Beam dynamics for cyclotrons

Bertrand Jacquot \& F.Chautard GANIL, Caen, France

compact cyclotrons

Separated sectors (ring cyclotrons)
Fixed energy

Synchrocyclotrons

OUTLINE

Chapter 1 : theory 1

- Principle
- Basic equation
- Longitudinal dynamics
- Transverse dynamics

Chapter 2 :specific problems
-Longitudinal dynamics

- Acceleration
- Injection
- Extraction

Chapter 3 :

- Design strategy
- Tracking
- Simulations

CYCLOTRON HISTORY

The Inventor, E. Lawrence, get the Nobel in Physics (1939) (first nuclear reactions without alpha source)

brilliant idea (E. Lawrence, Berkeley, 1929) : RF accelerating field is field is technically complex and expensive.

So Let 's use only 1 RF cavity, but many times

A device is put into a magnetic field, curving the ion trajectories and only one electrode is used several times.

What is a CYCLOTRON?

-RF accelerator for the ions :
from proton $A=1$ to Uranium $A=238$

- Energy range for proton $1 \mathrm{MeV}-1 \mathrm{GeV}$ (γ close to $1!!!)$
- Circular machine : CW (and Weak focusing)
- Size Radius=30cm to $R=6 \mathrm{~m}$
- RF Frequency : $10 \mathrm{MHz}-50 \mathrm{MHz}$

APPLICATIONS: Nuclear physics
(from fundamental to applied research)
: Medical application
Radio Isotopes production (for PET scan,....)
Cancer treatment
Quality : Compact and Cost effective

Usefull words for the cyclotrons

$$
B \rho=\frac{P}{q}=\frac{\gamma m \cdot v}{q}
$$

$$
E_{K}=(\gamma-1) \cdot m c^{2}
$$

Cyclotron vocable
r Radial $=$ horizontal
z Axial $=$ vertical
θ «Azimuth » = cylindrical angle
$\mathrm{MeV} / \mathrm{A}=$ kinetic energy unit in MeV per nucleon

$$
{ }_{Z}^{A} X^{Q}
$$

Ions :

A : nucleons number
Z: protons number
Q: charge state : $0+, 1+, 2+, \ldots \ldots$

Principle :the hardware

Principle B: the trajectories

Trajectory in uniform B field $\quad \frac{d(\gamma m \overrightarrow{\mathrm{v}})}{d t}=\vec{F}$

Let's consider an ion with a charge \boldsymbol{q} and a mass \boldsymbol{m} circulating at a speed $\boldsymbol{v}_{\boldsymbol{\theta}}$ in a uniform induction field $\boldsymbol{B} .=(0,0, B z)$
The motion equation can be derived from the Newton's law and the Lorentz force \boldsymbol{F} in a cylindrical coordinate system (er,e日,ez):

Trajectory in uniform B field

Let's accelerate ions, in a constant vertical field Bz
The Radius evolves with P/q:

$$
R(t)=\frac{P(t)}{q B_{z}}=\frac{\gamma m v}{q B_{z}}
$$

For non relativistic ions (low energy) $\Rightarrow \gamma \sim 1$
In this domain, if $\mathrm{Bz}=$ const $\Rightarrow \omega=$ const

$$
\omega_{\text {rev }}=\frac{q B_{z}}{\gamma m} \approx \text { const } \quad \text { same } \Delta \mathrm{T} \text { for each Turn }
$$

So it is easy to synchronize a RF cavity having a " D " shape, with accelerated ions

$h=1,2,3, \ldots$ called the RF harmonic number

Harmonic number h=FRF/Frev

$$
\mathbf{h}=1 \quad 1 \text { bunch by turn } \quad \omega_{\mathrm{rf}}=\mathbf{h} \omega_{\mathrm{rev}}
$$

Harmonic number h=FRF/Frev

$$
h=3
$$

3 bunch by turn $\omega_{\mathrm{rf}}=\mathbf{h} \omega_{\mathrm{rev}}$

Over 360° the 3 beams are separated by

$$
36093=120^{\circ} \text { (beam phase) }
$$

Isochronism condition: The particle takes the same amount of time to travel one turn : (constant revolution frequency $\omega_{\text {rev }}=$ const)
and with $\omega_{\mathrm{rf}}=\mathrm{h} \omega_{\mathrm{rev}}$, the particle is synchronous with the RF wave.
In other words, the particle arrives always at the same RF phase in the middle of the accelerating gap.

