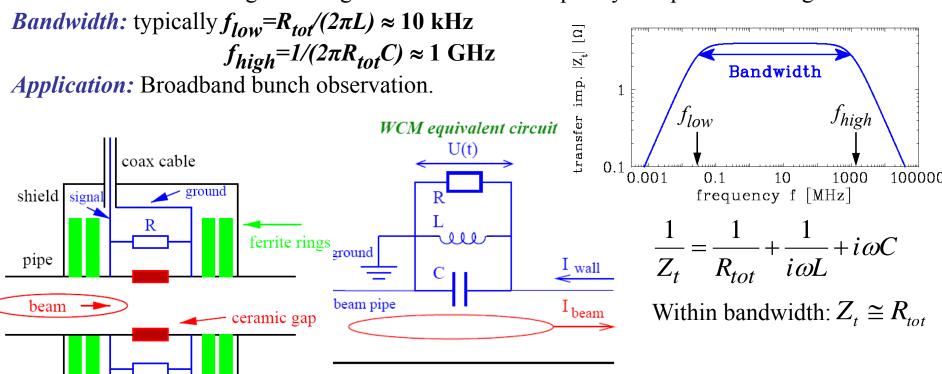
Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:




Typical bucket filling. Important knowledge for bunch 'gymnastics'.

Results of tomographic Reconstruction at a Synchrotron II

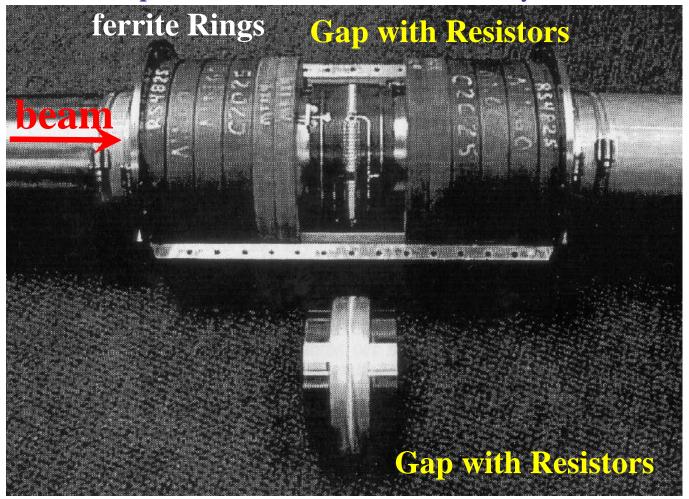
Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:


Mismatched bunch shown oscillations and filamentation due to 'bunch-rotation'.

Resistive Wall Current Monitor

Broadband observation of bunches can be performed with a resistive Wall Current Monitor

- **Principle:** \triangleright Ceramic gap bridged with n = 10...100 resistors of $R = 10...100 \Omega$
 - \triangleright Measurement of voltage drop for $R_{tot} = R/n = 1...10 \Omega$
 - \triangleright Ferrite rings with high $L \rightarrow$ forces low frequency components through resistors


to ground

to signal

Resistive Wall Current Monitor

Example: Realization at Fermi-Laboratory

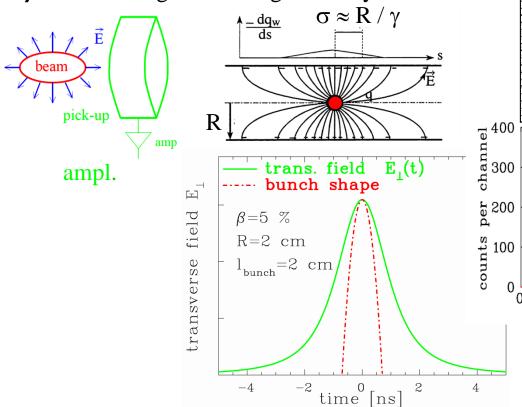
Outline:

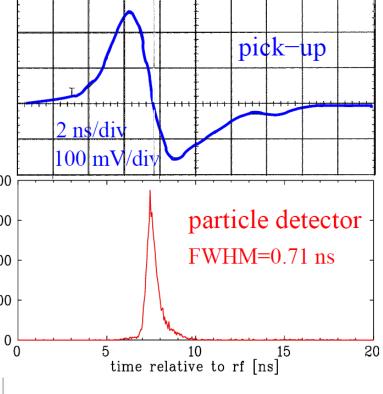
- > Definition of longitudinal phase space
- ➤ Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- ➤ Determination of longitudinal emittance LINAC: variation of bunch length Synchrotron: Topographic reconstruction
- > Bunch length measurement for non-relativistic beams

 Determination of particle arrival
- > Bunch length measurement for relativistic beams
- > Summary

Bunch Structure at low E_{kin} : Not possible with Pick-Ups

Pick-ups are used for:


> precise for bunch-center relative to rf

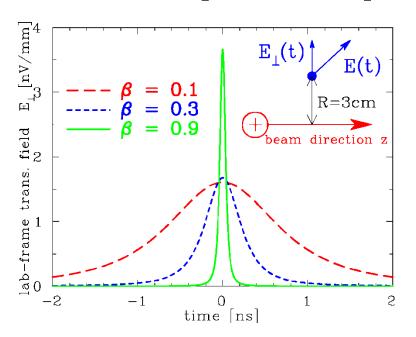

> course image of bunch shape

Example: Comparison pick-up – particle counter: Ar¹⁺ with 1.4 MeV/u ($\beta = 5.5\%$)

But:

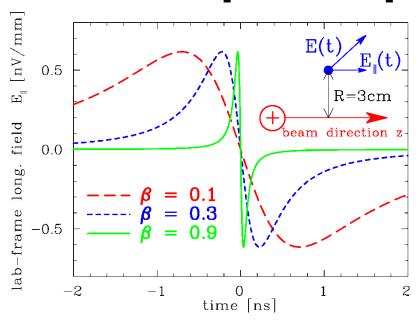
For $\beta \ll 1 \rightarrow \text{long. } E\text{-field significantly modified:}$

⇒ the pick-up signal is insensitive to bunch 'fine-structure'



Lorentz transformation of single point-like charge:

Lorentz boost *and* transformation of time: $E_{\perp}(t) = \gamma \cdot E'_{\perp}(t')$ and $t \to t'$


Trans. E_{\perp} lab.-frame of a point charge:

$$E_{\perp}(t) = \frac{e}{4\pi\varepsilon_0} \cdot \frac{\gamma R}{\left[R^2 + (\gamma \beta ct)^2\right]^{3/2}}$$

Long. E_{\parallel} lab.-frame of a point charge:

$$E_{||}(t) = -\frac{e}{4\pi\varepsilon_0} \cdot \frac{\gamma\beta ct}{\left[R^2 + (\gamma\beta ct)^2\right]^{3/2}}$$

Broadband coaxial Faraday Cups for Bunch Structure

The bunch structure can be observed with cups, having a bandwidth up to several GHz.

Bandwidth and rise time: BW [GHz] = $0.3/t_{rise}$ [ns]

Impedance of a

coaxial transmission line:

$$Z_0 = \frac{Z_c}{2\pi} \cdot \ln \frac{r_{\text{shield}}}{r_{\text{coll}}}$$

with
$$Z_c = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}}$$

for vacuum
$$Z_C = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \Omega$$

 \rightarrow impedance matching to prevent

for reflections

Voltage reflection:
$$\rho_V = \frac{Z - Z_0}{Z + Z_0}$$

Voltage Reflection:
$$V = \frac{Z + Z_0}{V + Z_0}$$
 Voltage Standing Wave Ratio: $V = \frac{Z}{Z_0} = \frac{1 + \rho_V}{1 - \rho_V}$

 $Z = Z_0$: no reflection. $Z = 0 \Rightarrow \rho_V = -1$: short circuit. $Z = \infty \Rightarrow \rho_V = 1$: open circuit.

