Lecture 2: Magnetization, cables and ac losses

Magnetization

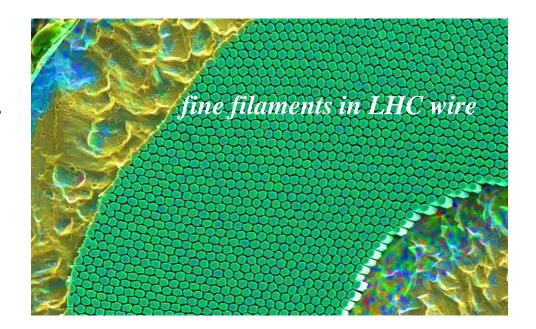
- superconductors in changing fields
- magnetization of wires & filaments
- coupling between filaments
- flux jumping

Cables

- why cables?
- coupling in cables
- effect on field error in magnets

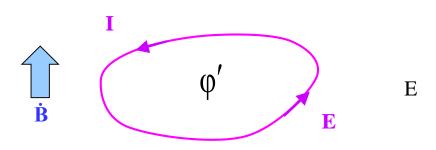
AC losses

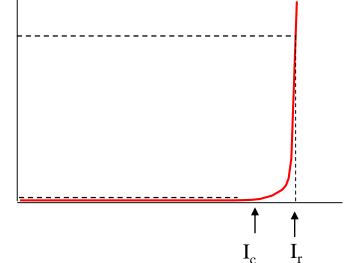
- general expression
- losses within filaments
- losses from coupling



Martin Wilson Lecture 2 slide1 JUAS February 2017

Superconductors in changing magnetic fields





Faraday's Law of EM Induction

$$\oint Edl = \int B'dA = \phi'$$

- changing field
 - → changing flux linked by loop
 - → electric field E in superconductor
 - \rightarrow current I_r flows around the loop
- change stops
 - → electric field goes to zero
 - \rightarrow superconductor current falls back to I_c (not zero)
 - → current circulates for ever *persistent current*

changing magnetic fields on superconductors

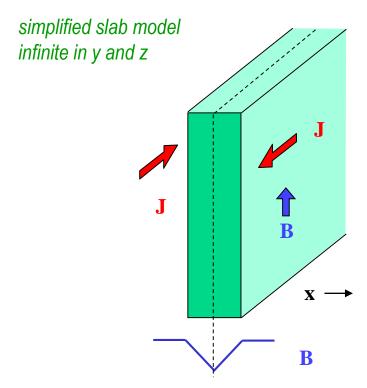
- → electric field
- → resistance
- → power dissipation

Martin Wilson Lecture 2 slide2

JUAS February 2017

Persistent screening currents

- screening currents are in addition to the transport current, which comes from the power supply
- like eddy currents but, because no resistance, they don't decay



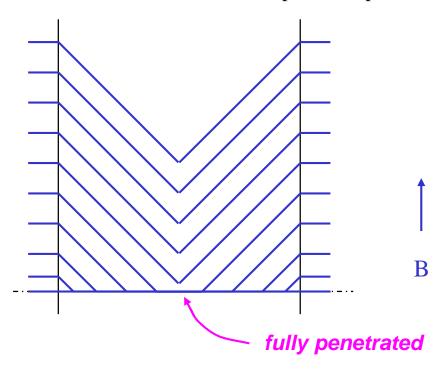
- dB/dt induces an electric field E which drives the screening current up to current density J_r
- dB/dt stops and current falls back to J_c
- so in the steady state we have persistent $J = +J_c$ or $J = -J_c$ or J = 0 nothing else
- known as the critical state model or Bean London model
- in the 1 dim infinite slab geometry, Maxwell's equation says

$$\frac{\partial B_y}{\partial x} = -\mu_o J_z = \mu_o J_c$$

• so a uniform J_c means a constant field gradient inside the superconductor

The flux penetration process

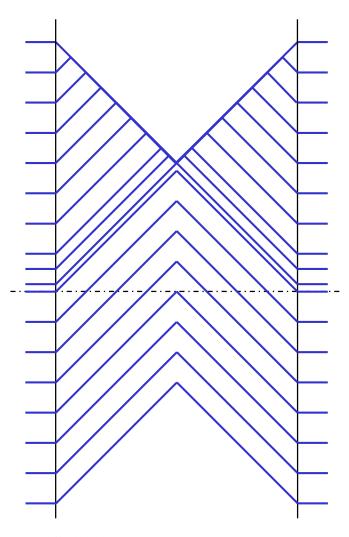
plot field profile across the slab



field increasing from zero

Bean London critical state model

- current density everywhere is ±J_c or zero
- change comes in from the outer surface



field decreasing through zero

Magnetization

- screening current are a problem because they
 - are irreversible ⇒ losses in changing field
 - affect the field shape
 - can go unstable (flux jump)
- when viewed from outside the sample, the persistent currents produce a magnetic moment.
- by analogy with a magnetic material can define a magnetization = magnetic moment per unit volume

$$M = \sum_{V} \frac{I.A}{V}$$

NB units of H

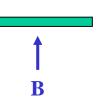
for a fully penetrated slab (symmetry about centre line)

$$M_{s} = \frac{1}{a} \int_{0}^{a} J_{c}.x.dx = \frac{J_{c}.a}{2}$$

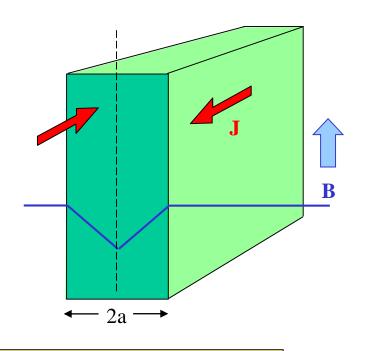
• slab approximation

good for a single tape parallel to field

not good for single tape perpendicular to field



but OK for stack of tapes perpendicular to field



to reduce M need small 'a'

