Tutorial 5

27 January 2017, Archamps

hector.garcia.morales@cern.ch, andrea.latina@cern.ch, dario.pellegrini@cern.ch, guido.sterbini@cern.ch

Tutorial 5: First part

Transfer lines: periodic and initial conditions

- Build a transfer line of 10 m with 4 quads of $\mathrm{L}=0.4 \mathrm{~m}$ (centered at $2,4,6$, and 8 m). With K 1 respectively of 0.1 , $0.1,0.1,0.1 \mathrm{~m}^{-2}$. Can you find a periodic solution?
- Can you find a IC solution starting from $\left(\beta_{x}, \alpha_{x}, \beta_{y}, \alpha_{y}\right)=(1 \mathrm{~m}, 0,2 \mathrm{~m}, 0)$?
- What is the final optical condition $\left(\beta_{x}^{\text {end }}, \alpha_{x}^{\text {end }}, \beta_{y}^{\text {end }}, \alpha_{y}^{\text {end }}\right)$?

Tutorial 5: SECOND Part

Transfer lines: the matching

- Starting from $\left(\beta_{x}, \alpha_{x}, \beta_{y}, \alpha_{y}\right)=(1 \mathrm{~m}, 0,2 \mathrm{~m}, 0)$ match the line to $\left(\beta_{x}, \alpha_{x}, \beta_{y}, \alpha_{y}\right)=(2,0,1,0)$ at the end.
- Starting from $\left(\beta_{x}, \alpha_{x}, \beta_{y}, \alpha_{y}\right)=(1 \mathrm{~m}, 0,2 \mathrm{~m}, 0)$ and the gradient obtained with the previous matching, match to $\left(\beta_{x}^{\text {end }}, \alpha_{x}^{\text {end }}, \beta_{y}^{\text {end }}, \alpha_{y}^{\text {end }}\right)$. Can you find back K1 respectively of $0.1,0.1,0.1,0.1 \mathrm{~m}^{-2}$?
- consider that the quadrupoles have an excitation current factor of $100 \mathrm{~A} \mathrm{~m}^{2}$ and an excitation magnetic factor of 100 $\mathrm{T} / \mathrm{m} / \mathrm{A}$ and aperture of 40 mm diameter. Compute the magnetic field at the poles of the four quads after matching (HINT: assume linear regime and use a dimensional approach).

