## **Beam dynamics for cyclotrons**

Bertrand Jacquot & F.Chautard

NRS/IN2P

GANIL, Caen, France

uas

bint Universities Accelerator Schoo



# OUTLINE

#### Chapter 1 : theory 1

- Principle
- Basic equation
- Longitudinal dynamics
- Transverse dynamics

#### **Chapter 2 : specific problems**

- Longitudinal dynamics
- Acceleration
- Injection
- Extraction

### Chapter 4 : -Theory vs reality (tunes,isochronism,...) Exemples -Medical cyclotron -Reseach facility

## Chapter 3 :

- Design strategy
- Tracking
- Simulations

## **CYCLOTRON HISTORY**

The Inventor, E. Lawrence, get the Nobel in Physics (1939) (first nuclear reactions without alpha source)



•brilliant idea (E. Lawrence, Berkeley, 1929) : RF accelerating field is field is technically complex and expensive.

So Let 's use only 1 RF cavity, but many times

A device is put into a magnetic field, curving the ion trajectories and only one electrode is used several times.







## What is a CYCLOTRON ?

•RF accelerator for the ions :

from proton A=1 to Uranium A=238

- Energy range for proton  $1 \text{MeV} 1 \text{GeV} (\gamma \text{ close to } 1!!!)$
- Circular machine : CW (and Weak focusing)
- Size Radius=30cm to R=6m
- RF Frequency : 10 MHz -50 MHz APPLICATIONS : Nuclear physics ( from fundamental to applied research) : Medical application Radio Isotopes production (for PET scan,....) Cancer treatment Quality : Compact and Cost effective

## Usefull words for the cyclotrons



#### Cyclotron vocable

- Radial = horizontal
- z Axial = vertical
- $\theta$  « Azimuth » = cylindrical angle
- MeV/A= kinetic energy unit in MeV per nucleon

- lons :  $A_{Z} X^{Q}$
- Neutron Nucleus Proton Electron A : nucleons number Z: protons number

5

Q : charge state : 0+,1+,2+,....





### Trajectory in uniform B field

 $\frac{d(\gamma \, m \vec{\mathrm{v}})}{dt} = \vec{F}$ 

Let's consider an ion with a charge 
$$q$$
 and a mass  $m$  circulating at a speed  $v_{\theta}$  in a uniform induction field  $B_{.=}(0,0,Bz)$   
The motion equation can be derived from the Newton's law and the Lorentz force  $F$  in a cylindrical coordinate system (er,e $\theta$ ,ez):





Let's accelerate ions, in a constant vertical field Bz

The Radius evolves with P/q :

$$R(t) = \frac{P(t)}{qB_z} = \frac{\gamma mv}{qB_z}$$

For *non relativistic* ions (low energy)  $\Rightarrow \gamma \sim 1$ 

In this domain, if  $B_z = const \Rightarrow \omega = const$  $\omega_{rev} = \frac{qB_z}{\gamma m} \approx const$  same  $\Delta T$  for each Turn

So it is easy to synchronize a RF cavity having a "D" shape, with accelerated ions

$$V = V_0 \cos(\omega_{RF} t)$$
  
$$\omega_{RF} = h \ \omega_{rev}$$

h = 1, 2, 3, ... called the RF harmonic number







**Isochronism condition**: The particle takes the same amount of time to travel one turn : (constant revolution frequency  $\omega_{rev}$  =const)

and with  $\omega_{rf} = h \omega_{rev}$ , the particle is synchronous with the RF wave.

In other words, the particle arrives always at the same RF phase in the middle of the accelerating gap.



#### Longitudinals with relativistic particles

<u>With Bz = constant, relativistic  $\gamma$  increases AND  $\omega$ rev decreases</u>



## Dynamics in cyclotron

#### summary

 $Qe_0 V \cos \phi. N_{gap}$ 

Energy gain per turn

 $\phi_0 \approx 0^\circ$ 

Central RF phase, Ion bunches are centered at 0°

 $\omega_{RF} = h\omega_{rev} = const$ 

*RF* synchronism = *lsochronism* 

(h - harmonic number)

$$\omega_{rev} = \frac{qB_z(R)}{\gamma(R) m} = const$$

 $R = R(t) = R(N^{\circ}turn)$  Orbit evolving

 $B\rho(t) = \frac{P}{a} \Longrightarrow < B >= B\rho / R$ 

Average Magnetic field



Isochronism condition (longitudinal)

$$\omega_{rev} = \frac{qB_z(R)}{\gamma(R) m} = const$$

We will show that that isochronism have a bad consequence on vertical oscillations

Vertical oscillations

$$\mathbf{Z}(t) = \mathbf{Z}_0 \cos(\mathbf{v}_z \boldsymbol{\omega}_0 t)$$

#### Transverse dynamics with Bz(r) Steenbeck 1935, Kerst and Serber 1941

Horizontal stability :cylindrical coordinates (er, e $\theta$ , ez)anddefine x a small orbit deviation with Bz=Bz(r) (not constant)



x << R (Paraxial or Gauss conditions)

