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Introduction

� Consider the basic question of how to determine the 
orbit excursion ∆∆∆∆z at a given point due to an 
upstream kick

� In ‘transfer line’ situations this is done by tracking 
the betatron oscillation (from Lecture 1),

� or using the transfer matrix (also from Lecture 1), 

Note that ‘Transfer line’ situations include sections 
of rings used as a transfer line, e.g. for a closed 
bump.
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Introduction continued

� However, in rings, there is a more holistic 
approach that expresses the closed orbit in 
the ring in the presence of kicks by using a 
perturbation equation.  This equation is 
surprisingly accurate and widely used.

The upper sign is for the horizontal plane and the 
lower sign is for the vertical plane.  ββββz(s) and µµµµz(s) 
refer to the observer while ββββn and µµµµn refer to the 
nth error.
Note the modulus sign in the phase term !!!
Equation (4.5) should be covered in other parts of 
the course, but can be found in Ref. [1.2].
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Transfer line steering

� How to change (steer) the position and 
angle (∆∆∆∆z, ∆∆∆∆z�)  at a given point in a 
transfer line using two upstream dipole 
kicks (δδδδ1, δδδδ2).

� The system is linear, so the effect of each 
kick at the Observer can be calculated and 
the effects added.
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Transfer line steering continued

� which can be rewritten as,

where ∆∆∆∆ indicates the changes in the 
position and angle seen by the Observer.  

� Inverting (4.7) gives the kicks required for 
the position and angle changes,

Note that the modulus of the matrix is not unity 
and must be included.
A similar reasoning can be used to transform two 
independent orbit measurements into a position 
and angle measurement at a given point.
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Position & angle measurement
rings & transfer lines

� Transfers to given point from each monitor,

� Eliminate z1� and z2 �

� Solve for z and z�
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Note |A|=a11a22-a12a21=1 and |B|=b11b22-b12b21=1, 
but (4.9) is not based on a unit matrix.
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Half-wavelength bump
rings & transfer lines

� Recalling (4.2) and (4.3), we have,

� If the first kick δδδδ1( = z′′′′1) is put at µµµµ1 = -ππππ/2, then B
= 0 and A = δδδδ1ββββ1

1/2.  At µµµµ = ππππ/2, just half a 
wavelength later, the excursion will again be zero.  
At this point the oscillation can be killed by a 
second kick δδδδ2, which is equal and opposite to the 
trajectory slope at this point, so that δδδδ2 = - z′′′′2, 
which gives the conditions, 

Imposed condition:  

Derived condition:  

� The bump height can be controlled at any point 
by scaling the kicks, but the angle of the 
trajectory is a feature of the lattice geometry and 
cannot be controlled.

It would also be possible to use the perturbation 
equation (4.5) for this derivation in a ring.
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3-magnet bump                                
rings & transfer lines

� It is rare that magnets can be placed with a 
phase separation of exactly ππππ.  Even when 
possible, this makes the lattice inflexible for 
future developments. 

� It is therefore useful to know how to correct 
the residual error of an imperfect 2-magnet 
bump with a third dipole.

� Use (4.4) to track forwards from kick 1 to 
kick 2. 

� Also use (4.4) to track backwards from kick 
3 to kick 2. 
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3-magnet bump 
rings & transfer lines continued

� The forward- and back-track amplitudes at 
δδδδ2 must be identical and the difference in 
the derivatives must be matched by the 
dipole kick δδδδ2, i.e.

� Some manipulation of the above equations 
yields (the ‘sine rule’),

� As with the 2-magnet, half-wavelength 
bump, the excursion of the trajectory can be 
controlled at any point by scaling the kicks, 
but the angle of the trajectory is a feature of 
the lattice geometry and cannot be 
controlled.
It would also be possible to use the perturbation 
equation (4.5) for this derivation.
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4-magnet bump
rings & transfer lines

� Often a local bump is required that controls 
both the position and angle of the beam at 
some particular position.  This requires four 
magnets with one pair upstream of the 
control point and one pair downstream.