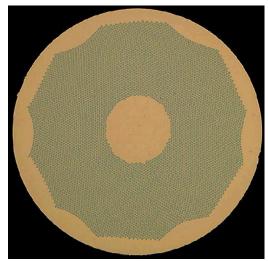
thin layers

parallel to field

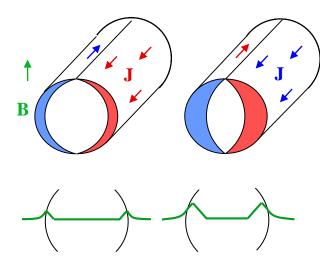
fine filaments

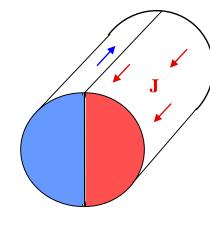
B

Magnetization of cylindrical filaments



when field has not fully penetrated the inner current boundary is roughly elliptical





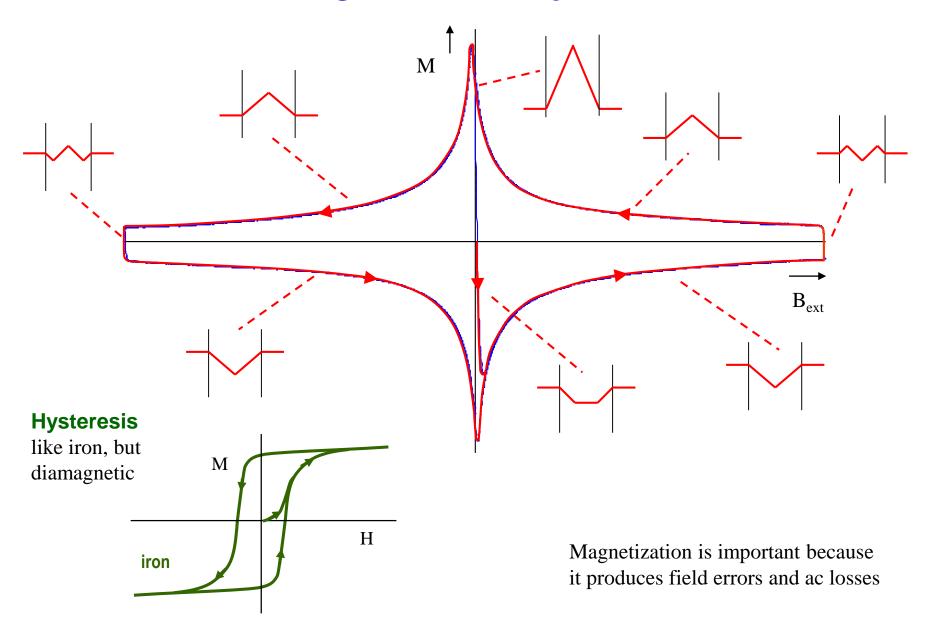
when fully penetrated, the calculation is similar to slab but more complicated - magnetization is

$$M_s = \frac{4}{3\pi} J_c a = \frac{2}{3\pi} J_c d_f$$

where a, d_f = filament radius, diameter Note: M is defined per unit volume of filament

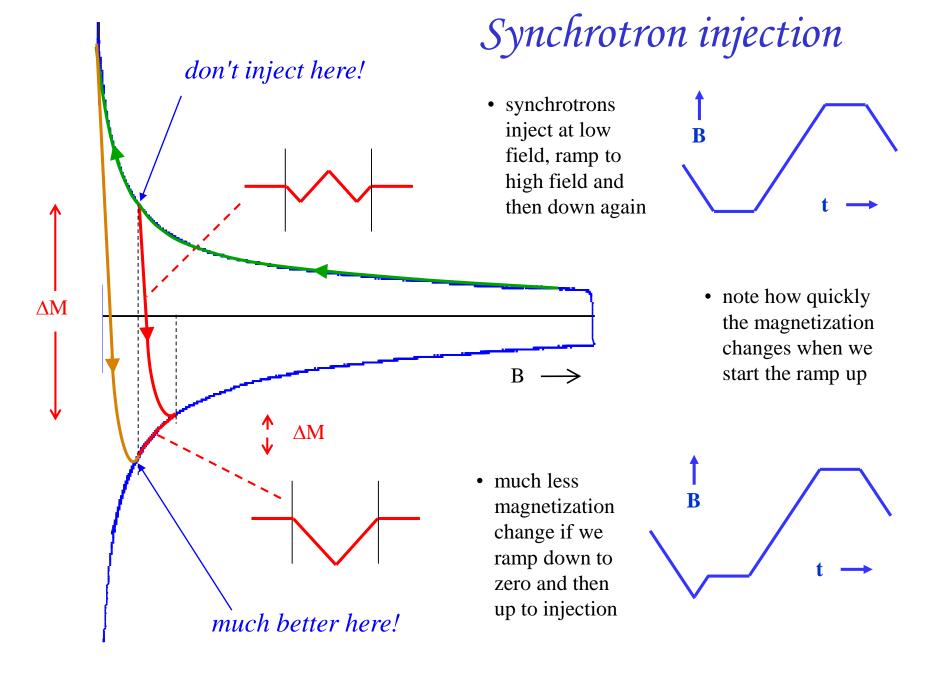
to reduce M need small d_f - fine filaments

