Measurement of Beam Profile T
BN LA T . W /RS ™
The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.
— Profiles have to be controlled at many locations.
Synchrotrons: Lattice functions A(s) and D(s) are fixed = width oand emittance g are:

2
cZ(s)=¢&,/,(s) + D(s)@ and o2(s)=¢,8,(s) (novertical bend)
D y yry

LINACS: Lattice functions are ‘smoothly’ defined due to variable input emittance.
Typical beam sizes:

e -beam: typically @ 0.1 to 3 mm, protons: typically @ 1 to 30 mm

A great variety of devices are used:
» Optical techniques: Scintillating screens (all beams),

synchrotron light monitors (e—), optical transition radiation (e—),
residual gas fluorescence monitors (protons), ionization profile monitors (protons).

» Electronics techniques: Secondary electron emission (SEM) grids, wire scanners (all)

SN
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid
» Wire scanner
» lonization Profile Monitor and Beam Induced Fluorescence Monitor
» Optical Transition Radiation
» Synchrotron Light Monitors
» Summary
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Early Usage of Scintillation Screen by E. Rutherford O.

e

B\ . T . W /S PEERSSE ™
Scintillation screens are used from the ‘early days’ on e.g. by Ernest Rutherford in 1911:

m pudding modg¥

222Rn decay
—‘beam’ of o

with 5.5 MeV
c< particle
‘ e!'nit:el"
-
Detecting screen
>
ZnS:Ag >
:

\ )
\)

Rutherford or ‘Geiger-Marsden Experiment’:
»Nuclei are made of point-like charges

ZnS:Ag

> light emitter excited by the energy release by charged particle — sintillation
» today known as Phosphor P11 and is used in TV tubes etc.
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Scintillation Screen i

B\ " 4 A\ .
Particle’s energy loss in matter produces light

— the most direct way of profile observation as used from the early days on!

scintillation screen

beam

>

support

CCD camera movement

Pneumatic

Pneumatic feed-through
with @70 mm screen :

SN
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Example of Screen based Beam Profile Measurement i
\ .S T mOT /T REET T
Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

T cemvewommwmon

[ 07.0kt08 17:29:37 |
ey G Hor. profection mirsses @ Ver. projecton
Advantage of screens: i j*

i
o]

»Direct 2-dim measurement
»High spatial resolution
» Cheap realization

o]

average pixel value
o 5 ] !

average pixel \Hlue

e N & o o

-40 -20 o 20
left position [mm]

Observation with b/w CCD:
~ Jartificial
a CCD or CMOS camera wmmE T false-color

with digital output

or video & frame grabber.

GSN
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Light output from various Scintillating Screens i
AN 5. N A o A ST ™
Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

P43

AlLO,
YAG:Ce Herasil Quartz:Ce ZrO,:Mg

» Very different light yield i.e. photons per ion‘s energy loss
> Different wavelength of emitted light

SN
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Excurse: Physics of Scintillating Mechanism ’ “ﬁ
W _a— | L .

Interaction steps within the scintillation process

> beam interaction

— hot electrons + deep holes o o O o
Beam °
> multiplication: —_—
‘/. hy

electron - electron scattering

o © ‘o\ © ©
> thermalization: @

electron — phonon coupling

hy
» capture at doped atom and/or O O O
electron - hole pair creation

.. Doping atom
» emiIssion of photons

SN
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Wavelength Spectrum for Scintillation Screens ?

Wavelength spectrum of Al,O5:Cr (Chromox)

— Emission is dominated by Chromium dopant

Al,04:Cr ' '
1=—— 1" pulse
1——50" pulse
100" pulse Other materials have different spectra
= — Optimization to sensitivity of detector
= - -
.E - h — but others material properties
- have to obeyed and weighted
300 400 500 €00 700 80O
wavelenght (nm)
Beam parameters: 238U28* 4.8 MeV/u, 5 - 1010 ppp in 500 ps, ~450 A [E. Gatlich (GSI) et al., BIW 2010]
SN
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Material Properties for Scintillating Screens i
B\ E N TN . MY |/ 'ESET T

Some materials and their basic properties: Standard drive with P43 screen
Name Type Material | Activ. | Max. A | Decay

Chromox | Cera- Al O, Cr|700nm | = 10 ms

Alumina | mics Al,0O, Non | 380 nm | ~ 10 ns

YAG:Ce | Crystal | Y;AlL0, Ce | 550nm | 200 ns

P43 Powder | Gd,0,S Tb | 545 nm 1 ms

P46 Y;ALO,, Ce | 530nm | 300 ns

P47 Y;Si;0,, | Ce&Tb | 400 nm | 100 ns

Properties of a good scintillator:
> Large light output at optical wavelength
— standard CCD camera can be used
» Large dynamic range — usable for different ions
» Short decay time — observation of variations
» Radiation hardness — long lifetime
» Good mechanical properties — typ. size up to @ 10 cm

(Phosphor Pxx grains of @ ~ 10 um on glass or metal).
Peter Forck, JUAS Archamps 9
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Example: Light Output from various Screens i
B\ " A~ [V TSN T
Example: Beam images for various scintillators irradiated by Uranium at ~ 300 MeV/u at GSI
| [®P43 phosphor #1 [l YAG:Ce #5 I
10° H| [#P46 phosphor#2 [O/A999 #6
— H [@]P46 phosphor #3  [@]AI203:Cr #7
g | B¥YAG:Ce #4
g :
5100 b _ A
o -
5 ﬂﬁl
S0l o
- 10 o - ot From P. Forck et al., IPAC’ 14,
-~ " o 169°° A. Lieberwirth et al., NIM B 2015
Q
106 . | . L L L T
_ 10’ 10°
Results: number of irradiated particles per pulse [ppp]
» Several orders of magnitude different light output

» = material matched to beam intensity must be chosen

» Well suited: powder phosphor screens P43 and P46

» — cheap, can be sedimeted on large substrates of nearly any shape

» Light output linear with respect to particles per pulse
Peter Forck, JUAS Archamps 10
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner
» lonization Profile Monitor and Beam Induced Fluorescence Monitor
» Optical Transition Radiation
» Synchrotron Light Monitors
» Summary

GSN
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Excurse: Secondary Electron Emission by Ion Impact i
BN LA TG 7 ERSSE TN

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: — fast e with E,; >> 100 eV
Distant collision with low energy transfer — slow e~ with E,;, < 10 eV

— ‘diffusion’ & scattering with other e™: scattering length L, ~#1 - 10 nm

— at surface ~ 90 % probability for escape

Secondary electron yield and energy distribution comparable for all metals!

