

Introduction to cryogenics

Philippe Lebrun Director, JUAS

JUAS 2017 Course 2 28 February 2017

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- Thermometry

- κουος, ους (το)
- 1 deep cold [Arist. *Meteor.*]2 shiver of fear [Aeschyl. *Eumenid.*]
- cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter Oxford English Dictionary 2nd edition, Oxford University Press (1989)
- cryogenics, the science and technology of temperatures below 120 K

New International Dictionary of Refrigeration 4th edition, IIF-IIR Paris (2015)

Characteristic temperatures of cryogens

Cryogen	Triple point [K]	Normal boiling point [K]	Critical point [K]
Methane	90.7	111.6	190.5
Oxygen	54.4	90.2	154.6
Argon	83.8	87.3	150.9
Nitrogen	63.1	77.3	126.2
Neon	24.6	27.1	44.4
Hydrogen	13.8	20.4	33.2
Helium	2.2 (*)	4.2	5.2

(*): λ Point

Cryogenic transport of natural gas: LNG

130 000 m^3 LNG carrier with double hull

Invar[®] tanks hold LNG at ~110 K

Ph. Lebrun

Densification, liquefaction & separation of gases LIN & LOX

JUAS 2017 Intro to Cryogenics

Densification, liquefaction & separation of gases Rocket fuels Space Shuttle

Ariane 5

25 t LHY, 130 t LOX

100 t LHY, 600 t LOX

Cooling of superconducting devices

What is a low temperature?

 The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is

 $S = k_B ln W$

 Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T

T = dQ/dS

- ⇒ high temperature: heating produces small entropy change
- ⇒ low temperature: heating produces large entropy change

L. Boltzmann's grave in the Zentralfriedhof, Vienna, bearing the entropy formula

Temperature and energy

• The average thermal energy of a particle in a system in thermodynamic equilibrium at temperature T is

$$E \sim k_B T$$

 $k_B = 1.3806 \times 10^{-23} \text{ J.K}^{-1}$

- 1 K is equivalent to $\sim 10^{-4}$ eV or $\sim 10^{-23}$ J thermal energy
 - a temperature is « low » for a given physical process when the corresponding average thermal energy k_BT is small compared with the characteristic energy E of the process considered
 - cryogenic temperatures reveal phenomena with low characteristic energy and enable their study and their application

Characteristic temperatures of low-energy phenomena

Phenomenon	Temperature
Debye temperature of metals	few 100 K
High-temperature superconductivity	~ 100 K
Low-temperature superconductivity	~ 10 K
Intrinsic transport properties of metals	< 10 K
Cryopumping	few K
Cosmic microwave background	2.7 K
Superfluid helium 4	2.2 K
Bolometers for cosmic radiation	< 1 K
Low-density atomic Bose-Einstein condensates	~ μK

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- -Thermometry

Useful range of liquid cryogens & critical temperature of superconductors

Properties of cryogens compared to water

Property		Не	N ₂	H ₂ O
Normal boiling point	[K]	4.2	77	373
Critical temperature	[K]	5.2	126	647
Critical pressure	[bar]	2.3	34	221
Liq./Vap. density (*)		7.4	175	1600
Heat of vaporization (*)	[J.g ⁻¹]	20.4	199	2260
Liquid viscosity (*)	[µPI]	3.3	152	278

(*) at normal boiling point

Vaporization of normal boiling cryogens under 1 W applied heat load

Cryogen	[mg.s ⁻¹]	[l.h ⁻¹] (liquid)	[l.min ⁻¹] (gas NTP)
Helium	48	1.38	16.4
Nitrogen	5	0.02	0.24

Amount of cryogens required to cool down 1 kg iron

Using	Latent heat only	Latent heat and enthalpy of gas
LHe from 290 to 4.2 K	29.5 litre	0.75 liter
LHe from 77 to 4.2 K	1.46 litre	0.12 litre
LN2 from 290 to 77 K	0.45 litre	0.29 litre