� Calculate the kicks δδδδ1 and δδδδ2 to achieve the 
displacement ∆∆∆∆z, ∆∆∆∆z� at the Observer position 
by using the steering equation (4.8).
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4-magnet bump 
rings & transfer lines continued

� Eqn (4.8) can also be used to specify the 
downstream kicks, but because the transfer 
matrices and kicks are defined in the beam 
direction, the downstream kicks that close 
the bump are found by back-tracking.

� Remember,

� This gives,
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Overlapping orbit bumps
rings & transfer lines

� To correct a distorted orbit, a first reflex could be to 
apply correcting bumps to all peaks in the distortion.

� Consider a regular lattice with phase advance µµµµ0 per 
cell. Let correctors and monitors be co-incident with 
one set per cell with ββββ0 and let consecutive groups of 3 
make well-shaped, overlapping closed bumps. 
For example, 3 FODO cells of µµµµ0 = ππππ/3 with monitor 
and corrector pairs at each F-quad for the horizontal 
orbit.

� Clearly the distortion at each monitor can be made 
zero by the appropriate bump.

� Use (4.4) to track forwards in a bump from kick 1 to 
kick 2. 

� Now use (4.11), the ‘sine rule’, 

to express each kick in terms of z2
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Overlapping orbit bumps
rings & transfer lines continued

� If the orbit is measured and all bumps applied, then 
the net kick at the nth corrector will be,

� Equation (4.14) defines the method, but there is a fear 
that a betatron oscillation in an error-free region will 
lead to the unnecessary excitation of correctors.

� In such a region, the oscillation will have the form

where A and φφφφ will be constants.

� Substitution of (4.15) into (4.14) shows this excitation 
will be zero thus making the overlapping bumps 
method viable (attributed to T. Collins).

In theory, the above applies to rings and transfer 
lines, but is better for transfer lines.
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The ‘best’ corrector for rings

� In machines with customised lattices, it is 
more useful to search for a small group of 
the most effective correctors.  

� The simplest approach is to scan through the 
correctors one by one applying a correlation 
test.

� Let ∆∆∆∆zn be the excursion calculated in the nth 
correction due to a kick δδδδm from the mth
corrector.

where tn,m is the matrix element that relates 
δδδδm to the orbit shift ∆∆∆∆zn. tn.m can be found 
theoretically from (4.5).

� If zn is the measured orbit error, then the 
corrected orbit using the mth corrector 
would be (zn-∆∆∆∆zn).

� The quality of the correction could be 
quantified by the expression

mmnn tz δ,=∆
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The ‘best’ corrector for rings 
continued

� Differentiating (4.16) finds the turning point 
and hence the optimum kick for the mth
corrector,

� By performing this simple calculation (4.17) 
on the corrector with the minimum value of 
Sm an optimum correction can be applied.

� The newly corrected orbit can then be re-
measured and  re-corrected in the same way, 
so extending the method to the ‘next best’
correctors.  

� The advantages are speed, scalability and 
simplicity.

� The disadvantage is that a correction once 
made is ‘frozen in’.
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Closed orbit correction for rings
� Closed-orbit correction is a compromise.  The orbit is 

measured at only a finite number of positions and 
there is only a finite number of correctors.  In general, 
the correction cannot be guaranteed either at the 
measured points or between them.

� In transfer lines, the overlapping bump method works 
well when there are 6 or more monitors and correctors 
per betatron wavelength.

� In rings, provided that the number of measurement 
points is sufficiently large and the points are evenly 
enough spaced to measure the Fourier harmonics in 
the distortion up to an order of a few units above the 
tune, the gamble usually pays off.

� This is because ‘naturally’ arising errors excite orbits 
dominated by harmonics around the tune value and 
the high-order harmonics that could excite large 
excursions between the measured points are 
suppressed by a factor Q2/(Q 2-k2) where k is the order 
of the harmonic.

� Finding a set of efficient correctors is basically a 
problem of matrix inversion, but the solution also 
needs to accommodate practical problems, 
� Unequal numbers of monitors and correctors.
� The suppression of faulty monitors and correctors.
� Noise in monitor readings.
� Limitations on corrector strengths.