_ *
= Y =const. * dE/dX (Sternglass formula) Different targets:

S
x Mg 12 Aorset
4? ® Al 13 Aorsel
aAl 13 Hil
- Curve | 0Fe 26 A t
e \ c 3 sNi 28 Aoreel
, 6—ra = oCu 29 Hill
beam y — oMo 42 Hill
) T} ol a Ay 79 Aorset
o —— vPb 82 Aarset
%) vPb 82 Hill
- c
e« S
)
O
D of-
- L el
~ 81~
L.~ 10 nm i
S+
5 1 I T T N W I 1 |
4 2 3 4 5 678910 20 30
From E.J. Sternglass, Phys. Rev. 108, 1 (1957) E=Proton Energy in Mev

GSN
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Secondary Electron Emission Grids = SEM-6rid : ‘p.

Beam surface interaction: e~ emission — measurement of current.
Example: 15 wire spaced by 1.5 mm:

SEM-Grid feed-through on CF200:

GSN
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Secondary Electron Emission Grids = SEM-6rid : ‘p.

Beam surface interaction: e~ emission — measurement of current.
Example: 15 wire spaced by 1.5 mm:

SEM—grid  eam \L* range select
i . R, /U converter
: | L]
T ”‘“‘ i * R integrator
. - pblyisiashhie S - _EL I_ one per wire
Xy = _”l"" eee
| [\ Y
. — —
o - - 3 range
5
— £
i o Rn E "XDC
I/U converter| . R integrator T%D
one per wire | \ 1 If = address
Each wire is equipped with one 1/U converter ’—1 dllglral _
—  electronics

different ranges settings by R;

— very large dynamic range up to 106. |
GSH
Beam Profile Measurement
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The Artist view of a SEM-6rid = Harp

The Faraday Cup is an award granded every second year for beam diagnostics inventions .

GSN
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Properties of a SEM-6rid ; “Pg
Secondary e- emission from wire or ribbons, 10 to 100 per plane.
Example: Ribbon type SEM-Grid
Specifications for SEM-Grids at the GSI-LINAC: [

~

Diameter of the wires 0.05 to 0.5 mm

Spacing 0.5 to 2 mm

Length 50 to 100 mm v— _ |
Material W or W-Re alloy SR
Insulation of the frame glass or Al,O4 '

number of wires 10 to 100

Max. power rating in vacuum 1 W/mm
Min. sensitivity of I/U-conv. 1 nA/V

Dynamic range 1:10°
Number of ranges 10 typ.
Integration time I pustols

Care has to be taken to prevent over-heating by the energy loss!
Low energy beam: Wires with ratio of spacing/width: =~ 1mm/0.1mm = 10 — only 10 % loss.
High energy E;, > 1 GeV/u: typ. 25 pm thick ribbons & 0.5 mm width — negligible energy loss.

SN
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Example of Profile Mesurement with SEM-6rids

‘—_—

Even for low energies, several SEM-Grid can be used due to the ~80 % transmission
= frequently used instrument beam optimization: setting of quadrupoles, energy....

Example: C®* beam of 11.4 MeV/u at different locations at GSI-LINAC

Profilgitter %{
y33

27.Jan 00 11:09:35 |Neldurgen |

[ TkeD6L  L12 12C ©
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| TKSD62  mz2  '2cC ©
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(K061 U1z '2C ©

11.450 HeVfu |Eopy

S LK
S L7
[ AL S

horizontal

Z

ICON

Programn ENDE|

Default

mapstédblich
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& Lie

vertcal

¥

TKG0G1 |

Acc ﬁ:lz—
500 nA ||+ 8|

manuell ||l'|eaaung

nafotéblich
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner: emission of electrons, workhorse, scanning method
> lonization Profile Monitor and Beam Induced Fluorescence Monitor
» Optical Transition Radiation
» Synchrotron Light Monitors
» Summary

GSN
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Slow, linear Wire Scanner i

Idea: One wire is scanned through the beam!

Slow, linear scanner are used for: A

» low energy protons

> high resolution measurements e.g. at e*-e~ colliders |
by de-convolution 62,.=0%meas—wire N
= resolution down to um can be reached |

» detection of beam halo.

movement

bc

wire for horizontal profile

wire for vertical profile

Peter Forck, JUAS Archamps 19 Beam Profile Measurement



Slow, linear Wire Scanner
BN .y @@ \ w/

Idea: One wire is scanned through the beam!
Slow, linear scanner are used for:
» low energy protons
> high resolution measurements e.g. at e*-e~ colliders

by de-convolution 62,.=0%meas—wire

= resolution down to um can be reached
» detection of beam halo.

movement

&

wire for horizontal profile

beam pipe

wire for vertical profile

=5
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Wire Scanner — 7‘?.

Instead of several wires, one wire is scanned though the beam.

Fast pendulum scanner for synchrotrons; sometimes it is called ’flying wire’:

GSN
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Usage of Wire Scanners O.
BN LA T . W RS TN

Material: carbon or SiC — low Z-material for low energy loss and high temperature.

Thickness: down to 10 um — high resolution.

Detection: Either the secondary current (like SEM-grid) or
high energy secondary particles (like beam loss monitor)
flying wire: only sec. particle detection due to induced current by movement.