Magnetization of NbTi



Martin Wilson Lecture 2 slide7

JUAS February 2017



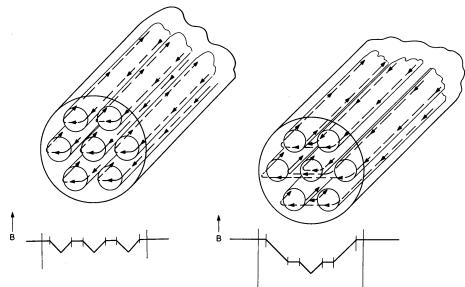
Martin Wilson Lecture 2 slide8

JUAS Febuary 2015

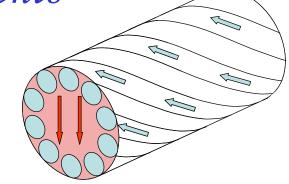
Coupling between filaments

recap
$$M_s = \frac{2}{3\pi} J_c d_f$$

- reduce M by making fine filaments
- for ease of handling, filaments are embedded in a copper matrix



- but in changing fields, the filaments are magnetically coupled
- screening currents go up the left filaments and return down the right



- coupling currents flow along the filaments and across the matrix
- reduce them by twisting the wire
- they behave like eddy currents and produce an additional magnetization

$$M_e = \frac{dB}{dt} \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2$$

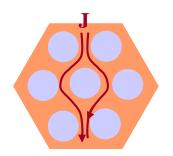
$$M_e = \frac{2}{\mu_o} \frac{dB}{dt} \tau$$
 where $\tau = \frac{\mu_o}{2\rho_t} \left[\frac{p_w}{2\pi} \right]^2$

per unit volume of wire

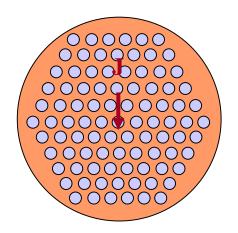
 $\rho_t = resistivity \ across \ matrix, \ p_w = wire \ twist \ pitch$

Transverse resistivity across the matrix

Poor contact to filaments

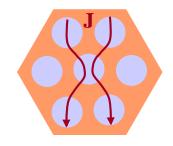


$$\rho_{t} = \rho_{Cu} \frac{I + \lambda_{sw}}{I - \lambda_{sw}}$$



where λ_{sw} is the fraction of superconductor in the wire cross section (after J Carr)

Good contact to filaments

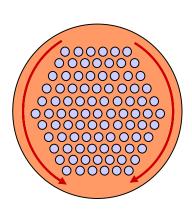


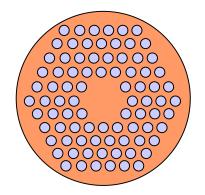
$$\rho_{t} = \rho_{Cu} \frac{1 - \lambda_{sw}}{1 + \lambda_{sw}}$$

Some complications

Thick copper jacket

include the copper jacket as a resistance in parallel



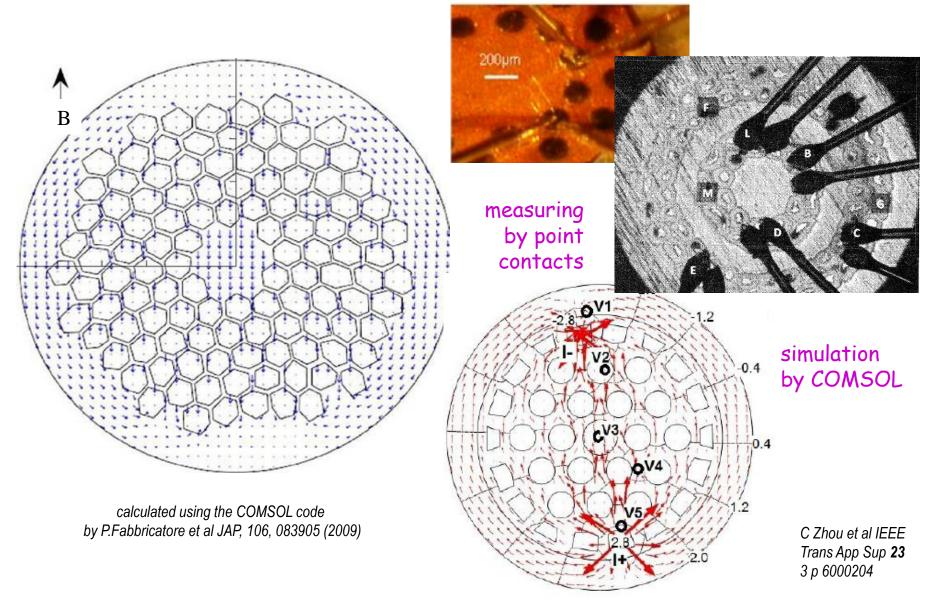


Copper core

resistance in series for part of current path

Martin Wilson Lecture 2 slide10 JUAS February 2017

Computing I measuring current flow across matrix



Martin Wilson Lecture 2 slide11 JUAS February 2017

Two components of magnetization

1) persistent current within the filaments

$$M_s = \lambda_{su} \frac{2}{3\pi} J_c(B) d_f$$

where λ_{su} = fraction of superconductor in the unit cell

$$M_e = \lambda_{wu} \frac{dB}{dt} \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2$$

or
$$M_e = \lambda_{wu} \frac{2}{\mu_o} \frac{dB}{dt} \tau$$
 where $\tau = \frac{\mu_o}{2\rho_t} \left[\frac{p_w}{2\pi} \right]^2$