Longitudinals with relativistic particles

With $\mathbf{B z}=$ constant, relativistic γ increases AND Wrev decreases

$$
\omega_{r e v}=\frac{q B}{\gamma m}
$$

Isochronism condition not fullfilled

$$
\omega_{r e v}=\frac{q \cdot B_{z}(r)}{\gamma(r) m}
$$

Isochronism condition fullfilled
$\mathrm{Bz}(\mathrm{R}) / \gamma(\mathrm{R})=$ CONSTANT

Dynamics in cyclotron

summary

$$
\left.\begin{array}{ll}
Q e_{0} \hat{V} \cos \phi \cdot N_{\text {gap }} & \text { Energy gain per turn } \\
\phi_{0} \approx 0^{\circ} & \begin{array}{l}
\text { Central RF phase , } \\
\text { Ion bunches are centered at } 0^{\circ}
\end{array} \\
\omega_{R F}=h \omega_{\text {rev }}=\text { const } & \begin{array}{c}
\text { RF synchronism }=\text { Isochronism } \\
(h-\text { harmonic number) }
\end{array} \omega_{\text {rev }}=\frac{q B_{z}(R)}{\gamma(R) m}=\text { const }
\end{array}\right\}
$$

Transverse dynamics in the cyclotrons

$$
\mathrm{Bz}=\mathrm{Bz}(\mathrm{R})
$$

We will show that that isochronism have a bad consequence on vertical oscillations

Vertical oscillations

$$
\mathbf{z}(\mathrm{t})=\mathrm{Z}_{0} \cos \left(\mathrm{v}_{\mathrm{z}} \omega_{0} \mathrm{t}\right)
$$

Transverse dynamics with $\mathrm{Bz}(\mathrm{r})$

Steenbeck 1935, Kerst and Serber 1941

Horizontal stability: cylindrical coordinates (er, e日, ez)
and
define \mathbf{x} a small orbit deviation with $\mathrm{Bz}=\mathrm{Bz}(\mathrm{r})$ (not constant)

$$
\vec{r}=[R+x] \cdot \overrightarrow{e r}=R\left(1+\frac{x}{R}\right) \cdot \overrightarrow{e r}
$$

$x \ll R$
(Paraxial or Gauss conditions)

$$
\frac{d(\overrightarrow{\mathrm{v}})}{d t}=\frac{d^{2}(\mathrm{R} \cdot \overrightarrow{e r})}{d t^{2}}=\left[\mathrm{v}^{2} / R\right] \cdot \overrightarrow{e_{r}}
$$

Closed orbit

Radial dynamics with $\mathrm{Bz}(\mathrm{r})$ (No RF)

- Taylor expansion of the field B_{z} around the median plane:

$$
\begin{aligned}
& B_{z}=B_{0 z}+\frac{\partial B_{z}}{\partial x} x+\ldots=B_{0 z}\left(1-n \frac{x}{R}\right) \\
& \text { with } n=-\frac{R}{B_{0 z}} \frac{\partial B_{z}}{\partial x} \text { the field index }
\end{aligned}
$$

-How evolve an ion in this non uniform $B z: r(t)=R+x(t)$

$$
\begin{aligned}
& m \gamma \frac{d^{2} \vec{r}}{d t^{2}}=-q \vee_{\theta} B_{z} \\
& m \gamma \frac{d^{2}(r \cdot \overrightarrow{e r})}{d t^{2}}=m \gamma\left(\stackrel{\bullet}{x}+\frac{\mathrm{v}_{\theta}^{2}}{r}\right)=m \gamma \ddot{x}+m \gamma \frac{\mathrm{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right) \\
& \frac{1}{r}=\frac{1}{R\left(1+\frac{x}{R}\right)}=\frac{V_{1}}{R}\left(1-\frac{x}{R}\right) \\
& m \gamma\left(\stackrel{\bullet}{x+}+\frac{\mathrm{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right)\right)=q v_{\theta} B_{0 z}\left(1-n \frac{x}{R}\right)
\end{aligned}
$$

$$
m \gamma\left(\stackrel{\bullet}{x}+\frac{\mathrm{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right)\right)=q \mathrm{v}_{\theta} B_{0 z}\left(1-n \frac{x}{R}\right)
$$