Realization of a Broadband coaxial Faraday Cup

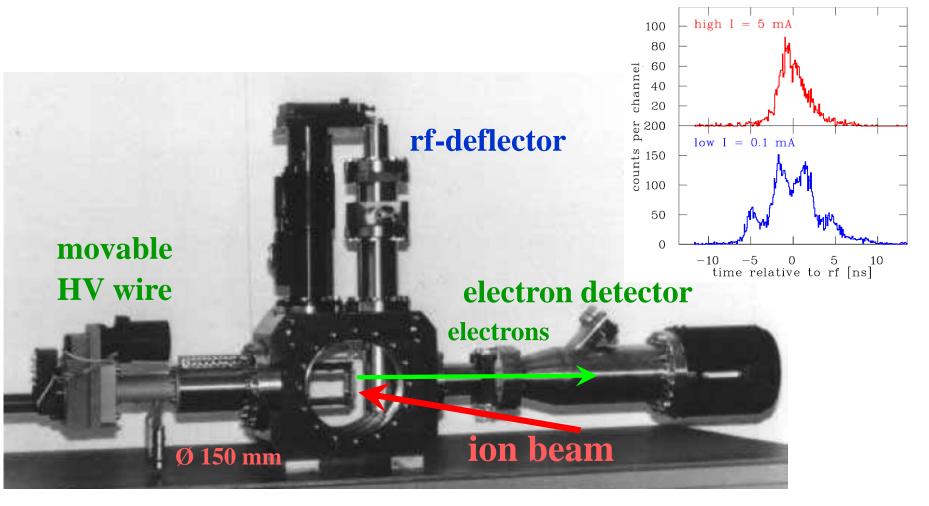
Bunch Structure using secondary Electrons for low Ekin Protons

Secondary e⁻ liberated from a wire carrying the time information.

→ Bunch Shape Monitor (BSM)

Working principle:

- \triangleright insertion of a 0.1 mm wire at \approx 10 kV
- > emission of secondary e within less 0.1 ps
- ➤ secondary e⁻ are accelerated
- > toward an rf-deflector
- > rf-deflector as 'time-to-space' converter
- > detector with a thin slit
- > slow shift of the phase
- \triangleright resolution $\approx 1^{\circ} < 10 \text{ ps}$
- ➤ Measurements are comparable to that obtained with particle detectors.


detector: SEM or FC bunch shape rf-deflector (+ phase shifter) aperture: about 1 mm wire on HV secondary electron from wire (0.1 mm, 10 k) beam

SEM: secondary electron multiplier

Realization of Bunch Shape Monitor at CERN LINAC2

Example: The bunch shape at 120 keV/u for 120 keV/u:

Outline:

- > Definition of longitudinal phase space
- > Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- ➤ Determination of longitudinal emittance LINAC: variation of bunch length Synchrotron: Topographic reconstruction
- ➤ Bunch length measurement for non-relativistic beams Determination of particle arrival
- ➤ Bunch length measurement for relativistic beams

 Synchrotron light monitor and electro-optical modulation of a laser beam
- > Summary

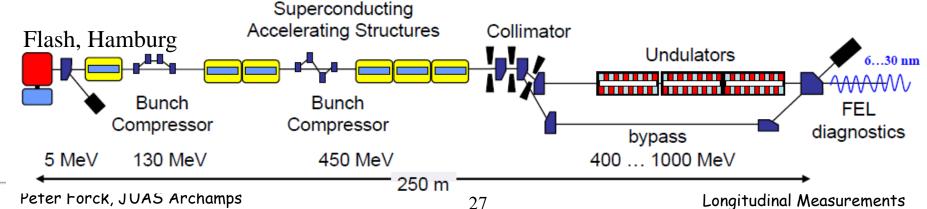
Excurse: 3rd and 4th Generation Light Sources

3rd Generation Light Sources:

Example: Soleil, Paris, $E_{electron}$ = 2.5 GeV, C = 354 m

Synchrotron-based with $E_{electron} \approx 1...8 \text{ GeV}$

Light from dipoles, undulators & wigglers, $E_{\gamma} < 10 \text{ keV}$

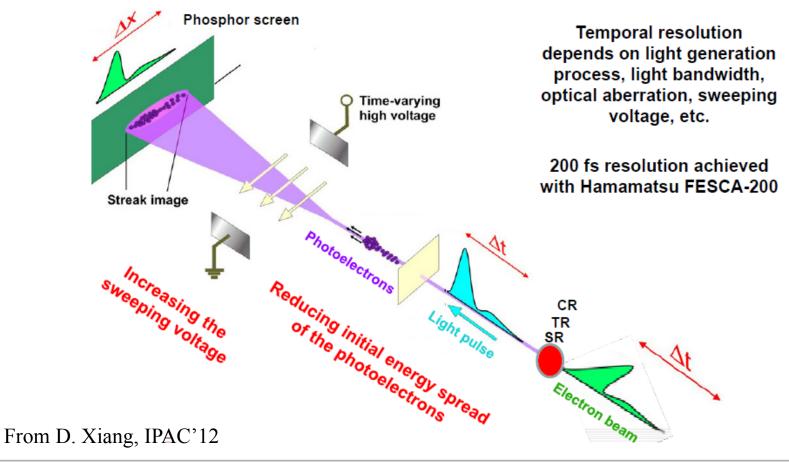

Users: biology, chemistry, material science, solid state and atomic physics

National facilities in many counties, some international facilities.

4th Generation Light Sources: LINAC based, single pass with large energy loss

 $E_{electron} \approx 1 \dots 18$ GeV, **coherent** light from undulator, $E_{\gamma} < 1000$ keV range, short pulse

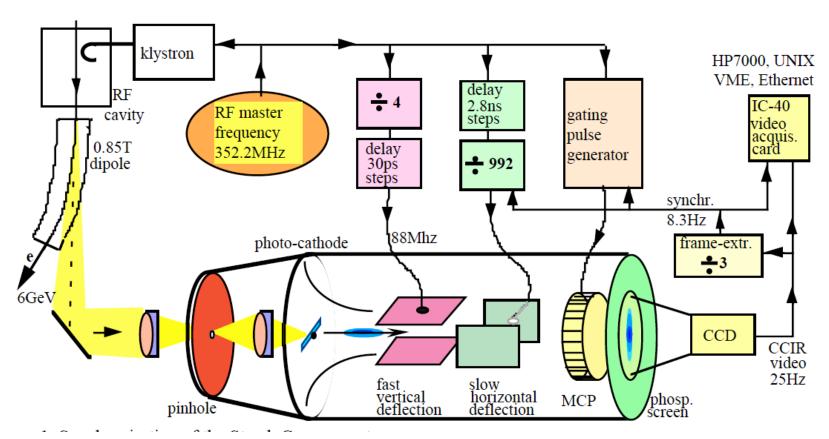
Europe: Germany, Italy, Netherlands, Switzerland, America: USA, Asia: China, Japan ...



Bunch Length Measurement for relativistic e-

Electron bunches are too short (σ_t < 300 ps) to be covered by the bandwidth of pick-ups (f < 1 GHz $\Leftrightarrow t_{rise}$ >300 ps) for structure determination.

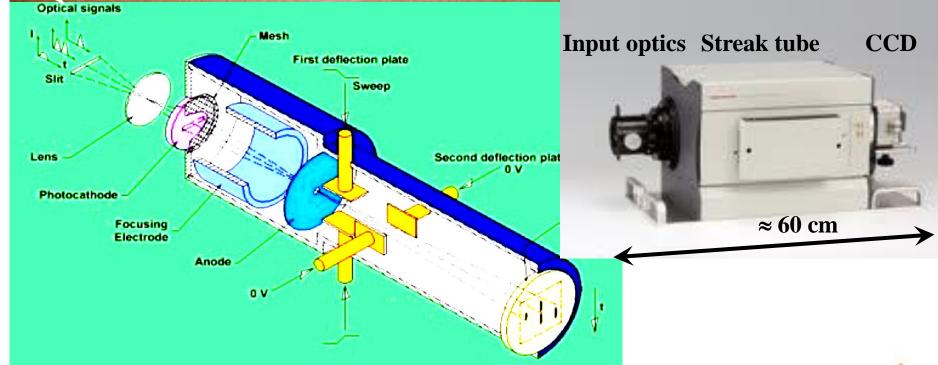
 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution ≈ 1 ps.