Magnetization is averaged over the unit cell

M_e depends on dB/dt

M_f depends on B

 M_{s}

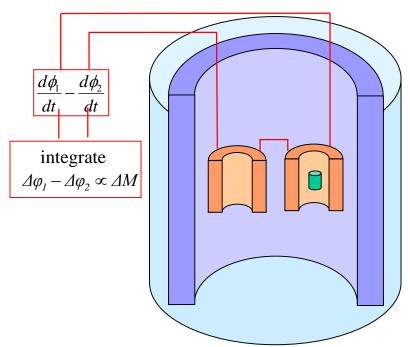
External field

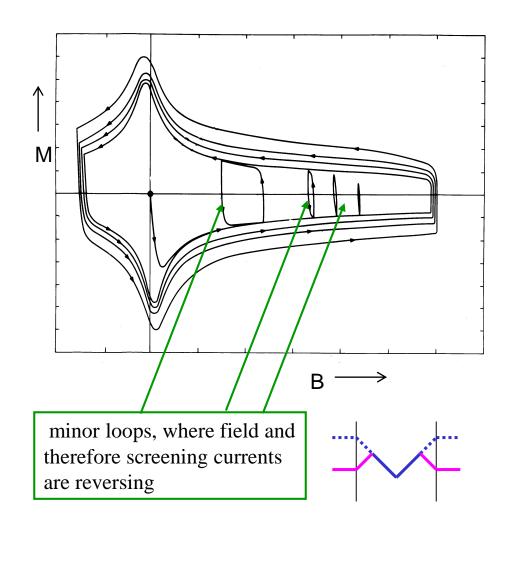
where λ_{wu} = fraction of wire in the section

Magnetization

Measurement of magnetization

- in field, superconductor behaves like a magnetic material.
- plot the magnetization curve using a magnetometer.
- shows hysteresis like iron but magnetization is both diamagnetic and paramagnetic.



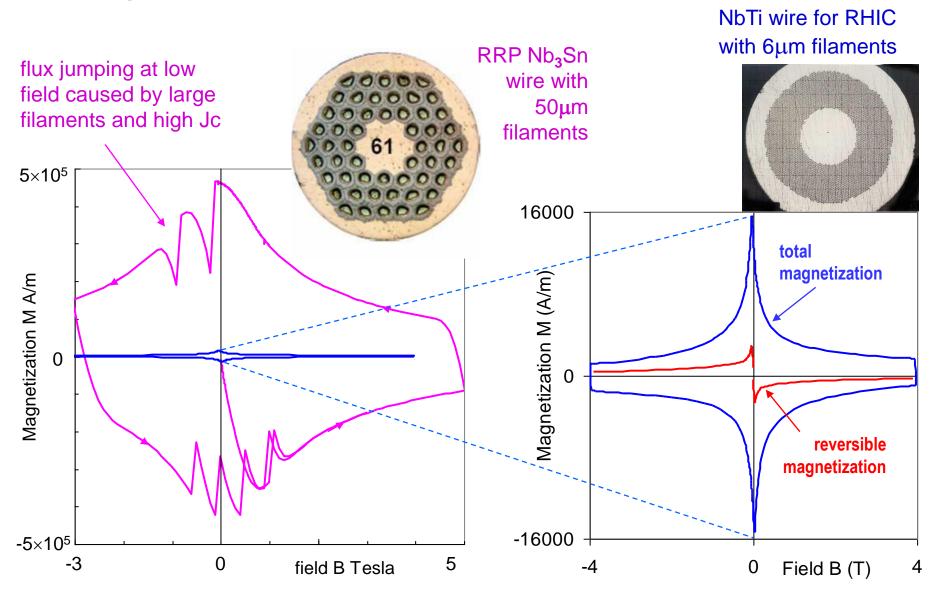


Two balanced search coils connected in series opposition, are placed within the bore of a superconducting solenoid. With a superconducting sample in one coil, the integrator measures ΔM when the solenoid field is swept up and down

Martin Wilson Lecture 2 slide13

JUAS February 2017

Magnetization measurements

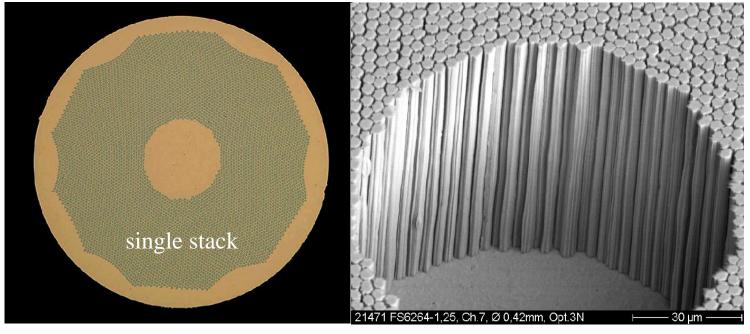


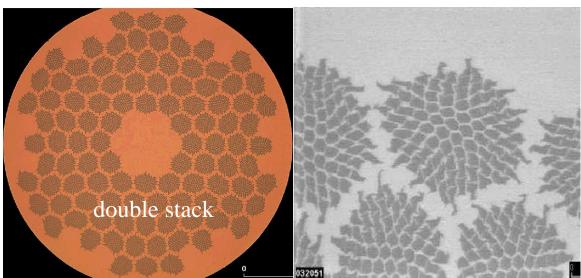
Martin Wilson Lecture 2 slide14

JUAS February 2017

Fine filaments for low magnetization

Accelerator magnets need the finest filaments - to minimize field errors and ac losses





- typical diameters $\sim 5 10 \mu m$.
- smaller diameters ⇒ lower magnetization, but at the cost of lower Jc and more difficult production.