JUAS17_04- P.J. Bryant  - Lecture 4
Correction schemes Slide17

MICADO Ref. [4.1]

� To avoid the ‘Freeze-in effect’, a group of M
correctors have to be optimised together. 

� Looking at (4.16), we can formula a measure of the 
quality of a correction by M correctors to the N
measured orbit errors ( N ≥≥≥≥M ) as,

� As before we differentiate S to find the minimum 
with respect to all correctors δδδδm,

� After some manipulation, this can be written as,

where A is known as the Design Matrix that holds 
the relations tn,m between kicks and excursions.  [δδδδ] 
and [z] are column matrices holding the correction 
kicks and the orbit errors respectively.
It is standard practice to compute a series of closed 
orbit corrections comprising 1 to a medium sized 
fraction of the total number of correctors in the 
machine.  The best correction is then selected and set 
by the operator. 

[ ] ( ) [ ] (4.20)              
1

zAAA�
TT −

−=

(4.18)     
1

2

1
mmn,n� �

= =
�
�

�

�

�
�

�

�
−=

N

n

M

m

tzS δ

(4.19)     0 ,, mn
n m

mmnn ttz� � �
�

�

�

�
�

�

�
−= δ



JUAS17_04- P.J. Bryant  - Lecture 4
Correction schemes Slide18

Tune shifts in rings

� Let a gradient perturbation ∆∆∆∆k���� be represented by 
a ‘thin lens’.  Since a ‘thin lens’ has zero length, it 
can be multiplied into the single-turn matrix 
equation (1.9) without affecting the geometry.

� The perturbed machine is then

� The perturbed machine can also be written as

� Equating Traces of (4.21) and (4.22) gives,

� and for ∆∆∆∆Q small, 
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Tune shifts in rings continued

� So that 

� For several small gradient errors

The upper sign applies to the horizontal plane 
and the lower sign to the vertical plane.

� Intuitively one would fear that adding gradients 
to a machine would change the betatron
amplitude functions around the machine (as 
indeed it does) rendering equations (4.23) and 
(4.24) inaccurate.  

� In practice, equations (4.23) and (4.24) are 
surprisingly accurate and linear over an 
adequate tuning range.  A more likely problem is 
that the machine is moved into an unstable region 
in the tune diagram.  
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Tune control

� Controlling the tunes in a ring can be done by: 
� Using the main quadrupoles, or 
� Installing two series families of smaller quads 

distributed around the ring (recommended),
� Adding backleg windings to the main 

quadrupoles (not recommended).

� Choose the quadrupole families so that ββββx > ββββz in 
the F-series and ββββz > ββββx in the D-series.  This gives 
a degree of orthogonality between the families. 

where NF and ND are the numbers in each 
family.

� Control of ∆∆∆∆Qx and ∆∆∆∆Qz is then achieved by 
inverting the matrix.  If non-linearities cause a 
small error, then re-cycle the calculation.
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Natural chromaticity

� Although the gradient in a quadrupole is constant 
over the whole aperture, the focusing strength 
varies inversely with the momentum of the ions.  

� This is a chromatic effect that gives rise to the so-
called ‘natural chromaticity’ of the lattice.

� Remember (4.24)

� where ∆∆∆∆k is defined as,

� From (4.24) and (4.27)
Natural chromaticity
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Achromatic quadrupole

� A sextupole can be regarded as a quadrupole
whose gradient varies linearly across the aperture 
and passes through zero on central orbit.

� In a region of finite dispersion, the beam momenta
are spread quasi-linearly across the aperture.

� Thus a sextupole can be used to correct the 
focusing error in a quadrupole due to ∆∆∆∆p/p.

� The gradient seen by an off-momentum particle in 
a sextupole of strength k� and with dispersion Dx is

� The corresponding gradient error in a quadrupole
comes from (4.27)

� Opposing these two effects gives the condition for 
an achromatic quadrupole

In the past, machines have been designed with the 
sextupole component built into the pole profile of 
the quadrupole, but it is more flexible to place a 
small sextupole next to the quadrupole.
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Chromaticity control

� Controlling the horizontal and vertical chromaticity 
in a ring can be done by installing two series families 
of sextupoles distributed around the ring. 