Secondary particles: Proton impact on
Proton beam — hadrons shower (m, n, p...) Kogocilnner at CERN-PS Booster:
Electron beam — Bremsstrahlung photons. -

o Pion threshold
beam 20000 T - o

secondary computer .-
particles ) i | 1 .
— ; o
--------- - Z 10000 + a Rest mass:
A

—
J
S
=
S
|

arbitrary units

m_, = 140 MeV/c?

wire
] 5000 + £ ,
Wn reading - m_, = 135 MeV/c
rotation 04— = : = |

. ; ) ) 0 200 400 600 800
Kinematics of flying wire: Kinetic energy (MeV)

\elocity during passage typically 10 m/s = 36 km/h and typical beam size & 10 mm
= time for traversing the beam t ~#1 ms

SN
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The Artist View of a Wire Scanner =

1 ﬂ' hop which vill be beld . Feemi
¢l allowanee. The solection of recipionts is the

S R e
D e ok e RS
produced in o

GSN
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Comparison between SEM-6rid and Wire Scanners i
S LA T . W [ CREesSE T

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored
— for pulsed LINACS precise synchronization is needed

Grid:  Not adequate at synchrotrons for stored beam parameters
Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

Grid:  Resolution of a grid is fixed by the wire distance (typically 1 mm)
Scanner: For slow scanners the resolution is about the wire thickness (down to 10 um)

— used for e—-beams having small sizes (down to 10 um)

Grid: Needs one electronics channel per wire
— expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through — expensive mechanics.

SN
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Outline:

» Scintillation screens:
emission of light, universal usage, limited dynamic range

» SEM-Grid: emission of electrons, workhorse, limited resolution

» Wire scanner: emission of electrons, workhorse, scanning method

» lonization Profile Monitor and Beam Induced Fluorescence Monitor:
secondary particle detection from interaction beam-residual gas

» Optical Transition Radiation

» Synchrotron Light Monitors

» Summary

GSN
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Non-destructive device for proton synchrotron: IPM for the use at the GSI LINAC:
> beam ionizes the residual gas by electronic stopping Vacuum p = 10~7 mbar, | = 1 mA

» gas ions or e” accelerated by E -field =1 kV/cm Readout by strips fed to a /U converter.

» spatial resolved single particle detection
HYV electrode  voltage divi(fe_rl_ 6 KV
R

I_I +5kV : ':-‘-'\:‘us"‘a'\.‘:-@."‘f R
H +4kv W) %
H +3kv
Ion H +2kv
e.g. H*

H +1kVv

— 0 KV
E- I NNNNNNNNNNNSNNNNNNNNNK |V T @ )

beam

E

I T T 1T 1

anode | position readout

Typical vacuum pressure:
Transfer line: N, 107%...107% mbar = 3-108...3.101%m3

Synchrotron: H, 10711...10™ mbar = 3-10°...3-10"cm3
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Tonization Profile Monitor at 6SI Synchrotron ?

Non-destructive device for proton synchrotron: Realization at GSI synchrotron:

» beam ionizes the residual gas by electronic stopping (TPM with 175 x 175 mm clearance)
» gas ions or e” accelerated by E -field ~1 kV/cm
» spatial resolved single particle detection

e e |
V—clectrode® L

HV electrode voltage divider : - o
I - EG kV beaim S ol 16
T " e |5
— beam . +5 kv MCP: 100 x 30 mm? | SRS
= I i +4kv =L d .
] E H +3kv
r on 1+ 2kv ] |
\ Z e.g. H* P
— H+1kv A Tk
— 0kV d %’,
PR '

N One device per plane ph §0 :
anode | position readout PErp o o b Vi B
Typical vacuum pressure: - = s

Transfer line: N, 107%...107% mbar = 3-108...3.101%m3 T— ﬂan <l

Synchrotron: H, 10711...10™ mbar = 3-10°...3-10"cm3

SN
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Ionization Profile Monitor Realization ?;
BN .S TN . moow S B
The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

[IPM with 175 x 175 mm clearance)

IPM support
& UV lamp

beam

E-field separation disks
View port @150 mm

3 eres 2 mm spacmg

300 mm ﬂange

SN
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Tonization Profile Monitor Realization » %
nA 7 EA TR U8 RS e
The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

IPM support
& UV lamp

Horizontal IPM: _

E-field box

Electrodes
N\

3
4 . T
" L:lut s /4
,_.g-,w!‘ 5 i
\d o\ - = A ..4,'
\ Zae =
Ly -
“"""‘g,.v

—— E-field sep

‘ Q0. T N
_r/‘ View port @150 mm St Wi
Horizontal camera ‘ \v k-

1T \
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Excurse: Multi Channel Plate MCP Q

A\ ' S T W | TREET T
MCP are used as particle detectors with secondary electron amplification.

AMCP is: o CHANNEL

(g12m)

» 1 mm glass plate with 10 um holes
» thin Cr-Ni layer on surface

> voltage =1 kV/plate across 0.48mm

Electron microscope image:

— e~ amplification of ~ 102 per plate.
— resolution ~ 0.1 mm (2 MCPs)

Anode technologies:

» SEM-grid, ~ 0.5 mm spacing
— fast electronics readout 0 00c€ 0000

» phosphor screen + CCD CHANNEL WALL _OUTPUT

. . .. INPUT /" ELECTRODE
— high resolution, but slow timing  ELECTRON-._&

NN \é;_f,;cer \Q\\@DUTPUT

— fast readout by photo-multipliers ELECTRONS
. - - INPUT SIDE U (about 1 kV)
> single particle detection ELECTRODE g | poi
— for low beam current. ! L
SN
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Application: 'Adiabatic’ Damping during Acceleration “t
B\ LA TN L A 7 EResSE TN

The emittance € = [ dxdx'is defined via the position deviation and angle in lab-frame
before acceleration after acceleration

After acceleration the longitudinal velocity is increased = angle ¢ is smaller

The angle is expressed in momenta: x’=p, / p,

the emittance is for <xx’>=0: ¢ = x-x” = x -p, /p, = const.