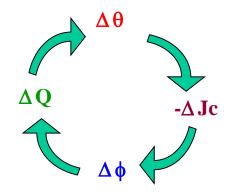
Martin Wilson Lecture 2 slide15

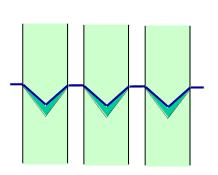
JUAS February 2017

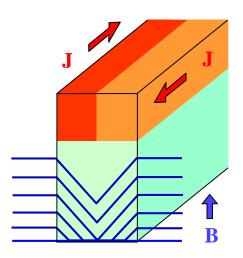
Flux Jumping

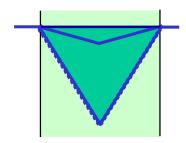
a magnetic thermal feedback instability

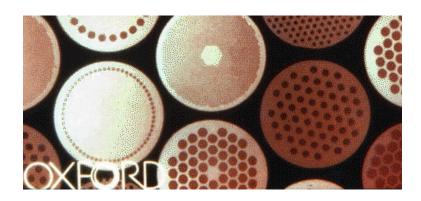
- screening currents
- temperature rise
- reduced critical current density
- flux motion
- energy dissipation
- temperature rise
- cure flux jumping by weakening a link in the feedback loop
- fine filaments reduce $\triangle \phi$ for a given $-\triangle Jc$
- for NbTi the stable diameter is ~ 50μm











Martin Wilson Lecture 2 slide16

JUAS February 2017

Flux jumping: the numbers

stable against flux jumping when filament diameter *d*

$$d \le \frac{2}{J_c} \left\{ \frac{3\gamma C(\theta_c - \theta_o)}{\mu_o} \right\}^{\frac{1}{2}}$$

NbTi at 4.2K and 1T

 J_c critical current density = $7.5 \times 10^9 \, \text{Am}^{-2}$

 γC specific heat/volume = 3400 J.m⁻³K⁻¹

 θ_c critical temperature = 9.0K

• least stable at low B because of high J_c

• and at low θ because of high J_c and low C

Nb₃Sn at 4.2K and 2T

 J_c critical current density = 1.7×10^{10} Am⁻²

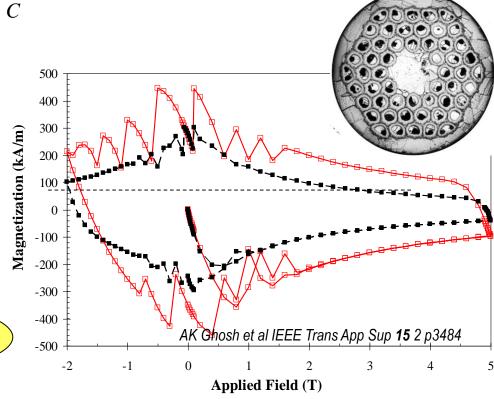
 γC specific heat/volume = $1600 \text{ J.m}^{-3} \text{K}^{-1}$

 θ_c critical temperature = 15.7K

⇒ filament diameter *d* < 25μm

Flux jumping is a solved problem√

⇒ filament diameter *d* < 52μm



Cables - why do we need them?

- for accurate tracking we connect synchrotron magnets in series
- for rise time *t* and operating current *I* , *c*harging voltage is

$$V = \frac{LI}{t} = \frac{2E}{It}$$

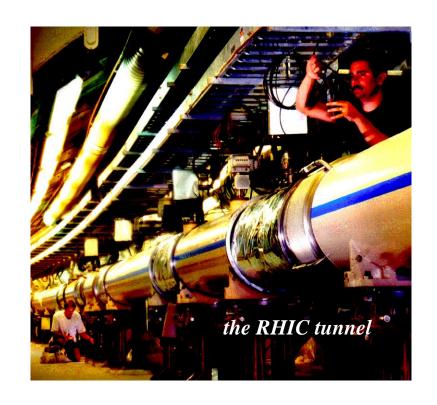
RHIC E = 40 kJ/m, t = 75 s, 30 strand cable cable I = 5 kA, charge voltage per km = 213V wire I = 167 A, charge voltage per km = 6400V

FAIR at GSI E = 74kJ/m, t = 4s, 30 strand cable cable I = 6.8kA, charge voltage per km = 5.4kV wire I = 227A, charge voltage per km = 163kV

- so we need high currents!
- a single 5µm filament of NbTi in 6T carries 50mA

 for a given field and volume, stored energy of a magnet is fixed, regardless of current or inductance

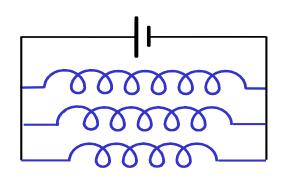
$$E = \frac{1}{2}LI^2 = \frac{B^2}{2\mu_0}vol$$

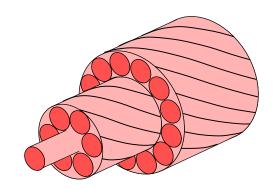


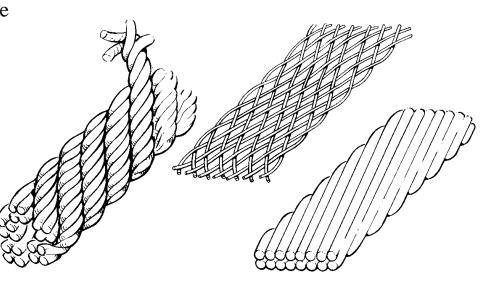
- a composite wire of fine filaments typically has 5,000 to 10,000 filaments, so it carries 250A to 500A
- for 5 to 10kA, we need 20 to 40 wires in parallel a cable