After simplification :

$$
\text { and } \quad \omega_{r e v}=\frac{\mathrm{v}_{\theta}}{R}=\frac{q B_{0 z}}{m}=\omega_{0}
$$

$$
\ddot{x}+\omega_{0}^{2} \cdot(1-n) x=0 \Rightarrow
$$

$$
\omega_{r}^{2}=\frac{v_{\theta}^{2}}{R^{2}}(1-n)
$$

Harmonic oscillator with the frequency

$$
\omega_{r}=\sqrt{1-n} \omega_{0}
$$

Horizontal stability condition (ω real) :

$$
n<1
$$

$$
\mathbf{n}<\mathbf{1}: \text { Bz could decrease//or increase with the radius } R
$$

Horizontal stability is generally easy to obtain

Horizontal stability condition (ω real) :

$\mathbf{n}<1$: Bz could decrease//or increase with the radius R $\mathrm{n}<0$: isochronism Bz should increase

Harmonic oscillator with the frequency

$$
\ddot{x}+\omega_{r}^{2} x=0 \quad \omega_{r}=\sqrt{1-n} \quad \omega_{0}=\nu_{r} \cdot \omega_{0}
$$

Horizontal stability + isochronism
n <1
$+\mathrm{n}<0$
$\omega r^{2}>0$
IF $\mathrm{n}<0$
$r(t)=R_{0}(t)+x_{0} \cos \left(v_{r} \omega_{0} t\right)$

Vertical dynamics with B (r)

Vertical motion in the non uniform $\mathrm{Bz}(\mathrm{r})$
$m \gamma \frac{d^{2} z}{d t^{2}}=F_{z}=q(\mathrm{v} \times B)_{z}=-q\left(r B / \theta-r \dot{\theta} B_{r}\right)$

$$
\mathbf{v} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{e}_{r} & \mathbf{e}_{z} & \mathbf{e}_{\theta} \\
\dot{r} & \dot{z} & r \dot{\theta} \\
B_{r} & B_{z} & B_{\theta}
\end{array}\right|
$$

Because $\quad \nabla \times \mathrm{B}=0 \quad \frac{\partial B_{r}}{\partial z}-\frac{\partial B_{z}}{\partial x}=0 \quad B_{r}=-n \frac{B_{o z}}{R} z$
Motion equation $\ddot{z}+\omega_{z}{ }^{2} z=0$
Harmonic oscillator with the frequency

$$
\omega_{z}=\sqrt{n} \cdot r \dot{\theta}=\sqrt{n} \omega_{0}
$$

Vertical stability condition : $\mathrm{n}>0$ (ω z real)

$$
\omega_{z}^{2}=n \cdot \omega_{0}>0
$$

$\mathbf{n}>\mathbf{0}$: Bz could decrease with the radius R

Watch the vertical oscillations !!

Isochronism condition:

$$
n<0 \quad: B z(r) \text { increase with } r
$$

Vertical stability condition :
$\mathrm{n}>0$: $\mathrm{Bz}(\mathrm{r})$ should decrease

$$
\omega_{z}=\sqrt{n} \omega_{0}
$$

Isochronism condition will induce Unstable oscillations

$$
z(t) \sim z_{0} \exp \left(-i \omega_{z} t\right)=z_{0} \exp \left(+\left|\omega_{z} t\right|\right)
$$

Unstable oscillations in Z
= exponential growth =beam losses

Vertical dynamics

let's to refocus in axial plan (z)

$$
\omega_{r e v}=\frac{q B_{z}(R)}{\gamma(R) m}
$$

Bz should increase with $R \quad(n<0)$

Unstable Vertical oscillations
Unstable oscillation $\mathrm{z}(\mathrm{t})=\mathrm{z}_{0} \exp \left(+\sqrt{|n|} \omega_{0} \mathrm{t}\right)$