= under ideal conditions the emittance can be normalized to the momentum p|| =y-m- ﬂc

= normalized emittance &,,,, = B - € ispreserved ,[——at m,ectmn B |
with the Lorentz factor y= (1-42)V2 and velocity g=v/c
a 1.0 1
Example: Acceleration in GSI-synchrotron for C8* from = e |
6.7 — 600 MeV/u (8= 12 — 79% ) observed by IPM T
5y 208
theoretical width: (x) s = B; Lo (x);= 0.33 - (x); § o4
o
measured width: (x) = 0.37 - (x); 0.2
Non-intercepting ionization profile monitor is well suited 0.0 B Al RS Ra
for long time observations without beam disturbance 0 T ordinate [mm] +0
— mainly used at proton synchrotrons.
ESN

Peter Forck, JUAS Archamps 31 Beam Profile Measurement



Broadening due to the Beam's Space Charge: Ion Detection O

B\ A~
Influence of the residual gas ion trajectory by :
» External electric field E,
» Electric field of the beam’s space charge Eg,,

e.g. Gaussian density distribution for round beam: Eg,,..(r) =

1 geN 1
2rgy |

. . e’In2 N 1
Estimation of correction: o, = 3 +0gap ‘,/— oc N-d,, -
eU,,

Areyjmc? |

With the measured beam width is given by convolution: o2 . =¢2 + o2

meas true corr

Example: U7+, 10° particles per 3 m bunch length, cooled beam with ¢, e = 1 mm FWHM.

800 [T e 4.0 [

EE’OO - ] 3.5 ¢ ion charge q=73 p
L _ Eex ion charge q=73 ] ) o 1
400 [ Ions per bunch N=10° - 3.0 F ions per bunch N=10° ]

SC

bunch length 1=3 m

beam width =1 mm |

measured/true width
0 ™
o [}
T T

radial field E

—
o]
T

=
o

0 5 10 15 20 25 30 0 5 10 15
radius [mm] true beam width (FWHM) [mm]

SN
Peter Forck, JUAS Archamps Beam Profile Measurement

20

(98
[\




Electron Detection and Guidance by Magnetic Field

BN\ . T - moaw S
Alternative: e~ detection in an external magnetic field

—» cyclotron radius I, =,/2Mm.E, , /eB = r,<0.1mmforB=0.1T

Eyin, given by atomic physics, 0.1 mm is internal resolution of MCP.

10 I 1 | | \
1 HV electrode volta ilelder(skV B beam (redius r=2.5 mm)
R g
- £ i i
L g R ———
beam o !, ‘
H —_—— -4 kV = L | | | - B=0 \‘ H +
= E\B H-3kv 5—10 g ) e, B=0.1T \; i
= o [
— electron HL-2kv = 0 f I'{ e B=oam
H I—I- 1kV fé <0 :% 20T 1' / 7
.TT __________________________________________ — 0 kV > ﬁsoh 0.95 1].60 105 fI “.
X MCP 20 erizontal axis [mm]
-3 —2 —1 0 1 2 3
anode position readout horizontal (detection) axis [mm|

Time-of-flight: =1 ns — 2 or 3 cycles.

B-field: By dipole magnets with large aperture — IPM is expensive device.

SN
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IPM: Magnet Design g
B\ N :
Magnetic field for electron guidance: Corrector
Maximum image distortion: Vertical IPM
5% of beam width = 4AB/B< 1%
Challenges: Horizontal IPM
» High B-field homogeneity of 1% Corrector
» Clearance up to 500 mm
» Correctors required 480mm
to compensate beam steering

> Insertion length 2.5 m incl. correctors

300mm

Insertion
length
2.5m

For MCP wire-array readout
lower clearance required
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IPM: Magnet Design g

BN\ . T . WO

Magnetic field for electron guidance:

Maximum image distortion:

5% of beam width=> AB/B< 1%

Challenges:

» High B-field homogeneity of 1%

» Clearance up to 500 mm

» Correctors required

to compensate beam steering
> Insertion length 2.5 m incl. correctors

10 T T T T
beam (radius r=2.5 mm)

|

P
\“—_‘—-—-—._JS.\‘_.——-—-—'/

- P .
e, B_OI “ Hz* ion

vertical (acc.) axis [mm]

0.95 1.00 1.05 |
orizontal axis [mm] |
I I 1

|
W
(]

-3 -2 -1 0 1 2 3
horizontal (detection) axis [mm]|

Remark: For MCP wire-array readout lower clearance required
Peter Forck, JUAS Archamps 35

GSN
Beam Profile Measurement



Beam Induced Fluorescence for intense Profiles ~ g
BN | ,

Large beam power — Non-intercepting method:
— Beam Induced Fluorescence BIF

N, + lon — (N,")*+ lon — N," +y + lon
With single photon detection scheme

390 nm< A< 470 nm

= non-destructive, compact installation.

Horizontal BIH

camera l‘
. I ‘-5' e
image intensifier ""’: &

blackened chamber wall _/‘},‘!
N2 atmmphere 2

-~

vacuum gauge<s

O beam

image intensifier & CCD

SN
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Beam Induced Fluorescence Monitor BIF: Image Intensifier i
BN A _~_ (T S T

beam AN

residual gas (+ N, ) phOtOH

window ‘ \
lens system
Image

Intensifier

CCD camera

Scheme of Image intensifier:

Photocathode % single y

Image intensifier: A BIF monitor consists of only:

» Photo cathode — creation of photo-e- > optics outside beam pipe

» Accelerated toward MCP for amplification » Image intensifier + camera

» Detection of ampl. e” by phosphor screen » gas-inlet for pressure increase

» Image recorded by CCD = nearly no installation inside vacuum.

— Low light amplification only LEDs for calibration
(commercially used for night vision devices) ~ = cheaper than IPM, but lower signal.