Cable transposition

- many wires in parallel want them all to carry same current zero resistance so current divides according to inductance
- in a simple twisted cable, wires in the centre have a higher self inductance than those at the outside
- current fed in from the power supply therefore takes the low inductance path and stays on the outside
- outer wires reach J_c while inner are still empty
- so the wires must be fully **transposed**, ie every wire must change places with every other wire along the length inner wires ⇒ outside outer wire ⇒ inside
- three types of fully transposed cable have been tried in accelerators
 - rope
 - braid
 - Rutherford

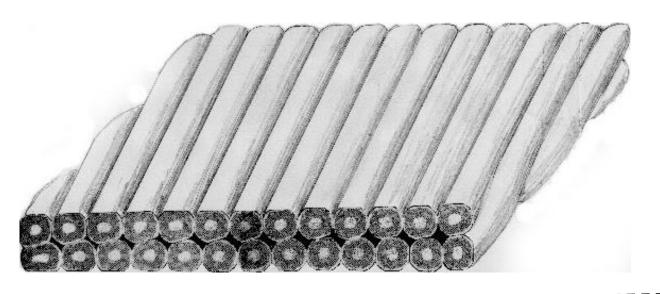




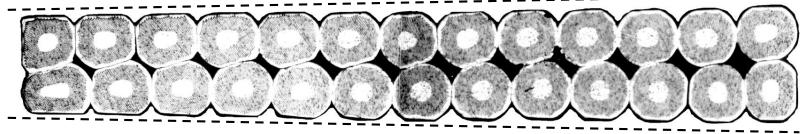


Martin Wilson Lecture 2 slide19

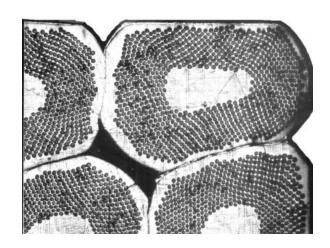
JUAS February 2017



Rutherford cable

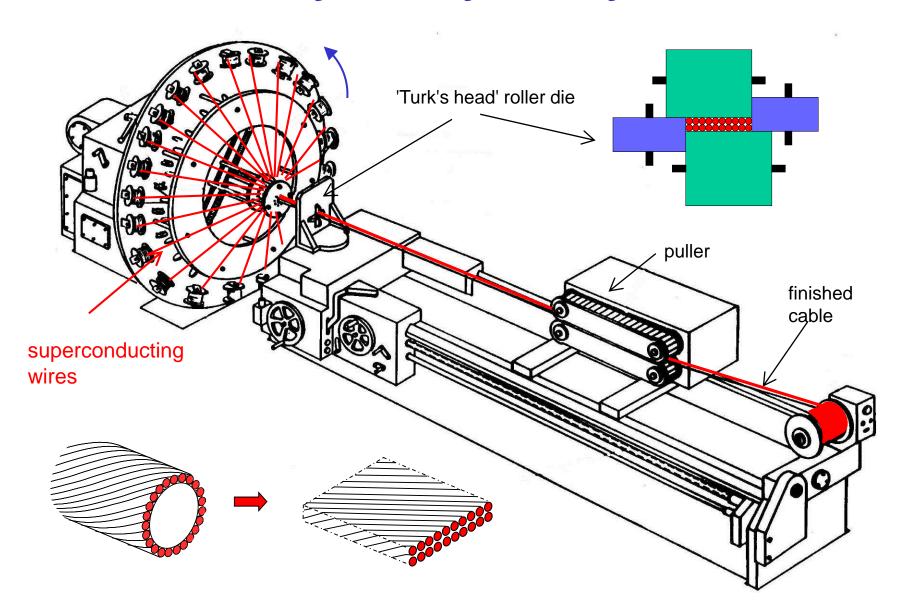


- Rutherford cable succeeded where others failed because it could be compacted to a high density (88 -94%) without damaging the wires, and rolled to a good dimensional accuracy (~ 10μm).
- Note the 'keystone angle', which enables the cables to be stacked closely round a circular aperture



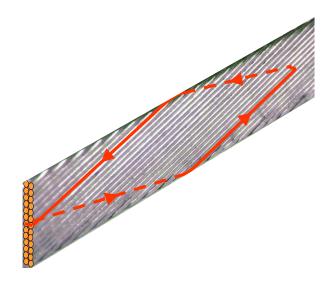
Martin Wilson Lecture 2 slide20 JUAS February 2017

Manufacture of Rutherford cable



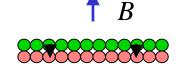
Martin Wilson Lecture 2 slide21

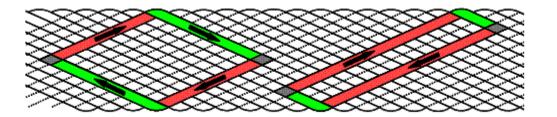
JUAS February 2017

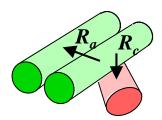


Coupling in Rutherford cables

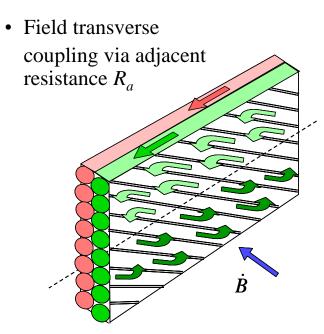
• Field transverse coupling via crossover resistance R_c







crossover resistance *Rc* adjacent resistance *Ra*



• Field parallel coupling via adjacent resistance R_a usually negligible

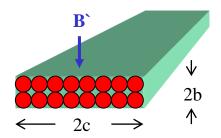
Martin Wilson Lecture 2 slide22

JUAS February 2017

Magnetization from coupling in cables

• Field transverse coupling via crossover resistance R_c

$$M_{tc} = \frac{1}{120} \frac{B_t'}{R_c} \frac{c}{b} p N(N-1) = \frac{1}{60} \frac{B_t'}{\rho_c} p^2 \frac{c^2}{b^2}$$



where M = magnetization per unit volume of cable, p= twist pitch, N = number of strands R_c R_a = resistance per crossover ρ_c ρ_a = effective resistivity between wire centres