� Choose the sextupole families so that ββββx > ββββz in the F-
series and ββββz > ββββx in the D-series.  This gives a degree 
of orthogonality between the families. 

where NF and ND are the numbers in each family.

� Control of ∆∆∆∆Q�x and ∆∆∆∆Q�z are then achieved by 
inverting the matrix.  Unlike the case of tune 
control, there will be no nonlinearity because the 
sextupoles are added as a perturbation and do not 
affect the linear lattice.
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Chromaticity control continued

� When planning the F and D sextupole
families,
� Have an even number of sextupoles in each 

family,
� Separate the sextupoles in betatron phase 

advance by ππππ/3.
� The F sextupoles ββββx/ββββz should be equal for all 

members and be as large as possible.
� The D sextupoles ββββz/ββββx should be equal for all 

members and be as large as possible.
� These precautions will make the resonance 

driving terms cancel, which may be 
important for the dynamic aperture.

Note a F-sextupole strengthens a F-quadrupole
for positive x.  A D-sextupole strengthens a D-
quadrupole for positive x.

Higher order chromaticity corrections will be 
discussed in thenlast lecture.
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Prognosis
� When designing a machine it is useful to know the 

expected amplitude of closed orbit distortions. 
� Consider first equation (4.5) 

� The expected rms distortion around the machine 
and averaged over many sample machines would 
be 

� For errors from many positions, this can be 
simplified to

� It remains to estimate all the errors.  These are 
likely to be worst at injection and can be from 
many sources, for example,
� Steel quality, dimensions and geometry of the 

dipoles.
� Longitudinal shifts that appear as missing field at 

the entry and additional field at the exit.
� Off-centred quadrupoles and tilted dipoles.
� Powering errors, ripple and transcients.

[ ]. )(cos
sin2

)(
)( 2/1

2/1

� −−=∆
n

zznnn
z

z Qs
Q
s

sz πµµδβ
π

β
�

. 
sin22

)(
)( 1/22

2/12/12





�

�

�
�
�

�
=∆ �

n

nn
z

Q
s

sz δβ
π

β

(4.32)   . 
sin22

)(
)( 1/222/12





�

�

�
�
�

�
=∆ �

n

n
z

Q
s

sz δ
π

β



JUAS17_04- P.J. Bryant  - Lecture 4
Correction schemes Slide26

Prognosis continued

� Equation (4.32) can identify important error 
sources and set tolerances for manufacture, 
alignment and powering.

� But, it is equally important to know how well 
the closed orbit can be corrected, the likely 
effect of missing monitors and correctors, 
and how often a full machine re-alignment 
will be needed. 

� For these problems, it is necessary to resort 
to a lattice program and to run a large 
number of machines through an orbit 
correction routine with randomly generated 
errors. 

� Degradation of the machine alignment with 
time depends on how the machine’s 
foundations settle.  In the absence of expert 
help, try:

where n = number of years; δδδδe = 0.1 mm/yr and δεδεδεδε
= 0.1 mrad/year.  After 5 years, the rate of 
movement is likely to decrease.

;

etc.;;
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Prognosis continued

� The closed orbit is prime target for 
prognosis, but it is also important to look at 
tune fluctuations.  

� Re-arranging (4.24) for fractional errors 
gives

� It is also standard practice to make a 
similar prognosis of the coupling to be 
expected and its correction.  There is 
insufficient time to include this here, but a 
full suite of routines are available in 
WinAGILE supplied on the CD-ROM. 
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Reproducibility

� Sometimes the closed orbit, or the application of 
closed orbit bumps, or the shape and position of the 
working line suffer from poor reproducibility.  This is 
likely to be due to hysteresis, especially if corrections 
are being applied by backleg windings.

� The first precaution is to use a standard current cycle 
when measuring the magnets. 

� Ideally, the same standard cycle should be used when 
setting the magnets and the final setting should 
always be on the same ramp direction (up or down).

� Cycling is not possible with a circulating beam.  In 
this case, a hysteresis model can be constructed from 
the magnetic measurements and used for setting.

� When accelerating the
beam, slow dI/dt to
prevent overshoot. 