Bunch Length Measurement for relativistic e-

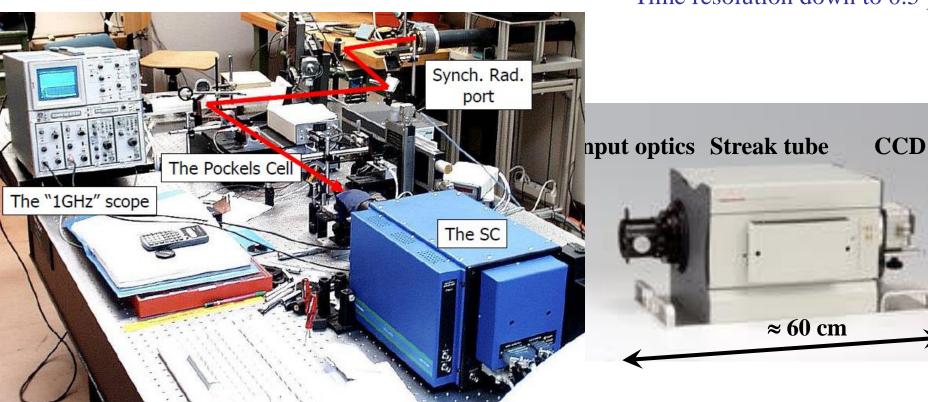
Electron bunches are too short (σ_t < 300 ps) to be covered by the bandwidth of pick-ups (f < 1 GHz $\Leftrightarrow t_{rise}$ >300 ps) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution ≈ 1 ps.


Technical Realization of Streak Camera

Hardware of a streak camera

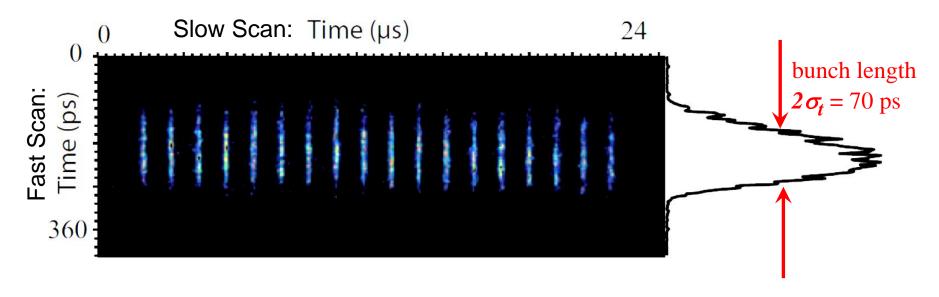
Time resolution down to 0.5 ps:



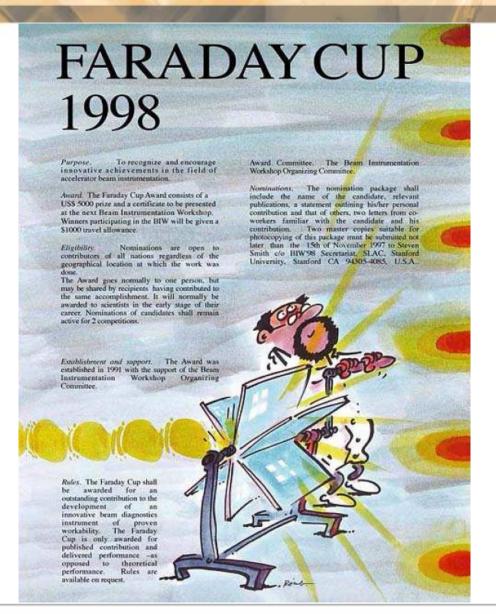
Technical Realization of Streak Camera

Hardware of a streak camera

Time resolution down to 0.5 ps:

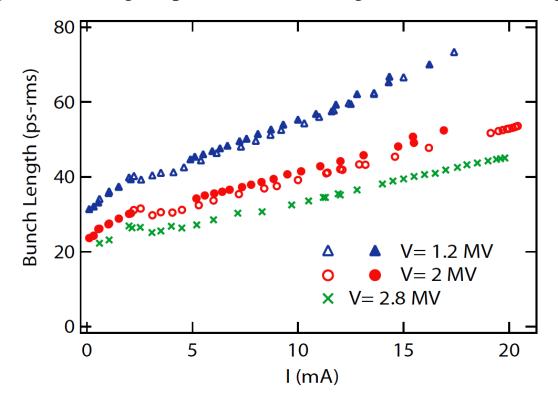

The Streak Camera setup at ELETTRA, Trieste, Italy

Results of Bunch Length Measurement by a Streak Camera


The streak camera delivers a fast scan in vertical direction (here 360 ps full scale) and a slower scan in horizontal direction (24 μ s).

