Tutorial 4

26 January 2017, Archamps

hector.garcia.morales@cern.ch, andrea.latina@cern.ch, dario.pellegrini@cern.ch, guido.sterbini@cern.ch

Tutorial 4: First Part I

Chromaticity and sextupoles

1. After the definition of the sequence, convert it in thin lenses with the commands:

MAKETHIN, SEQUENCE=MY_SEQUENCE;

use, sequence=MY_SEQUENCE;
This step is required to allow particle tracking in MAD-X.
2. With a matching block adjust the tunes of the cell to 0.25 .
3. Using the chromaticities obtained from the Twiss, compute the tunes for $\Delta p / p=10^{-3}$.

Tutorial 4: First Part II

4. Track a particle with initial coordinates
$x, y, p x, p y=(1,1,0,0) \mathrm{mm}$ in 100 cells. Plot the $x-p x$ phase space. Hint:
track,dump;
start, $x=1 e-3, p x=0, y=1 e-3, p y=0$;
run,turns=100;
endtrack;
plot, file="MAD_track", table=track,haxis=x,vaxis=px, particle=1, colour=100;
plot, file="MAD_track",table=track,haxis=y,vaxis=py, particle=1, colour=100;

How does the particle move in the phase space, cell after cell? Do you see the tunes?

Tutorial 4: First Part III

5. Track a particle with initial coordinates
$x, y, p x, p y=(100,100,0,0) \mathrm{mm}$ in 100 cells. Plot the $x-p x$ phase space. Does something change with respect to the previous case? Why?
6. Repeat point 4 adding $D E L T A P=10^{-3}$ to the track command. How does the phase space look now? Is the tune still the same? It may help to look only at the first few (4) turns, to get a clearer picture.

Tutorial 4: SECOND Part

Non-linearities and large amplitude oscillations.
7. Add 0.5 m long sextupoles attached to the two quadrupoles. With a matching block adjust the vertical and horizontal chromaticity of the cell (global parameters $D Q 1, D Q 2$) to zero, by powering the two sextupoles ($K 2_{1}$ and $K 2_{2}$).
8. using the obtained $K 2_{1}$ and $K 2_{2}, \beta$-function and dispersion at sextupoles location, evaluate using the formulas the sextupolar effect on the Q1 for a particle at $D E L T A P=0.01$. Compare the results with the value obtained in point 1.
9. Repeat point 4 adding $D E L T A P=0.01$ to the track command. Did you manage to recover the original tune for the off-momentum particle?
10. Repeat point 5 . What is going on now?
11. Move the tunes to $(0.23,0.23)$ and repeat the previous point. Is now the particle stable?