Additive Vertical focusing is needed

$$
\mathbf{v} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{e}_{r} & \mathbf{e}_{z} & \mathbf{e}_{\theta} \\
\dot{r} & \dot{z} & r \dot{\theta} \\
B_{r} & B_{z} & B_{\theta}
\end{array}\right|
$$

B θ component needed (Fz =-q Vr B) : «AVF » Cyclo

Azimuthally Varying Field (AVF) Vertical weak focusing: $B z=f(R, \theta)$

Isochronism $\mathrm{n}<0$: Bz increase
Vertical stability : $B z(r)$ Defocus $+B \theta$ Focus
Bz should oscillate with θ to compensate the instability

- Vertical force Fz , with radial component Br (possible)
- $F_{z} \sim q v_{r .} B_{\theta} \quad$: Vertical focusing
$B z=f(R, \theta)$

$$
\frac{\partial B_{\theta}}{\partial z}-\frac{\partial B_{z}}{\partial_{\theta}}=0
$$

$$
B_{\theta}=g(R, \theta)
$$

Like edge focusing in dipole magnet :
Bz variation can produce vertical forces
Azimuthally Varying Field : AVF Cyclo

Azimuthally varying Field (AVF)

\underline{B}_{θ} created by:

- Succession of high field and low field regions
- B_{θ} appears around the median plane
- valley : large gap, weak field
- Hill : small gap, strong field

Azimuthally varying Field (AVF) cyclo

$\mathrm{V}_{\underline{t}}$ created by :

- Valley: weak field, large trajectory curvature
- Hill : strong field, small trajectory curvature \Longrightarrow Trajectory is not a circle
- Orbit not perpendicular to hill-valley edge
\Longrightarrow Vertical focusing $F_{z} \propto v_{r} . B_{\theta}$

Edge focusing in dipole magnet recap

Non perpendicular edge in dipole magnet can provide

1) additive focusing in vertical +2) defocusing in horizontal plane

The optical Transfer Matrix is

$$
\begin{aligned}
& \text { Mdipole }=\text { Medge1. Mbody. Medge2 } \\
& \bar{\triangle} \quad \square{ }^{\circ}
\end{aligned}
$$

Vertical focusing with sectors

Compact cyclo : pole oscillation in θ

$$
B z=\left\langle B_{0}\right\rangle[1+f \cdot \cos (N \theta)]
$$

$\mathrm{f}<1 \quad \mathrm{f}=0.5$. (Bhill- Bvalley)/<Bo>
FLUTTER function (definition)

$$
F_{l}=\frac{\left(B_{\text {hill }}-B_{\text {valley }}\right)^{2}}{8\langle B\rangle^{2}}
$$

Separated magnet

 generate field oscillation in $\theta$$$
B z=<B 0\rangle[1+\cos (N \theta)]
$$

Separated sector cyclotronq
The FLUTTER is larger

Larger vertical focusing

Separated sectors(ring) cyclotron

Focusing condition limit: $(\mathrm{n}<0)$

$$
v_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F_{l}+\ldots>0
$$

Increase the flutter F_{1}, using
separated sectors where $B_{\text {valley }}=0$

$$
F_{l}=\frac{\left(B_{\text {hill }}-B_{\text {val }}\right)^{2}}{8\langle B\rangle^{2}}
$$

$$
\begin{gathered}
\text { PSI }=590 \mathrm{MeV} \text { proton } \\
\gamma=1.63
\end{gathered}
$$

\square Separated sectors cyclotron needed at "High energies" $\left(\mathrm{n}=1-\gamma^{2} \ll 0\right)$