Example: Bunch length at the synch. Light source SOLEIL for $U_{rf} = 2$ MV for slow direction 24 μ s and scaling for fast scan 360 ps: measure $\sigma_t = 35$ ps.

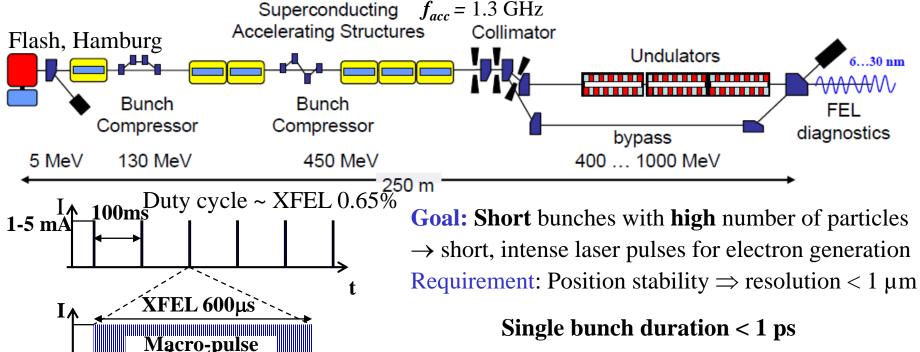
The Artist View of a Streak Camera

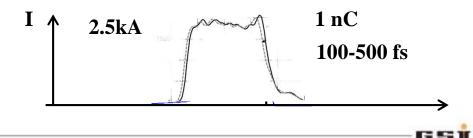

33

The Importance of Bunch Length by Streak Camera

Short bunches are desired by the synchrotron light users for time resolved spectroscopy. The bunch focusing is changed by the rf-amplitude.

Example: Bunch length σ_t as a function of stored current (space-charge de-focusing, impedance broadening) for different rf-amplitudes at SOLEIL:

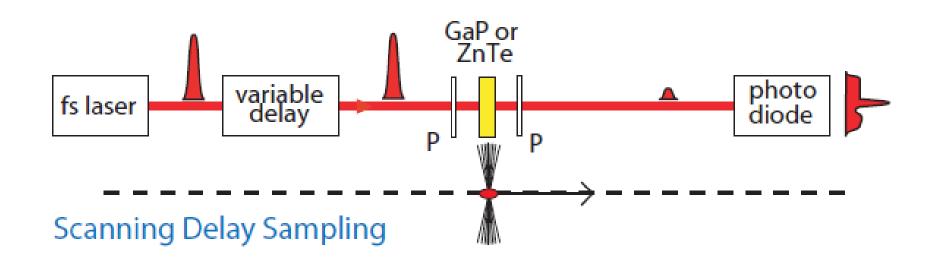



Excurse: 4th Generation Light Sources & Beam Delivery

4th Generation Light Sources: LINAC based, single pass with large energy loss

 $E_{electron} \approx 1 \dots 18$ GeV, coherent light from undulator, $E_{\gamma} < 1000$ keV, temporally short pulse