 $\vec{r} = [R+x] \cdot \vec{er} = R (1+\frac{x}{R}) \cdot \vec{er}$ 

$$\frac{d(\overrightarrow{v})}{dt} = \frac{d^2(\overrightarrow{R}, \overrightarrow{er})}{dt^2} = \left[v^2 / R\right] \overrightarrow{e_r}$$

## Radial dynamics with B<sub>z</sub>(r) (No RF)

• Taylor expansion of the field  $B_z$  around the median plane:

$$B_{z} = B_{0z} + \frac{\partial B_{z}}{\partial x}x + \dots = B_{0z}(1 - n\frac{x}{R})$$
  
with  $n = -\frac{R}{B_{0z}}\frac{\partial B_{z}}{\partial x}$  the field index *n* Definition

•How evolve an ion in this non uniform Bz : r(t) = R + x(t)

$$m\gamma \frac{d^{2} \vec{r}}{dt^{2}} = -q v_{\theta} B_{z}$$

$$m\gamma \frac{d^{2} (r \cdot e\vec{r})}{dt^{2}} = m\gamma \frac{\vec{v} \cdot v_{\theta}}{r} = m\gamma \frac{\vec{v} \cdot v_{\theta}}{R} (1 - \frac{x}{R})$$

$$\frac{1}{r} = \frac{1}{R (1 + \frac{x}{R})} = \frac{1}{R} (1 - \frac{x}{R})$$

$$m\gamma \left( \frac{\vec{v} \cdot v_{\theta}}{R} (1 - \frac{x}{R}) \right) = q v_{\theta} B_{0z} (1 - n\frac{x}{R})$$

$$m\gamma\left(\overset{\bullet\bullet}{x}+\frac{\mathbf{v}_{\theta}^{2}}{R}\left(1-\frac{x}{R}\right)\right) = q \,\mathbf{v}_{\theta} B_{0z}\left(1-n\frac{x}{R}\right)$$

After simplification :

and 
$$\omega_{rev} = \frac{\mathbf{v}_{\theta}}{R} = \frac{qB_{0z}}{m} = \omega_0$$

Harmonic oscillator with the frequency

$$\omega_r = \sqrt{1-n} \, \omega_0$$

Horizontal stability condition (ω real) :

n < 1

n <1 : Bz could decrease//or increase with the radius R

Horizontal stability is generally easy to obtain

### Horizontal stability condition ( $\omega$ real) :

n <1 : Bz could decrease//or increase with the radius R
n < 0 : isochronism Bz should increase</pre>

Harmonic oscillator with the frequency

$$\ddot{x} + \omega_r^2 x = 0 \qquad \omega_r = \sqrt{1 - n} \ \omega_0 = v_r \cdot \omega_0$$

Horizontal stability + isochronism n < 1 + n < 0 $(\Omega r^2 > 0$ 



 $\mathbf{r}(t) = \mathbf{R}_0(t) + \mathbf{x}_0 \cos(\mathbf{v}_r \,\boldsymbol{\omega}_0 \, t)$ 

IF n <0



Vertical stability condition : n >0 ( $\omega$ z real)

$$\omega_z^2 = n \cdot \omega_0 > 0$$

**n >0** : Bz could decrease with the radius R



**Isochronism condition will induce Unstable oscillations** 

$$\mathbf{z}(\mathbf{t}) \sim \mathbf{z}_0 \exp(-\mathbf{i}\,\omega_z\,\mathbf{t}) = \mathbf{z}_0\,\exp(+|\omega_z\,\mathbf{t}|)$$

#### **Unstable oscillations in Z**

22

= exponential growth =beam losses



## Azimuthally Varying Field (AVF) Vertical weak focusing : $B_z = f(R,\theta)$

<u>Isochronism n<0</u> : Bz increase

<u>Vertical stability</u> :  $B_z(r)$  Defocus + B $\theta$  Focus Bz should oscillate with  $\theta$  to compensate the instability

• Vertical force Fz, with radial component Br (possible)



## Azimuthally varying Field (AVF)

#### $\underline{B}_{\theta}$ created by:

- Succession of high field and low field regions
- $B_{\theta}$  appears around the median plane
  - valley : large gap, weak field
  - Hill : small gap, strong field





## Azimuthally varying Field (AVF) cyclo

#### $\underline{V_r}$ created by :

- Valley: weak field, large trajectory curvature
- Hill : strong field, small trajectory curvature
   Trajectory is not a circle
- Orbit not perpendicular to hill-valley edge
  - Vertical focusing  $F_z \propto v_r \cdot B_{\theta}$





#### **Edge focusing in dipole magnet recap**



Non perpendicular edge in dipole magnet can provide

1) additive focusing in vertical + 2) defocusing in horizontal plane

The optical Transfer Matrix is

## Vertical focusing with sectors



# $F_{l} = \frac{\left(B_{hill} - B_{valley}\right)^{2}}{8\left\langle B \right\rangle^{2}}$



Separated magnet generate field oscillation in  $\theta$ 

Bz= <B0> [ 1+ cos (N θ ) ]