Phase diagram of helium

Helium as a cooling fluid

Phase domain	Advantages	Drawbacks
Saturated He I	Fixed temperature High heat transfer	Two-phase flow Boiling crisis
Supercritical	Monophase Negative J-T effect	Non-isothermal Density wave instability
He II	Low temperature High conductivity Low viscosity	Second-law cost Subatmospheric

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- Thermometry

Q/(ΔT.A) [W/ (m².K)]

Typical heat transfer coefficients at cryogenic temperatures

- Same basic heat transfer processes as at temperatures above ambiant, but large variations in orders of magnitude
- Not on this diagram:
 - Importance of two-phase heat transfer (boiling)
 - At very low temperature, solid-to-liquid interface thermal resistance (Kapitza)

JUAS 2017 Intro to Cryogenics

Non-linear heat transfer to liquid cryogens Pool boiling nitrogen

JUAS 2017 Intro to Cryogenics

21

Non-linear heat transfer to liquid cryogens Pool boiling helium

Solid-liquid interface: Kapitza conductance

Experimental data for Copper (S. Van Sciver, "Helium Cryogenics") $h_K \sim T^3$ Valid for small heat flux (when $\Delta T << T$)

Heat conduction in solids

<u>Fourier's law:</u> $Q_{con} = k(T) \cdot S \cdot \frac{dT}{dx}$

k(T): thermal conductivity [W/m.K]

Integral form:

$$Q_{con} = \frac{S}{L} \cdot \int_{T_1}^{T_2} k(T) \cdot dT$$

 $\int k(T) \cdot dT$: thermal conductivity integral [W/m]

Thermal conductivity integrals for standard construction materials are tabulated

Thermal conductivity integrals of selected materials [W/m]

From vanishingly low temperature up to	20 K	80 K	290 K
OFHC copper	11000	60600	152000
DHP copper	395	5890	46100
1100 aluminium	2740	23300	72100
2024 aluminium alloy	160	2420	22900
AISI 304 stainless steel	16.3	349	3060
G-10 glass-epoxy composite	2	18	153

Non-metallic composite support post with heat intercepts

5 K cooling line (SC He)

Aluminium intercept plates glued to G-10 column

Aluminium strips to thermal shield at 50-75 K

Thermal radiation

- Wien's law
 - Maximum of black body power spectrum λ_{max} . $T = 2898 [\mu m.K]$
- Stefan-Boltzmann's law
 - Black body
 - "Gray"body
 - "Gray" surfaces at T_1 and T_2

 $Q_{rad} = \sigma A T^{4}$ $\sigma = 5.67 \times 10^{-8} \text{ W/m}^{2}.\text{K}^{4}$ (Stefan Boltzmann's constant) $Q_{rad} = \varepsilon \sigma A T^{4}$ $\varepsilon \text{ emissivity of surface}$ $Q_{rad} = E \sigma A (T_{1}^{4} - T_{2}^{4})$ $E \text{ function of } \varepsilon_{1}, \varepsilon_{2}, \text{ geometry}$

Emissivity of technical materials at low temperatures

	Radiation from 290 K Surface at 77 K	Radiation from 77 K Surface at 4.2 K
Stainless steel, as found	0.34	0.12
Stainless steel, mech. polished	0.12	0.07
Stainless steel, electropolished	0.10	0.07
Stainless steel + Al foil	0.05	0.01
Aluminium, as found	0.12	0.07
Aluminium, mech. polished	0.10	0.06
Aluminium, electropolished	0.08	0.04
Copper, as found	0.12	0.06
Copper, mech. Polished	0.06	0.02

Residual gas conduction

 $\lambda_{molecule}$: mean free path of gas molecules

- <u>Viscous regime</u>
 - At high gas pressure
 - Classical conduction

 $\lambda_{molecule} << d$ $Q_{res} = k(T) A dT/dx$

- Thermal conductivity k(T) independent of pressure
- Molecular regime
 - At low gas pressure $\lambda_{molecule} >> d$
 - Kennard's law $Q_{res} = A \alpha(T) \Omega P (T_2 T_1)$
 - Conduction heat transfer proportional to pressure, independant of spacing between surfaces
 - $\varOmega\,$ depends on gas species
 - Accommodation coefficient $\alpha(T)$ depends on gas species, $T_{1\prime}$, $T_{2\prime}$, and geometry of facing surfaces