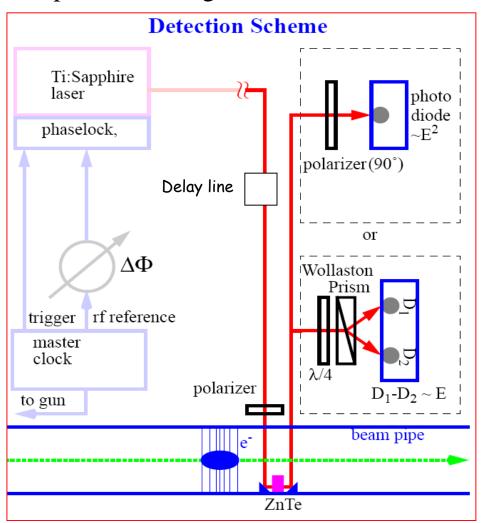
222ns bunch spacing

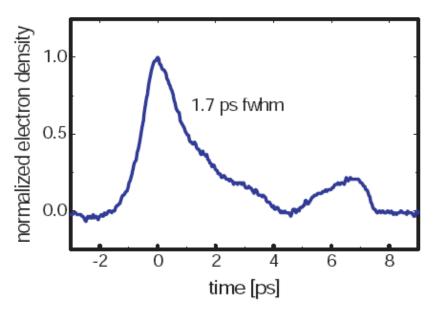

Bunch length measurement by electro-optical methods

For Free Electron Lasers → bunch length below 1 ps is achieved

- → below resolution of streak camera
- \rightarrow short laser pulses with $t \approx 10$ fs and electro-optical modulator

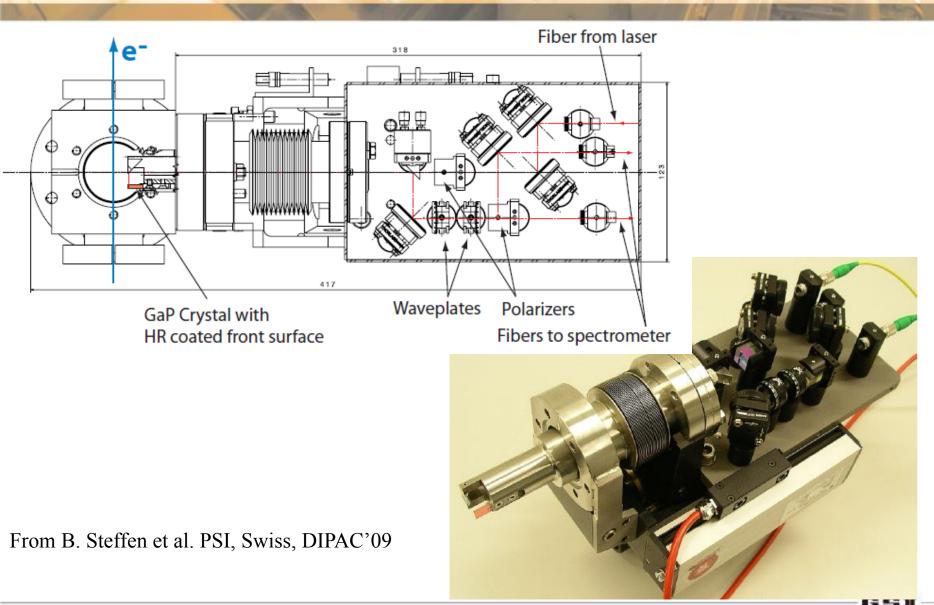
Electro optical modulator: birefringent, rotation angle depends on external electric field Relativistic electron bunches: transverse field $E_{\perp, lab} = \gamma E_{\perp, rest}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.




From S.P.Jamison et al., EPAC 2006

Realization of EOS Scanning

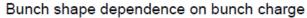
Setup of a scanning EOS method

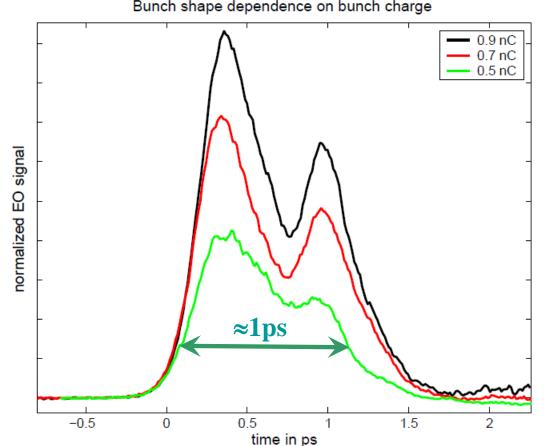


Using 12fs pulses from Ti:Al2O3 laser at 800nm and ZnTe crystal 0.5mm thick with a e⁻ - beam 46MeV of 200pC