SN
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Beam Induced Fluorescence Monitor BIF: Image Intensifier

O
i
AN & Y v g - I » HRSEW ./ BT ™

‘Single photon counting’:
S beam N _
viewport size : :
E _ residual gas (+ N,)2 photon
\ . __:'.* 'ﬁg window ‘ \
o ST _= |
R e o o == _ 1°% lens system
.-ii ] sa-
} I Image
9% Intensifier
S
1& : CCD camera
19
i

0

Wy =) iy
— —

aver. pixel int.

A BIF monitor consists of only:

Example at GSI-LINAC: > optics outside beam pipe

4.7 MeV/u Ar 1%* beam > image intensifier + camera

1=2.5 mA equals to 10" particle > gas-inlet for pressure increase

One single macro pulse of 200 ps = nearly no installation inside vacuum.
Vacuum pressure: p=10" mbar (N>) only LEDs for calibration

= cheaper than IPM, but lower signal.

SN
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Comparison between IPM and BIF Q

B\ " 4 .S T W /O TRERESE T
Non-destructive methods preferred:

Beam is not influenced and diagnostics device is not destroyed!
IPM: Beam ionizes the residual gas

— measurement of all ionization products, 2 = 4z-geometry due to E-field
BIF: Beam ionizes and excites the residual gas

— measurement of photons emitted toward camera, solid angle 2 ~10-3

IPM: Higher efficiency than BIF
BIF:  Low detection efficiency, only ~ 10" of IPM
= longer observation time or higher pressure required

IPM: Complex installation inside vacuum
BIF: Nearly no installation inside vacuum

IPM: More expensive, for some beam parameters even guiding magnetic field required
BIF: More sensitive to external parameters like radiation stray light

SN
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Outline:
» Scintillation screens:
emission of light. universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner: emission of electrons, workhorse, scanning method
» lonization Profile Monitor and Beam Induced Fluorescence Monitor:
secondary particle detection from interaction beam-residual gas
» Optical Transition Radiation:
crossing material boundary, for relativistic beams only
» Synchrotron Light Monitors
» Summary

GSN
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Excurse: Optical Transition Radiation: Depictive Description

Optical Transition Radiation OTR for a single charge e:

Assuming a charge e approaches an ideal conducting boundary e.g. metal foil

» Image charge is created by electric field

» dipole type field pattern

» field distribution depends on velocity B and Lorentz factor ¥ due to relativistic trans. field increase
» penetration of charge through surface within t < 10 fs: sudden change of source distribution

>

emission of radiation with dipole characteristic
Hmaxz 1/}/

vacuum| perfect vacuum perfect vacuum| perfect
charge e metal charge e metal metal
Qim0 o
Image DAL radiatio cnarge e
E-field charge -e charge -¢ inside
velocity - Q. metal
pattern y-p velocity -f
dipole type sudden change charge distribution

rearrangement of sources < radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation
ESN
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Excurse: Optical Transition Radiation: Depictive Description

B\ . T L moy ./ ST !E
Optical Transition Radiation OTR can be described in classical physics:

approximated formula d W 29 [* sin®é@-cos’ 6 W: radiated energy

for normal incidence 2
dé da) 7T C _ 12 2 .
& in plane polarization: (1 i cos ‘9) «: frequency of wave

1.4 — T T T T T T T T -
—— =10 E=4.5 MeV
~----y=30 E=14.5 MeV f

— =100 E=49.5 MeV

20

5
o
5
c 1.0 -
3 emalely
5 08T vacuum| perfect
£ 06 -
& < 100 metal
5 0.4 - ,
c // ﬂ
o 0.2 _-
Sy e N T e o—
7400 —200 0 200 400
radiation angle 6 [mrad] . e Charge €
radiatio HA7
Angular distribution of radiation in optical spectrum: al
Meta

» lope emission pattern depends on velocity or Lorentz factor y
> peak atangle 8~ 1/y

> emitted energy i.e. amount of photons scales with W oc #2

» broad wave length spectrum (i.e. no dependence on w)

— suited for high energy electrons

sudden change charge distribution
rearrangement of sources < radiation
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Excurse: Optical Transition Rad. with 45° incidence: Depictive Descr'ipﬁo

OTR with 45° beam incidence and observation at 90° :

A charge e approaches an ideal conducting boundary under 45°

» image charge is created by electric field

> dipole rotated by 45° & deformed due to relativistic field propagation
» penetration of surface within t < 10 fs: sudden change of sources

> due to reflection on surface emission symmetric around 90° dipole

observation

450 i 450 radiati

I
I
I
I
vac

charge e chargee ey
. 1 1
velocity 8+ /perfect velocity §. | perfect beam 5
metal - metal D 3
Image Image
charge e chargfe e vacuum 3 nerfect
velocity - velocity -8 metal

SN
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Optical Transition Radiation with 45° incidence: Depictive Descr'ip'l'io

BX

. T . W /O TRERSSE ™

OTR with 45° beam incidence and observation at 90° :

approximated formula for 45° incidence& in plane polarization:

sin@

cosd

d'w 2e°p°
d0dew  zc

——
—— =10 E=45 MeV
12 L----y=30 E=14.5 MeV
—— =100 E=49.5 MeV

—
e

o

0.6 -

0.4 -

photon distri. dN/dQ [arb.u.]
o
@
T

_|_
1-pcosd 1-psind

400 200 0 200
radiation angle 6 [mrad]

Angular distribution of radiation in optical spectrum:

» emission pattern depends on velocity

> peak at angle 8~ 1/y

» emitted energy scales with W oc 2

» symmetric with respect to @ for ¥ > 100

Peter Forck, JUAS Archamps
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observation

:

‘dipole

radiati

perfect
metal

Remark: polarization of emitted light:
» in scattering plane — parallel E-vector

» perpendicular plane — rectangular E-vector

GSN
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Optical Transition Radiation OTR

BN\ A - [T TSN T

Optical transition radiation is emitted by

charged particle passage through a material boundary.