Vertical focusing and isochronism

2 conditions to fulfill

- Increase the vertical focusing force strength:

$$
v_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F_{1}+\ldots>0
$$

- Keep the isochronism condition true: $\mathrm{n}<0$

$$
n=-\frac{R}{B_{0 z}} \frac{\partial B_{z}}{\partial R}=1-\gamma^{2}<0
$$

So we should have:

$$
\frac{N^{2}}{N^{2}-1} F_{l}>\gamma^{2}-1
$$

For High Energy cyclotron : 3 solutions for vertical stability

1) Increase N sectors $\mathrm{N}=3,4,6$
2) Larger Flutter (separated sectors) Fl

$$
\frac{N_{\text {sec tor }}^{2}}{N_{\text {sec tor }}^{2}-1} F_{l}
$$

3) Other idea ??? Yes (spiralled sectors)

Better vertical focusing : Spiralled sectors

$$
v_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F_{l}\left(1+2 \tan ^{2} \varepsilon\right)
$$

Spiralled sectors

By tilting the edges (ε angle) :

- The valley-hill transition became more focusing
-The hill-valley transition became less focusing

But by the strong focusing principle (larger betatron amplitude in focusing, smaller in defocusing), the net effect is focusing (cf F+D quadrupole).

$$
v_{z}^{2}=n+\frac{N^{2}}{N^{2}-1} F_{l}\left(1+2 \tan ^{2} \varepsilon\right)
$$

Beam dynamics in the ISOCHRONOUS cyclotrons

$$
\begin{aligned}
& \mathrm{B}=\text { Constant } \neq \text { Isochronism condition } \\
& \text { A STRONG LIMITIATION in energy } \gamma=1 \\
& \text { to get the ions synchrone With RF }
\end{aligned} \quad \omega_{\text {rev }}=\frac{q B_{z}(R)}{\gamma(R) m}
$$

$\mathrm{B} z=\mathrm{Bo} . \mathrm{g}(\mathrm{R}) \quad \mathrm{B} z$ increase with R (field index $\mathrm{n}<0$)
Unstable Vertical oscillations
strong limitation in transmission
$\sqrt{6}$
Additive Vertical focusing is needed: N sectors (Hills//valleys)

$B z=B 0 . g(R, \theta)$

separated Sectors
spiralled sector
separated spiralled sectors

One Other possibilities SYNCHRO CYCLOTRON (NOT ISOCHRONOUS)

Acceleration condition with Bz decreasing ($n>0$)
$\omega r e v=$ not constant
Not isochronous !!
But no vertical instabilities!!

Revolution frequency evolves $\quad \operatorname{Frev}(\mathrm{t})=\mathrm{Frev}($ Radius $)$
beam has to be synchrone With RF :

$$
\omega_{r e v}(R) / h=\omega_{R F}(R)
$$

Revolution frequency is evolving $\operatorname{FRF}(\mathrm{R})$

Synchro-cyclotrons

Exemple : medical aplication Superconducting synchrocyclo.

ProteusOne® (IBA) : 250 MeV proton

$$
\mathrm{Bz}=5.7-5.0 \text { Tesla (very compact) }
$$

$$
\text { Rextraction }=0.6 \mathrm{~m} / \text { harmonics=1 }
$$

FRF $=93 \mathrm{MHz}-63 \mathrm{MHz}$ (Rextraction)

CYCLOTRONS

The Family

$$
\omega_{r e v}=\frac{q B_{z}}{\gamma \cdot m}
$$

$\mathrm{B} z=$ uniform
Frev= evolve with γ !!!
FRF = constant

NOT USED anymore Limited in energy : $\mathrm{EK}<1 \mathrm{MeV}$

2: isochronous

Compact cyclotrons
1 magnet with modulation

3 : non isochronous

Synchrocyclotrons

Separated sectors

$$
\begin{array}{l|l|}
\hline \text { Bz }=\text { NOT uniform }=f(R) & \text { Isochronous } \\
\text { Frevolution }=\text { Constant } & \omega_{\text {rev }} / h=\omega_{R F} \\
\hline \text { FRF }=\text { constant } &
\end{array}
$$

Vertical focusing with

$$
B z=f(R, \theta)
$$

Not
Isochronous

Less intensity (pulsed) $\neq \mathrm{cw}$

$$
\omega_{r e v}(R) / h=\omega_{R F}(t)
$$

End Chapter 1