X. Yan et al, PRL 85, 3404 (2000)

Hardware of a compact EOS Scanning Setup

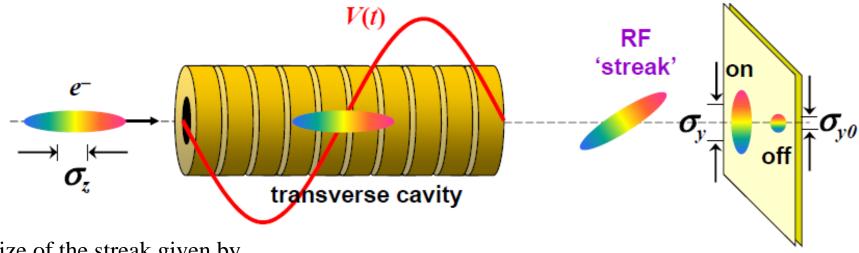




Measurement of Bunch Shape at FEL-Facility

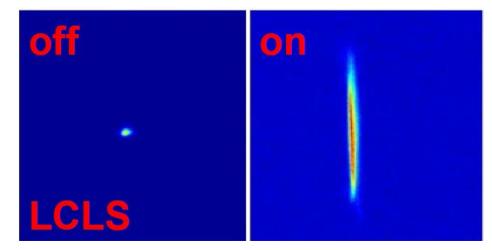
Example: Bunch length at FEL test facility FLASH

Scanning of the short laser pulse relative to bunch:



Results at FLASH, Hamburg, see B. Steffen et al., FEL Conf. Stanford, p. 549, 2005.

Bunch Length by rf-Deflection: Principle


Transversal deflection of the bunch i.e. time-to-space conversion

Size of the streak given by

$$\sigma_{y} = \sqrt{\sigma_{y0}^{2} + R_{35} \cdot k \cdot \sigma_{z}^{2}}$$

k is determined by the rf-power
$$k = \frac{2\pi e \cdot U_{rf}}{\lambda_{rf} E}$$

From D. Xiang, IPAC'12

Bunch Length by rf-Deflection: Hardware

Transversal deflection of the bunch

i.e. time-to-space conversion

Example: Cavity at FERMI, Trieste, Italy

From M. Veronese, BIW'12

Beam energy

Typical beam size

Length

Frequency

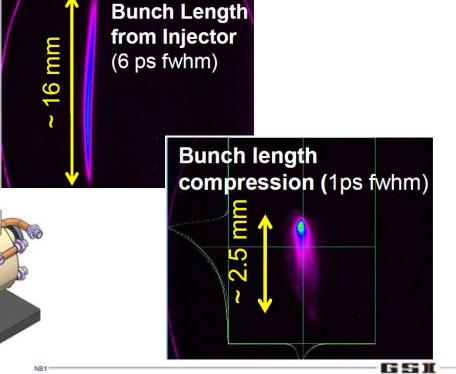
Max. rf power

Total trans. volt.

Time resolution

320 MeV

0.2 mm


 $0.5 \, \mathrm{m}$

2.998 GHz

5 MW

4.9 MV

70 fs

Summary of longitudinal Measurements

Longitudinal ↔ **transverse correspondences**:

- \triangleright position relative to rf \leftrightarrow transverse center-of-mass
- ➤ bunch structure in time ↔ transverse profile in space
- ➤ momentum or energy spread ↔ transverse divergence.

Determination uses:

- *Broadband pick-ups:* ➤ position relative to rf, mean energy
 - ➤ emittance at transfer lines or synchrotron via tomography assumption: bunches longer than pick-up.

Particle detectors:

- > TOF or secondary e⁻ from wire
 - → for non-relativistic proton beams reason: *E*-field does not reflect bunch shape.

Streak cameras:

- time resolved monitoring of synchrotron radiation
 - → for relativistic e⁻-beams, t_{bunch} < 1 ns reason: too short bunches for rf electronics.

Laser scanning:

- ➤ Electro-optical modulation of short laser pulse
 - → very high time resolution

Beam deflection:

- > Transverse deflection of primary beam
 - → very high time resolution, but most expensive 'device'.