Multi-layer insulation (MLI)

• Complex system involving three heat transfer processes

$$- Q_{MLI} = Q_{rad} + Q_{sol} + Q_{res}$$

- With *n* reflective layers of equal emissivity, $Q_{rad} \sim 1/(n+1)$
- Due to parasitic contacts between layers, $Q_{so/}$ increases with layer density
- Q_{res} due to residual gas trapped between layers, scales as 1/n in molecular regime
- Non-linear behaviour requires layer-to-layer modeling
- In practice
 - Typical data available from (abundant) literature
 - Measure performance on test samples

Ph. Lebrun

JUAS 2017 Intro to Cryogenics

Typical heat fluxes at vanishingly low temperature between flat plates [W/m²]

Black-body radiation from 290 K	401
Black-body radiation from 80 K	2.3
Gas conduction (100 mPa He) from 290 K	19
Gas conduction (1 mPa He) from 290 K	0.19
Gas conduction (100 mPa He) from 80 K	6.8
Gas conduction (1 mPa He) from 80 K	0.07
MLI (30 layers) from 290 K, pressure below 1 mPa	1-1.5
MLI (10 layers) from 80 K, pressure below 1 mPa	0.05
MLI (10 layers) from 80 K, pressure 100 mPa	1-2

Cross-section of LHC dipole cryostat

CERN AC/DI/MM - 2001/06

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- Thermometry

Vapour cooling of necks and supports With perfect heat exchange

Assuming perfect heat exchange between solid and gas, i.e. $T_{sol}(x)=T_{qas}(x)=T(x)$:

$$\mathbf{Q}_{con} = \mathbf{Q}_{bath} + \dot{\mathbf{m}} \cdot \mathbf{Cp}(\mathbf{T}) \cdot (\mathbf{T} - \mathbf{T}_{bath})$$

$$k(T) \cdot A \cdot \frac{dT}{dx} = Q_{bath} + \dot{m} \cdot Cp(T) \cdot (T - T_{bath})$$

Cp(T): Specific heat of vapour k(T) : Thermal conductivity of the support

 $\boldsymbol{Q}_{\text{bath}}$ can then be calculated by numerical integration for :

- different cryogens,
- different values of aspect ratio L/A
- different values of vapour flow

Heat reaching the cold end of a stainless steel neck

With perfect heat exchange in self-sustained mode

A particular case of gas cooling is the self-sustained mode, i.e. the vapour flow is generated only by the residual heat Q_{bath} reaching the bath. Then:

 $Q_{\text{bath}} = L_v \cdot \dot{m}$ (Lv: latent heat of vaporization)

Given the general equation

$$k(T) \cdot A \cdot \frac{dT}{dx} = Q_{bath} + \dot{m} \cdot Cp(T) \cdot (T - T_{bath})$$

After integration, we finally have:

$$Q_{bath} = \frac{A}{L} \cdot \int_{T_{bath}}^{T_{ambient}} \frac{K(T)}{1 + (T - T_{bath}) \cdot \frac{Cp(T)}{Lv}} \cdot dT$$
Attenuation factor w.r. to pure conduction

Reduction of heat conduction by self-sustained helium vapour cooling

Effective thermal conductivity integral from 4 to 300 K	Purely conductive regime [W.cm ⁻¹]	Self-sustained vapour-cooling [W.cm ⁻¹]
ETP copper	1620	128
OFHC copper	1520	110
Aluminium 1100	728	39.9
Nickel 99% pure	213	8.65
Constantan	51.6	1.94
AISI 300 stainless steel	30.6	0.92

Vapour cooling of necks and supports with imperfect heat exchange

Cross-section A

$dQ = f \cdot \dot{m} \cdot Cp(T) \cdot dT$

With f, the efficiency of the heat transfer

In steady state, the heat balance equation becomes:

$$\frac{d}{dx}\left[k(T) \cdot A \cdot \frac{dT}{dx}\right] = f \cdot \dot{m} \cdot Cp(T) \cdot \frac{dT}{dx}$$