• Field transverse coupling via adjacent resistance R_a where θ = slope angle of wires $\cos\theta$ ~ 1

$$M_{ta} = \frac{1}{6} \frac{B_t'}{R_a} p \frac{c}{b} = \frac{1}{48} \frac{B_t'}{\rho_a} \frac{p^2}{\cos^2 \theta}$$

• Field parallel coupling via adjacent resistance R_a

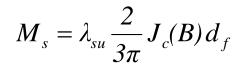
$$M_{pa} = \frac{1}{8} \frac{B'_p}{R_a} p \frac{b}{c} = \frac{1}{64} \frac{B'_p}{\rho_a} \frac{p^2}{\cos^2 \theta} \frac{b^2}{c^2}$$

(usually negligible)

• Field transverse ratio crossover/adjacent

$$\frac{M_{tc}}{M_{ta}} = \frac{R_a}{R_c} \frac{N(N-1)}{20} \approx 45 \frac{R_a}{R_c}$$

So without increasing loss too much can make R_a 50 times less than R_c - anisotropy



coupling between filaments M_e depends on dB/dt

$$M_e = \lambda_{wu} \frac{dB}{dt} \frac{1}{\rho_{\star}} \left[\frac{p_w}{2\pi} \right]^2$$

coupling between wires in cable depends on dB/dt

$$M_{tc} = \lambda_{cu} \frac{1}{120} \frac{B_t'}{R_c} p \frac{c}{b} N(N-1)$$

External field ->

Ms

$$M_{ta} = \lambda_{cu} \frac{1}{6} \frac{B_t'}{R_a} p \frac{c}{b}$$

where λ_{cu} = fraction of cable in the section

Martin Wilson Lecture 2 slide24

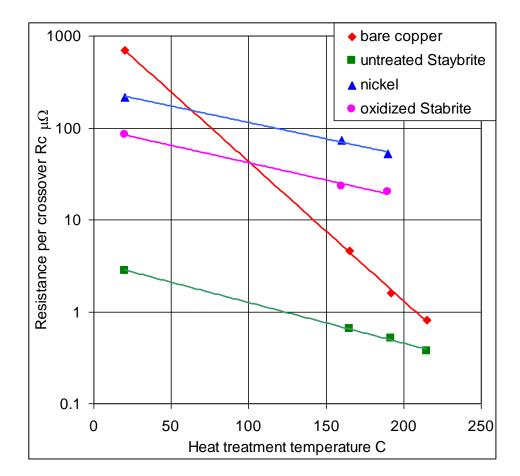
Magnetization →

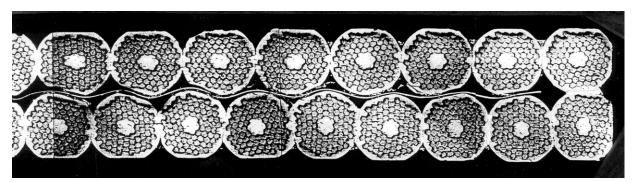
Controlling R_a and R_c

- can adjust contact resistance by surface coatings on the wires
- contact resistance is sensitive to pressure and heat treatments used in coil manufacture (to cure the adhesive between turns)
- data from David Richter CERN

Cored Cables

- resistive core foil increases R_c but leaves R_a the same
- reduces magnetization but keeps good current transfer between wires
- not affected by heat treatment





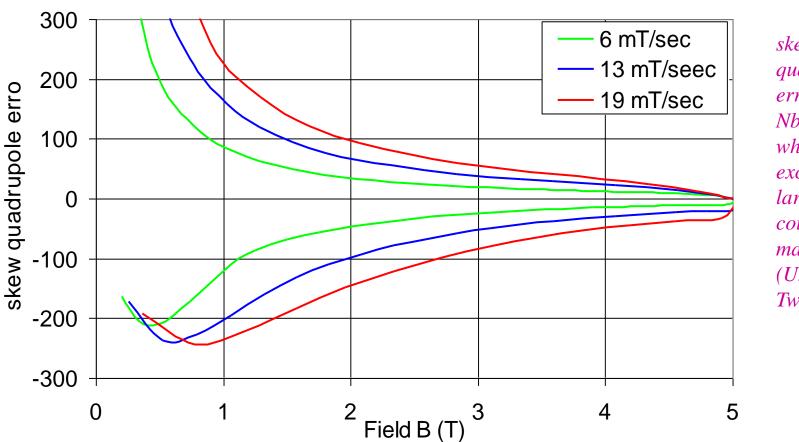
Martin Wilson Lecture 2 slide25

JUAS February 2017

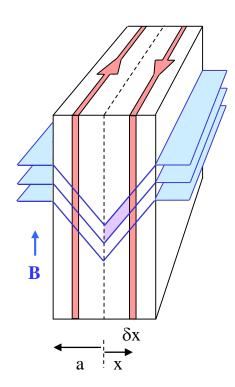
Magnetization and field errors — an extreme case

Magnetization is important in accelerators because it produces field error. The effect is worst at injection because $-\Delta B/B$ is greatest

- magnetization, ie ΔB is greatest at low field



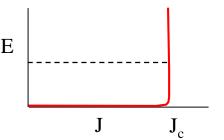
skew
quadrupole
error in
Nb₃Sn dipole
which has
exceptionally
large
coupling
magnetization
(University of
Twente)