Electrodynamics field configuration

changes during the passage: mirror

— Polarization of the medium /

—> emission of energy win dow/\ﬁ / lens + filter sensitive
Description by \ CCD camera
classical electrodynamics & relativity:

bearm o
d ZW 262,32 (92 €am pipe
beam
W: energy emitted in solid angle ©Q OTR screen
¢. angle of emission
v, Lorentz factor > Insertion of thin Al-foil under 45°
o: angular frequency intervall E,=2zhe > Observation of low light by CCD.
Peter Forck, JUAS Archamps 45 Beam Profile Meagrfmlen‘r



N et : /

Op‘rlcal Transition Radiation: Angular Photon Distribution Oj
BN\ @ WA T . W /O TRESSE ™
_ 2
Photon distribution AN photon N .Ze_ﬂ ‘log Aoegin : 4
o _ do beam 1 s 5
within a solid angle dQ and 7iC end Yy °+6
' : B S e e S
Wavelength interval Aoy, 10 Agng E 150 E25 Mev
> Detection: Optical 400 nm< 4<800nm & = 3:2380 o 1000 ey l
using image intensified CCD % 10 Ol X0
. . 0.8 Y |
> Larger signal for relativistic beam y >>1 5 ot Y 1000
- 06 - T~/ l‘l X - ~ |
> Angular focusing for y >>1 e 7 Ol ~
. _ S 04 ¢ AN 1! |
= well suited for e” beams © Sl S
= p-beamonly for E;,>10 GeV (p»10) =2 Oer 7 \ E."\L S
< 0.0 . ANTA e -
" 10 —20 0 20 40
radiation angle 6 [mrad]|
Remark:
— Profile by focusing to screen
— Beam angular distribution by focusing on infinity
due to emission dependence on beam angular distribution.
SN
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OTR-Monitor: Technical Realization and Results i
B\ S T W /7 TREESE ™
Example of realization at TERATRON:
DS . Results at FNAL-TEVATRON synchrotron
> Insertion of foil _
e.g. 5 um Kapton coated with 0.1um Al with 150 GeV proton
Advantage: thin foil = low heating & straggling Using fast camera: Turn-by-turn measurement
2-dim image visible 6 4 2 0 2 4
? rad-hard & 500 o =1.03 mm
camera = oon
Lens é . nensty (ﬁrb Unit(s») R
Filter c=066mm | 3
wheel 2
: -1
H Window 0
1
Beam 2
pipe 3
X {mm)
From V.E. Scarpine (FNAL) et al., BIW’06
SN
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Optical Transition Radiation compared to Scintillation Scr'een 9

B . T R W Wy RS TS
Installation of OTR and scintillation screens on same drive :

= Example: ALBA LINAC 100 MeV

A e A Sl
‘ 0_5 % . . . . . N
: 4——i .t
Results: ™ _ o LN ) ;; ]
> Much more light from YAG:Ce £ |’ é, ) e
for 100 MeV (y=200) electrons & \ i1 ’
- % 02t 4 &
> Broader image from YAG:Ce 01} 1
due to finite shoulders R
or CCD saturation(?) b4 16182 220 24 20
Contrary of U. Iriso et al., DIPAC’09 quad current, ig [A] T
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OTR:

Scint.

@,

Comparison between Scintillation Screens and OTR i
: S T . W /O PREESSE ™
electrodynamic process — beam intensity linear to # photons

Screen: complex atomic process — saturation possible

OTR:

Scint.

thin foil Al or Al on Mylar, down to 0.25 um thickness

— minimization of beam scattering (Al is low Z-material)

Screen: thickness ~ 1 mm inorganic, fragile material, not radiation hard

OTR:

Scint.

low number of photons — expensive image intensified CCD

Screen: large number of photons — simple CCD sufficient

OTR:

Scint.

complex angular photon distribution — resolution limited

Screen: isotropic photon distribution — simple interpretation

OTR:

Scint.

beam angular distribution measurable— beam emittance

Screen: no information concerning the beam angular distribution

OTR:

Scint.

large y needed — e -beam with E,;, > 100 MeV, proton-beam with E,;, > 100 GeV

Screen: for all beams

SN
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Outline:
» Scintillation screens:
emission of light, universal usage, limited dynamic range
» SEM-Grid: emission of electrons, workhorse, limited resolution
» Wire scanner: emission of electrons, workhorse, scanning method
» lonization Profile Monitor and Beam Induced Fluorescence Monitor:
secondary particle detection from interaction beam-residual gas
» Optical Transition Radiation:
crossing optical boundary, for relativistic beams only
» Synchrotron Light Monitors
photon detection of emitted synchrotron light in optical and x-ray range
» Summary

GSN
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Synchrotron Light Monitor g
BN W TS - moaow S B\

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light.

This light is emitted
Into a cone of
opening 2/y in lab-frame. Lo, orbit of electrons
—Well suited for rel. e 3
For protons:

Only for energies E,;, > 100 GeV

Rest frame of electron: Laboratory frame:

orbit of electrons

~ radiation field

| power: Pocy 4 p?
The light is focused to a \ =, opening angle
intensified CCD. cone of synch. radiation |

radiation field
detector

angle o0 A

Advantage: c—beam
Signal anyhow available!

VU intensified
dipole magnet lens filter CCD camera
beding radius p

GSN
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Realization of a Synchrotron Light Monitor - “ﬁ

RN a0
Extracting out of the beam’s plane by a (cooled) mirror

— Focus to a slit + wavelength filter for optical wavelength
— Image intensified CCD camera

Example: CERN LEP-monitor with bending radius 3.1 km (blue or near UV)

Focusing spherical mirror (motorized)

Motorized mirrors
A
RS
N\
\.
N\

Y Light origin selecting slit

’ \ ‘ Navelength filter

. — Density filter

Detector : pulsed intensifier
and CCD chip

-
v

Be extraction mirror

~\

SN
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Result from a Synchrotron Light Monitor
\ W™ T A EmEwa 7 M=
Example Synchrotron radiation facility APS accumulator ring and blue wavelength:

0 500 1000 1500 2000

....................