 \rightarrow Numerical integration for solving this equation

Vapor-cooled current leads

 $\rho(T)$: electrical resistivity

$dQ = f \cdot \dot{m} \cdot Cp(T) \cdot dT$

In steady-state, heat balance equation:

Assuming the material of the lead follows the Wiedemann-Franz-Lorenz (WFL) law:

 $\mathbf{k}(\mathsf{T}) \cdot \boldsymbol{\rho}(\mathsf{T}) = \mathbf{L}_0 \cdot \mathsf{T}$

L₀: Lorenz number (2.45 10⁻⁸ W.Ω.K⁻²)

 \rightarrow Then numerical integration

Heat load of optimized current lead

Beating the WFL law: HTS current leads

- The WFL law essentially states that good electrical conductors are also good thermal conductors
- Current leads need good electrical conductors with low thermal conductivity
- Superconductors are bad thermal conductors with zero resisitivity
- Build current lead with superconductor up to temperature as high as possible, i.e. HTS

HTS vs. normal conducting current leads

Туре		Resistive	HTS (4 to 50 K) Resistive (above)
Heat into LHe	[W/kA]	1.1	0.1
Total exergy consumption	[W/kA]	430	150
Electrical power from grid	[W/kA]	1430	500

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- Thermometry

Thermodynamics of cryogenic refrigeration

Minimum refrigeration work

Consider the extraction of 1 W at 4.5 K, rejected at 300 K The minimum refrigeration work (equation 2) is:

$$W_{min} = Q_i \cdot \left(\frac{T_0}{T_i} - 1\right) = 1 \cdot \left(\frac{300}{4.5} - 1\right) = 65.7 \text{ W}$$

In practice, the most efficient helium refrigerators have an efficiency of about 30% w.r. to the Carnot limit

$$\Rightarrow W_{real} = \frac{W_{min}}{\eta} = \frac{65.7}{0.3} = 220 \text{ W}$$

C.O.P. of large cryogenic helium refrigerators

Refrigeration cycles and duties

Introduction to the T-S diagram

Thermodynamic transformation from A to B, if reversible:

$$\Delta Q = \int_{A}^{B} T \cdot dS$$

To make a refrigeration cycle, need a substance, the entropy of which depends on some other variable than temperature

Pressure of gas: Compression/expansion cycle **Magnetization of solid**: magnetic refr. cycle

> ΔQ_1 : heat absorbed at T_1 ΔQ_2 : heat rejected at T_2

 \rightarrow Refrigeration cycle A B C D

T-S diagram for helium

A real cycle needs heat exchange and para-isothermal compression

Ph. Lebrun

JUAS 2017 Intro to Cryogenics

Thermodynamic equivalence between refrigeration and liquefaction

What is the isothermal 4.5 K (T_1) refrigeration equivalent to 1 g.s⁻¹ He liquefaction?

$$\dot{W}_{min.lique} = \dot{m}_{lique} \cdot (T_0 \cdot \Delta S - Q_1 - R)$$

 $\dot{m}_{lique} = 1 \text{ g.s}^{-1}, T_0 = 300 \text{ K}, \Delta S = 27.3 \text{ J.g}^{-1}.\text{K}^{-1}, Q_1 = 18.8 \text{ J.g}^{-1}, R = 1543 \text{ J.g}^{-1}$ $\dot{W}_{min.lique} = 6628 \text{ W}$

Write that the same work is used to produce isothermal refrigeration at 4.5 K:

$$\dot{W}_{\text{min.refrig}} = \dot{Q}_{1} \cdot \left(\frac{T_{0}}{T_{1}} - 1\right)$$

$$\dot{W}_{\text{min.refrig}} = \dot{W}_{\text{min.lique}} = 6628 \text{ W}$$

For refrigerators/liquefiers with the same efficiency:

$$1 \text{ g.s}^{-1} \text{ LHe} \equiv 100 \text{ W} @ 4.5 \text{ K}$$

Measured refrigeration/liquefaction equivalence 12 kW @ 4.5 K helium refrigerators for LEP 2