Separated sector cyclotronq

The FLUTTER is larger

Larger vertical focusing

## Separated sectors(ring) cyclotron

Focusing condition limit: (n<0)

$$v_{z}^{2} = n + \frac{N^{2}}{N^{2} - 1}F_{l} + \dots > 0$$

Increase the flutter  $F_{I}$ , using separated sectors where  $B_{valley} = 0$ 



$$F_{l} = \frac{\left(B_{hill} - B_{val}\right)^{2}}{8 \left\langle B \right\rangle^{2}}$$

PSI= 590 MeV proton  $\gamma$ =1.63

Separated sectors cyclotron needed at "High energies" (n=1- $\gamma^2$  <<0)

## Vertical focusing and isochronism

#### **2** conditions to fulfill

Increase the vertical focusing force strength:

$$v_{z}^{2} = n + \frac{N^{2}}{N^{2} - 1}F_{1} + \dots > 0$$

Keep the isochronism condition true: n<0</li>

$$n = -\frac{R}{B_{0z}} \frac{\partial B_z}{\partial R} = 1 - \gamma^2 < 0$$

So we should have:

$$\frac{N^2}{N^2 - 1} F_l > \gamma^2 - 1$$

#### For High Energy cyclotron : 3 solutions for vertical stability

1) Increase NsectorsN=3, 4, 6 $\frac{1}{N_s}$ 2) Larger Flutter (separated sectors) Fl3) Other idea ??? Yes (spiralled sectors)

$$\frac{N_{\text{sec tor}}^2}{N_{\text{sec tor}}^2 - 1} F_l$$



Additive vertical focusing : + FLUTTER .(1+ 2 tan<sup>2</sup>  $\varepsilon$ )

$$v_{z}^{2} = n + \frac{N^{2}}{N^{2} - 1}F_{l}(1 + 2 \tan^{2} \varepsilon)$$

#### **Spiralled sectors**

By tilting the edges ( $\epsilon$  angle) :

• The valley-hill transition became more focusing

•The hill-valley transition became less focusing

But by the strong focusing principle (larger betatron amplitude in focusing, smaller in defocusing), the net effect is focusing (cf F+D quadrupole).

$$v_z^2 = n + \frac{N^2}{N^2 - 1} F_l (1 + 2 \tan^2 \varepsilon)$$



# Beam dynamics in the ISOCHRONOUS cyclotrons

B=Constant  $\neq$ Isochronism condition A STRONG LIMITIATION in energy  $\gamma$ =1 to get the ions synchrone With RF

 $\omega_{rev} = \frac{qB_z(R)}{\gamma(R)}$ 



 $B_z$  increase with R (field index n < 0)

Unstable Vertical oscillations strong limitation in transmission

## Additive Vertical focusing is needed :

N sectors (Hills//valleys) separated Sectors spiralled sector separated spiralled sectors







One Other possibilities SYNCHRO CYCLOTRON (NOT ISOCHRONOUS) Acceleration condition with Bz decreasing (n>0) @rev=not constant Not isochronous !!

But no vertical instabilities!!

Revolution frequency evolves Frev(t)= Frev(Radius) beam has to be synchrone With RF :

$$\omega_{rev}(R)/h = \omega_{RF}(R)$$

**Revolution frequency is evolving** FRF(R)

Pulsed Machine ORF (t) : SYNCHRO CYCLOTRON

## Synchro-cyclotrons



#### Less intensity (pulsed) avalaible (not cw)

Exemple : medical aplication Superconducting synchrocyclo.



ProteusOne® (IBA) : 250 MeV proton Bz = 5.7 - 5.0 Tesla (very compact) Rextraction =0.6 m / harmonics=1 FRF= 93 MHz -63 MHz (Rextraction) Beam pulse : Every 1 ms

| 1                                                 | CYCLOTRONS<br>The Family                                          | $\omega_{rev} = \frac{qB_z}{\gamma.m}$                   |
|---------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|
| cyclotrons                                        |                                                                   | OT USED anymore<br>mited in energy :EK<1MeV              |
| 2: isochronous                                    |                                                                   |                                                          |
| Compact cyclotrons<br>1 magnet<br>with modulation | Bz = NOT uniform = f(R) $Frevolution = Constant$ $FRF = constant$ | ) <b>Isochronous</b><br>$\omega_{rev} / h = \omega_{RF}$ |
| Separated sectors                                 | Vertical focusing with $B_z = f(R,\theta)$                        |                                                          |
| 3 : non isochronous                               |                                                                   | Not                                                      |
| Synchrocyclotrons                                 | F <i>rev</i> = NOT Constant<br>F <i>RF</i> = NOT Constant = be    | eam pulsed Isochronous                                   |
| Less intensity (pulsed) ≠                         | Cw $\omega_{rev}$                                                 | $(R)/h = \omega_{RF}(t)$ 36                              |

## End Chapter 1