O
.'“. ‘

0 =0.165 mm

Y (mm)

COUNTS (ARB. UNITS)
800 -

O .= 0.797 mm

=2}
o
o

N
o
o

COUNTS (ARB. UNITS)

o
"

Ful L g 1 EEMENEE S S S A Had hrin 11 C A
1" 12 13 14 15 16 17 18 19 20 21

X (mm)
Advantage: Direct measurement of 2-dim distribution, only mirror installed in the vacuum pipe
Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.
SN
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Diffraction Limit for a Synchrotron Light Monitor

Use of optical wavelength and CCD: A above critical 4. (Spectrum fall-off).
Example 1:1 image: Cone of emission for horizontally polarized light: a = 0.41 (/I/p)1/3

General Fraunhofer diffraction limit (given by emission cone): o =

2D/L
Opening angle of optics: D = 2a - L e
~ 2 \
Diffraction pattern with = 0 =0.6- (/1 / P)L ' lens diffraction pattern
l width 2*o
angleo. ----+ I~
electron  emitted photon | l
trajectory \ | D P(x)
bending radius p -7\  T—\ e T(
i V x
distance L | distance L
- —— .

A good resolution for:
» large dipole bending radius p, but fixed by the accelerator
» short wavelength, but good optics only for 4 > 300 nm

SN
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Resolution Limits for Synchrotron Radiation Monitor i

B\ > .S T W /O TRERESE T
The resolution is limited by:

» Fraunhofer diffraction due to finite emission cone and finite size of optics

» Depth of field

» Spectral width of observed light — usage of interference filters

» Time variation of light due to finite observation angle — usage of aperture

» Light intensity and related noise — usage of sensitive CCD camera

= typical value for resolution o~ 100 pm

— which is comparable to the electron beam size of modern 3" generation light source

Scheme for time variation:

Courtesy of G. Kube DESY sagad
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Synchrotron Light Monitor overcoming Diffraction Limit
BN WL L O [ RSl TN

. L /3 _
The diffraction limitis = o =~0.6- (/12 /p)L ~100 pm for typical case
Possible improvements:

» Shorter wavelength: Using x-rays and an aperture of @ 1mm
— ‘x-ray pin hole camera’, achievable resolution o ~ 10 um

» Interference technique: At optical wavelength using a double slit
— interference fringes leading to a resolution o =~ 1 um.

Photo-detector

Double slit ——
b ooy E": %

interference
fringe

Synchrotron
radiation

focus iense

polarizer
band-pass fileter

Electron bunch

_—
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x-ray Pin-Hole Camera: Installation | %
u — T - /.'J : \

: e /3
The diffraction limitis = oc=0.6- (/12 [ p] = shorter wavelength by x-rays.
. xample: PETRA 111

X—r’{r O.}t-ﬁs me i o
R e - = e uadz3 ! '110\1].[011.'3‘0. . -
absorbers2 q ) camen quad#d

g ——

ibsorber=]

T S ———

—

‘\

Monochromator g

Si(311)

X , L
SN
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x-ray Pin-Hole Camera: Installation g
BN - TN - maow S B\

: T /3
The diffraction limitis = oc=0.6- (/12 [ p] = shorter wavelength by x-rays.
I xample: PETRA 111

ibsorber#l - | X—1ay optics quads3 monochromator

sorbers:

kcll};. a quad#-'l

From K. WittenbLélrg, DESY

_’:
. .15m
_ / Two interchanaeable i _
Pinhole pURhes Compound reflective lens (RWTH Aachen) \
0.5 mm thick tungsten blade with a circular hole ~ : E
of 20 um. (20 um resolution) N=31,= 2 umres. < 1 um aligned

=N
‘ement



x-ray pin-hole Camera: x-ray Detector i
BN O A~ - (N
X-ray optics — scintillator detector (shifting x-ray to optical light) - CCD camera

— T _.--7v~._  CCD camera

/ compound refractive lens CRL\ miror "~ || |
cedficasaanna i

'|_."’—-__ 1] -_."
— _— fluorescent .+ -’ -\
S
L]
\

screen \ lens
i E )
i

~commercial x-ray camera

PETRA III ho=21keV "\ /7 . AA50 beam monitor Hamamats
1 --- I _ oA |
bendingnll-agne: " Commercial :
— JLLIT1 pj_nl (Wi
Example: PETRA 11 e e
> Pinhole with & 20 um (Hamamatsu)
or novel focusing devict S| IJ' \
» monochromator (silicon _"]HHQ e ,_,,-3'—-:-/‘},7"’
- . 8 _]: = — o —— .;Jt'/ 7
> scintillator to convert n F Xerays P\ Y — & A mirror
i ,‘J o=47 Hm Amo'/;;ous
x-ray to optical photons|...————— et carbon pate. L\ |
o2 SeD sensor = - (LeSie s, ks < 10 um)
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Summary for Beam Profile O.

B\ L T . W O TRERSSE ™
Different techniques are suited for different beam parameters:
e -beam: typically @ 0.3 to 3 mm, protons: typically @ 3 to 30 mm

Intercepting <> non-intercepting methods

Direct observation of electrodynamics processes:

» Optical synchrotron radiation monitor: non-destructive, for e -beams, complex, limited res.
» X-ray synchrotron radiation monitor: non-destructive, for e -beams, very complex
» OTR screen: nearly non-destructive, large relativistic y needed, e -beams mainly

Detection of secondary photons, electrons or ions:

» Scintillation screen: destructive, large signal, simple, all beams

» lonization profile monitor: non-destructive, expensive, limited resolution, for protons
» Residual fluorescence monitor: non-destructive, limited signal strength, for protons
Wire based electronic methods:

» SEM-grid: partly destructive, large signal and dynamic range, limited resolution

» Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

SN
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Appendix: The Accelerator Facility at 6SI — %
.

lon Sources: w

all elements >’

Synchrotron, Bp=18 Tm
Enax D 4.7GeV
U: 1GeV/u
Achieved e.g.:
Ar'8t: 1.1011
U28+: 3.1010
U73+: 1.1010