AC loss power

Faraday's law of induction

$$\oint Edl = \frac{d}{dt} \int_{A} BdA$$



loss power / unit length in slice of width dx

$$p(x) = EJ_c \delta x = \frac{d\phi}{dt} J_c \delta x = \frac{dB}{dt} x J_c \delta x$$

total loss in slab per unit volume

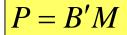
$$P = \frac{1}{a} \int_{0}^{a} p(x) dx = \frac{1}{a} \frac{dB}{dt} J_{c} \int_{0}^{a} x dx = B' J_{c} \frac{a}{2} = B' M$$

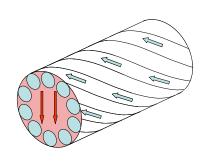
for round wires (not proved here)

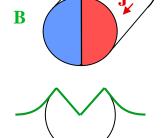
$$P = B'M = \frac{4}{3\pi}B'J_c a = \frac{2}{3\pi}B'J_c d_f$$

also for coupling magnetization

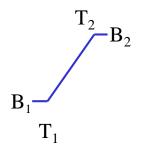
$$P_e = B'M_e = B'^2 \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2 = \frac{B'^2}{\mu_o} 2\tau$$







Hysteresis loss

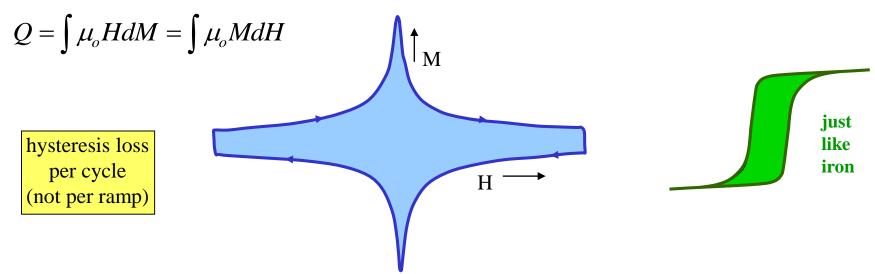


loss over a field ramp

$$Q = \int_{T_1}^{T_2} M \frac{dB}{dt} dt = \int_{B_1}^{B_2} M dB$$

loss per ramp independent of \dot{B}

- in general, when the field changes by δB the magnetic field energy changes by $\delta E = H \delta B$ (see textbooks on electromagnetism)
- so work done by the field on the material $W = \int \mu_o H dM$
- around a *closed loop*, this integral must be the energy dissipated in the material



1) Persistent currents within filaments

$$P_s = \frac{2}{3\pi} \lambda_{su} B' J_c(B) d_f \qquad Q_s = \frac{2}{3\pi} \lambda_{su} d_f \int J_c(B) dB$$

2) Coupling between filaments within the wire

$$P_e = \lambda_{wu} B'^2 \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2$$

$$Q_e = \lambda_{wu} B' \Delta B \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2$$

3) Coupling between wires in the cable

$$P_{tc} = \lambda_{cu} \frac{1}{120} \frac{B_t'^2}{R_c} \frac{c}{b} p_c N(N-1)$$

$$P_{ta} = \lambda_{cu} \frac{1}{6} \frac{B_t'^2}{R_a} p_c \frac{c}{b}$$
 $P_{pa} = \lambda_{cu} \frac{1}{8} \frac{B_p'^2}{R_a} p_c \frac{b}{c}$

between wires

Magnetization

Summary of losses - per unit volume of winding

1) Persistent currents in filaments

power W.m⁻³

$$P_{s} = \lambda_{su} M_{f} B' = \lambda_{su} \frac{2}{3\pi} J_{c}(B) d_{f} B'$$

where λ_{su} , λ_{wu} , λ_{cu} = fractions of superconductor, wire and cable in the winding cross section

2) Coupling currents between filaments in the wire

power W.m⁻³

$$P_e = \lambda_{wu} M_e B' = \lambda_{wu} \frac{B'^2}{\rho_t} \left(\frac{p}{2\pi}\right)^2$$

3) Coupling currents between wires in the cable

transverse field crossover resistance power W.m⁻³

transverse field adjacent resistance power W.m⁻³

 $P_{tc} = \lambda_{cu} \frac{1}{120} \frac{B_t'^2}{R_c} p \frac{c}{b} N(N-1)$

 $P_{ta} = \lambda_{cu} \frac{1}{6} \frac{B_t'^2}{R_a} p \frac{c}{b}$

don't forget the filling factors

parallel field adjacent resistance power W.m⁻³

Concluding remarks

- changing magnetic fields drive superconductor into resistive state \Rightarrow losses leave persistent currents
- screening currents produce magnetization (magnetic moment per unit volume)
 ⇒ lots of problems field errors and ac losses
- in a synchrotron, the field errors from magnetization are worst at injection
- we reduce magnetization by making fine filaments for practical use embed them in a matrix
- in changing fields, filaments are coupled through the matrix \Rightarrow increased magnetization
 - reduce it by twisting and by increasing the transverse resistivity of the matrix
- flux jumping is an electromagnetic/thermal instability that afflicts all high field superconductors
 - solved problem fine filaments
- accelerator magnets must run at high current because they are all connected in series
 - combine wires in a cable, it must be fully transposed to ensure equal currents in each wire
- wires in cable must have some resistive contact to allow current sharing
 - in changing fields the wires are coupled via the contact resistance
 - different coupling when the field is parallel and perpendicular to face of cable
 - coupling produces more magnetization ⇒ more field errors
- irreversible magnetization ⇒ ac losses in changing fields
 - coupling between filaments in the wire adds to the loss
 - coupling between wire in the cable adds more

never forget that magnetization and ac loss are defined per unit volume - *filling factors*