Brazed aluminium plate heat exchanger

Cryogenic turbo-expander

Ph. Lebrun

Joule-Thomson inversion temperatures

While air can be cooled down and liquefied by JT expansion from room temperature, helium and hydrogen need precooling down to below inversion temperature by heat exchange or work-extracting expansion (e.g. in turbines)

Two-stage Claude cycle

Claude-cycle helium refrigerators/liquefiers

Air Liquide & Linde

L70 L140 L280

LR70 LR140 LR280

x. Liquefaction capacity without LN2 25 L/h 70 L/h 145 L/h x. Liquefaction capacity with LN2 50 L/h 150 L/h 330 L/h mpressor electrical motor 55 kW 132 kW 250 kW ecific consumption for liquefaction w/o LN2 645 W/W 552 W/W 505 W/W % Carnot 10% 12% 13%				HELIAL SL	HELIAL ML	HELIAL LL
x. Liquefaction capacity with LN2 50 L/h 150 L/h 330 L/h mpressor electrical motor 55 kW 132 kW 250 kW ecific consumption for liquefaction w/o LN2 645 W/W 552 W/W 505 W/W % Carnot 10% 12% 13%	x. Liquefaction capacity w	vithout LN2		25 L/h	70 L/h	145 L/h
Impressor electrical motor 55 kW 132 kW 250 kW ecific consumption for liquefaction w/o LN2 645 W/W 552 W/W 505 W/W % Carnot 10% 12% 13%	x. Liquefaction capacity w	vith LN2		50 L/h	150 L/h	330 L/h
ecific consumption for liquefaction w/o LN2 645 W/W 552 W/W 505 W/W % Carnot 10% 12% 13%	mpressor electrical motor			55 kW	132 kW	250 kW
% Carnot 10% 12% 13% 100 12% 13% 13% 100 12% 13% 13% 100 12% 13% 13% 100 12% 13% 13% 100 12% 13% 13% 100 12% 13% 13% 100 140 140 10% 10% 100 145 140 130 190 141 10 290 290 1/h 130 190 130 10 130 190 130 190 130 190 130 10 290 290 1/h 130 190 145 10 290 290 10% 10% 10% 10% 10 290 290 10% 10% 10% 10%	ecific consumption for liqu	efaction w/o LN2		645 W/W	552 W/W	505 W/W
Vithout LN, precooling With LN, precooling 0-35 l/h 40-70 l/h 5-70 l/h 90-140 l/h 00-145 l/h 200-290 l/h 00-145 Watt 130-190 Watt 10-290 Watt 255-400 Watt 15-640 Watt 560-900 Watt		%	6 Carnot	10%	12%	13%
0 - 35 l/h 40 - 70 l/h 5 - 70 l/h 90 - 140 l/h 00 - 145 l/h 200 - 290 l/h 00 - 145 Watt 130 - 190 Watt 10 - 290 Watt 255 - 400 Watt 45 - 640 Watt 560 - 900 Watt	/ithout IN_precooling	With LN_precooling			RE LYCOCCARLA AG	te
0 - 331/h 40 - 701/h 5 - 70 l/h 90 - 140 l/h 00 - 145 l/h 200 - 290 l/h 00 - 145 Watt 130 - 190 Watt 10 - 290 Watt 255 - 400 Watt 45 - 640 Watt 560 - 900 Watt					10	
5 - 70 l/h 90 - 140 l/h 00 - 145 l/h 200 - 290 l/h 00 - 145 Watt 130 - 190 Watt 10 - 290 Watt 255 - 400 Watt 45 - 640 Watt 560 - 900 Watt		40 - 70 1711				
00 - 145 l/h 200 - 290 l/h 00 - 145 Watt 130 - 190 Watt 10 - 290 Watt 255 - 400 Watt 45 - 640 Watt 560 - 900 Watt	5 – 70 l/h	90-140 l/h		5		
00 - 145 Watt 130 - 190 Watt 10 - 290 Watt 255 - 400 Watt 45 - 640 Watt 560 - 900 Watt	00 – 145 l/h	200 – 290 l/h			N.	
45 - 640 Watt 560 - 900 Watt 560 - 900 Watt	00 – 145 Watt	130 - 190 Watt			1	
	45 – 640 Watt	255 - 400 Watt 560 - 900 Watt			-	-