UNILAC

Storage Ring, Bp=10 Tm
UNILAC: allionsp-U:

3-12 MeV/u, 50 Hz, max. S ms
Up to 20 mA current

Atomic & Plasma Physics
Radiotherapy
Nuclear Physics

62



Appendix: GST Heavy Ion LINAC: Profile Measurement

BN\ . T . W /7 TRESSTE T™

- SEM-Grid: Intersecting, high dynamic range, total 81 device

. Beam Induced Fluorescence: Non-destructive, for high current operation
Transfer to

Synchrotron

-9 |

o
All ions, higH current, 5 ms@50 Hz, 36&108 MHz To SIS T @@

total 6 device

MEVVA
MUCIS 50 m

RFQ IH1 IH2
PIG
2.2 keV/u

f = 0.0022
120 keV/u

p=0016 1.4 MeV/u B = 0.054
SN

Peter Forck, JUAS Archamps Beam Profile Measurement

’Foil Stripper

Alvarez DTL

11.4 MeV/u

B=0.16
Constructed in the 70th, Upgrade 1999,
further upgrades in preparation




Appendix: GSI Heavy Ion Synchrotron: Profile Measurement

B\ v ‘“\F"— T TSN T
2
- = 3/ . - .
acceleration _ox®®™ "C0gg SEM-Grid: injection
NF ' first turn
& destructive
C
Important parameters of SIS-18 69 Screen: extraction
> Ion (2) 1 - 92 (p to U) 0.01... 500 MHz
s Circumference 216 m :
E : Inj. t Multit 5 IPM:
nj. e ultiturn s O .
J_ y_p 6 profile for stored beam
- Injection energy 11 MeV/u . luti
% Injec- PRE— > Gev/u : 10 ms time resolution
. X. Tl r ~ = .
; * tion Ramp duration = 0.1 - 15s e'XtraC non-destructive
12 p - : tion ::
1198 Acc. RF 0.8 - 5 MHz %
Harmonic 4 (= # bunches) f el
Bunching factor 0.4 — 0.08 d
) Beam size o 0.2 to 10 mm []
1 e &
AN
; '.. ““
10 .
/o ¥ q\8 e GSN
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Appendix: The Spanish Synchrotron Light Facility ALBA: Overvue\’

BN .S T . W /RSN T
3"d generation Spanish national synchrotron light facility in Barcelona

Booster 1

Storage Ring:

From U. Iriso, ALBA
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Layout:

Beam lines: up to 30
Electron energy: 3 GeV
Top-up injection

Storage ring length: 268 m
Max. beam current: 0.4 A
Commissioning in 2011

GSN
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Appendix: The Synchrotron Light Facility ALBA: Profile Meas. ?

BN\
BTS:
2 SRM f L W
3 FS/IOTR ~ .,f

P

@
il |

i . s ki
- £ -] e, "
s - i 5 g -
T I T o W
//"f T S R . e ,
.ll'" - . ""'h."".'
\.‘"‘

6y SR: N
5']:' (l",;é/ 1 SRM - x\h\
Pl W "
e 1 XSR AN

= ff}f’f}ﬁS/OTR ® 4FS
{ = SRM < LTB:
'l XSR —=a  1SRM
ot - 4FS/OTR

<L BOOSTER:
) 2 SRM

NN 1FS

From U. Iriso, ALBA
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Transverse profile:

Many location in
transport line

Single location in ring
Quite different
devices used

Abbreviation:

FS: Fluorescence Screen

OTR: Optical Trans. Radi. Screen
both destructive

SRM: Synchr. Radiation Monitor
XSR: X-ray pin hole camera

both non-destructive

GSN
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Synchrotron Light Monitor overcoming Diffraction Limit
BN WL TN L O [ RSl TN

: : C [ ' hods:
The diffraction limit is 3020.6.(/12/,0)1/3 Typical resolution for three methods

» direct optical observation: o~ 100 |

Possible improvements:
P > interference optical obser: o~ 1|

» Shorter wavelength: Using x-rays and an aperture of @

—, “x-ray pin hole camera’ > rleect X-ray observation: o~ 10|

» Interference technique: At optical wavelength using a double slit
— interference fringes with resolution down to um range.

Source Double Slits Lens Image 1
ESN
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Synchr'otr'on nght Monitor overcoming lefr'actlon Limit *a.

: e el /3
The diffraction limitis = oc=0.6- (12 /,o)1
Possible improvements:
> Shorter wavelength Usmg X-rays and an aperture of @ 1mm

[ RN U PU R

X-ray imaging signal on CCD interferometer

\ - )

" pinhole, mirror,
_— zone plate, CRL

signal c

Q‘ &
! 1
B |
II Il
|
' ;
: |
|
' ]

ouble slit

—> dedicated diagnostics beamline —> scanning device, 1 interferometer/pla

SN
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Excurse: Double Slit Interference for Radiation Monitors
‘ T 0. W

\ A\ . X
The blurring of interference pattern for

finite size sources is described by
Van-Cittert-Zernike-Theorem.

—> spatial coherence parameter y delivers rms beam size

i.e. ‘de-convolution’ of blurred image!
— highest resolution, but complex method

Typical resolution for three methods:

» direct optical observation: o~ 100 um (discussed before)

» interference optical obser: o~ 1 pum

> direct x-ray observation: o~ 10 um
SR source spectral filter

polarizer

-
o
—

I

j\

”

O P

FAY |

ny i

/

2

punktférmige
Lichtquelle

/|

of finite width | Ao = AL
— - - = == - - - _D “““ —
@==—— I
A RO 2a e~ ;I ] R -
Courtesy of V. Schlott PSI ] )
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Ideal double slit interference pattern:

\

Doppel

WaIITnf orjtef spalt

Pun! f VWellenfron P

Va

seitlich entlang der)-
Wellenfront verscho-
bener Punkt

/|

Blurring by finite source size

ausgedehnte
Lichtquellﬁe‘_,,.--"” i
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