JUAS 2017 Intro to Cryogenics

LHC 18 kW @ 4.5 K helium cryoplants

Linde

AIR LIQ

DE

Linde

Air Liquide

Oil-injected screw compressor

Compressor station of LHC 18 kW@ 4.5 K helium refrigerator

Carnot, Stirling and Ericsson cycles

Carnot cycle (1,2,3,4), Stirling cycle (1,2,3',4') and Ericsson cycle (1,2,3",4")

Two-stage Gifford-McMahon cryocooler

CRYOMECH PT407 & CP970 compressor ~ 0.7 W @ 4.2 K & 25 W @ 55 K

Stirling and pulse-tube cryocoolers

Mini pulse-tube cryocoolers

ESA MPTC development model – 1W @ 77K

CEA/SBT coaxial PTC- 6W @ 80K

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- -Thermometry

Specific cost of bulk He storage

Туре	Pressure [MPa]	Density [kg/m³]	Dead volume [%]	Cost [CHF/kg He]
Gas Bag	0.1	0.16	0	300 ⁽¹⁾
MP Vessel	2	3.18	5-25	220-450
HP Vessel	20	29.4	0.5	500 ⁽²⁾
Liquid	0.1	125	13	100-200 ⁽³⁾

(1): Purity non preserved

(2): Not including HP compressors

(3): Not including reliquefier

Bulk helium storage solutions

11000 gallon liquid container

2 MPa gas tanks

20 MPa gas cylinders

Contents

- Introduction
- Cryogenic fluids
- Heat transfer & thermal insulation
- Thermal screening with cold vapour
- Refrigeration & liquefaction
- Cryogen storage & transport
- Thermometry

Definition of ITS90 in cryogenic range

Primary fixed points of ITS90 in cryogenic range

Fixed point	Temperature [K]
H ₂ triple point	13.8033
Ne triple point	24.5561
O ₂ triple point	54.3584
Ar triple point	83.8058
Hg triple point	234.3156
H ₂ O triple point	273.16 (*)

(*) exact by definition

From temperature sensor to practical thermometer

Practical temperature range covered by cryogenic thermometers

Some references [1/2]

- K. Mendelssohn, *The quest for absolute zero*, McGraw Hill (1966)
- R.B. Scott, *Cryogenic engineering*, Van Nostrand, Princeton (1959)
- G.G. Haselden, *Cryogenic fundamentals*, Academic Press, London (1971)
- R.A. Barron, *Cryogenic systems*, Oxford University Press, New York (1985)
- B.A. Hands, *Cryogenic engineering*, Academic Press, London (1986)
- S.W. van Sciver, Helium cryogenics, Plenum Press, New York (1986)
- K.D. Timmerhaus & T.M. Flynn, *Cryogenic process engineering*, Plenum Press, New York (1989)
- Ph. Lebrun, An introduction to cryogenics, CERN-AT-2007-01 (2007) http://cdsweb.cern.ch/record/1012032?ln=en
- Proceedings of *CAS School on Superconductivity and Cryogenics for Particle Accelerators and Detectors*, Erice (2002)
 - U. Wagner, *Refrigeration*
 - G. Vandoni, Heat transfer
 - Ph. Lebrun, *Design of a cryostat for superconducting accelerator magnet*
 - Ph. Lebrun & L. Tavian, The technology of superfluid helium

http://cdsweb.cern.ch/record/503603?ln=en

Some references [2/2]

- Proceedings of *CAS School on Superconductivity for Accelerators*, Erice (2013)
 - P. Duthil, *Basic thermodynamics*
 - P. Duthil, *Material properties at low temperatures*
 - A. Alekseev, Basics of low-temperature refrigeration
 - B. Baudouy, *Heat transfer and cooling techniques at low temperature*
 - V. Parma, Cryostat design
 - Ph. Lebrun & L. Tavian, *Cooling with superfluid helium* https://cds.cern.ch/record/1507630?ln=en
- Proceedings of ICEC, CEC/ICMC and IIR Cryogenics conferences