JUAS

## LONGITUDINAL BEAM DYNAMICS

## Elias Métral (CERN BE Department)

This course started with the one of Frank Tecker (CERN-BE) in 2010 (I took over from evious years, based on the transparencies written by Louis Rinolfi (CERN-BE) who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP)) course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (L)

Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well hitp://cosweb.cern.ch/recorr/235242/files/p253.pdf

I attended the course given by Louis Rinolfi in 1996 and was his assistant in 2000 and 001 (and the assistant of Michel Martini for his course on transverse beam dynamics)

This course and related exercises / exams (as well as other courses) can be found in my
web page: hitp://emetralweb.cern.ch/emetral/
Assistant: Benoit Salvant (CERN BE Department)

## JUAS

PURPOSE OF THIS COURSE
Discuss the oscillations of the particles in the longitudinal plane of synchrotrons, called SYNCHROTRON OSCILLATIONS (similarly to the betatron oscillations in the transverse planes), and derive the basic equations


JUAS- Jan 2017-EMêtral Page 2

## JUAS

## PURPOSE OF THIS COURSE

ome movies (in phase space) to have a better idea of what we will work on during this course and what you will be able to understand and do after this course.








Equation of motion for a particle of charge $q$

$$
\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=q(\vec{E}+\vec{v} \times \vec{B})
$$

| $\vec{p}=m \vec{v}$ | Momentum |
| :--- | :--- |
| $\vec{v}$ | Velocity |
| $\vec{E}$ | Electric field |
| $\vec{B}$ | Magnetic field |

JUAS
Constant electric field


1. Direction of the force always parallel to the field
2. Trajectory can be modified, velocity also $\Rightarrow$ momentum and energy can be modified

This force can be used to accelerate and decelerate particles

Page 21


JUAS


JUAS
Comparison of magnetic and electric forces

$$
\begin{aligned}
& |\vec{B}|=1 \mathrm{~T} \\
& |\vec{E}|=10 \mathrm{MV} / \mathrm{m}
\end{aligned}
$$

$$
\frac{F_{M G G V}}{F_{\text {ELIEC }}}=\frac{e v B}{e E}=\beta c \frac{B}{E} \cong 3 \cdot 10^{8} \frac{1}{10^{7}} \beta=30 \beta
$$

JUAS- Jan 2017-EMÁtral


Let $V_{R F}$ be the amplitude of the RF voltage across the gap $g$
The particle crosses the gap at a distance $r$ The energy gain is:

$$
\underbrace{\Delta E}_{[\mathrm{MeV}]}=\underset{\substack{[\mathrm{n}] \\(1 \text { for electrons or protons })}}{e \int_{-g / 2}^{g / 2}} \vec{E}(s, r, t) \mathrm{d} \vec{s} / \mathrm{m}]
$$

In the cavity gap, the electric field is supposed to be:

$$
E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)
$$

In general, $E_{2}(t)$ is a sinusoidal time variation with angular frequency $\omega_{\mathrm{RF}}$

$$
E_{2}(t)=E_{\mathrm{o}} \sin \Phi(t) \quad \text { where } \quad \Phi(t)=\int_{t_{0}}^{d} \omega_{R F} \mathrm{~d} t+\Phi_{0}
$$

## JUAS

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

$E_{2}(t)=E_{\mathrm{o}} \sin \left(\omega_{R F} t\right)$

$E_{2}(t)=E_{\circ} \cos \left(\omega_{R F} t\right)$

JUAS- Jan 2017-EMêtral Page 26


| JUAS |  |
| :---: | :---: |
| First derivatives | $\begin{aligned} & \mathrm{d} \beta=\beta^{-1} \gamma^{-3} \mathrm{~d} \gamma \\ & \mathrm{~d}(c p)=E_{0} \gamma^{3} \mathrm{~d} \beta \\ & \mathrm{~d} \gamma=\beta\left(1-\beta^{2}\right)^{-3 / 2} \mathrm{~d} \beta \end{aligned}$ |
| Logarithmic derivatives | $\begin{aligned} & \frac{\mathrm{d} \beta}{\beta}=(\beta \gamma)^{-2} \frac{\mathrm{~d} \gamma}{\gamma} \\ & \frac{\mathrm{~d} p}{p}=\frac{\gamma^{2}}{\gamma^{2}-1} \frac{\mathrm{~d} E}{E}=\frac{\gamma}{\gamma+1} \frac{\mathrm{~d} E_{\text {kin }}}{E_{\text {kin }}} \\ & \frac{\mathrm{d} \gamma}{\gamma}=\left(\gamma^{2}-1\right) \frac{\mathrm{d} \beta}{\beta} \end{aligned}$ |


| JUAS |  |
| :---: | :---: |
|  | LESSON II |
|  | Particle acceleration $\Rightarrow$ Synchrotrons |
|  | Transit time factor |
|  | Main RF parameters |
|  | Momentum compaction |
|  | Transition energy |
| Juas - Jon 2 In |  |




JUAS Parameters for circular accelerators The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$
R=\frac{\gamma v m_{0}}{e B}
$$

2. The synchronicity condition: The revolution frequency can be expressed as:

$$
f=\frac{e B}{2 \pi \gamma m_{0}}
$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles.
They are summarized in the table below:

| Machine | Energy ( $\gamma$ ) | Velocity | Field | Orbit | Frequency |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cyclotron | $\sim 1$ | var. | const. | $\sim v$ | const. |
| Synchrocyclotron | var. | var. | $B(r)$ | $\sim p$ | $B(r) / \gamma(t)$ |
| Proton/Ion synchrotron | var. | var. | $\sim p$ | $R$ | $\sim v$ |
| Electron synchrotron | var. | const. | $\sim p$ | $R$ | const. |

## JUAS

Transit time factor II

In the general case, the transit time factor is given by

$$
T_{a}=\frac{\int_{-\infty}^{+\infty} E_{1}(s, r) \cos \left(\omega_{R F} \frac{s}{v}\right) \mathrm{d} s}{\int_{-\infty}^{+\infty} E_{1}(s, r) \mathrm{d} s}
$$

It is the ratio of the peak energy gained by a particle with velocity $v$ to the peak energy gained by a particle with infinite velocity.

## JUAS

I. Voltage, phase, frequency Main RF parameters

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

| $E(s, t)=E_{1}(s) \cdot E_{2}(t)$ | $E_{2}(t)=E_{0} \sin \left[\int_{t_{0}}^{t} \omega_{R F} \mathrm{~d} t+\phi_{0}\right]$ |
| :--- | :--- |
| $\omega_{R F}=2 \pi f_{R F}$ | $\Delta E=e V_{R F} T_{a} \sin \phi_{0}$ |

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the
phase sas
II. Harmonic number

$$
T_{\text {rev }}=h T_{R F} \quad \Rightarrow \quad f_{R F}=h f_{\text {rev }}
$$

$f_{\text {rev }}=$ revolution frequency
$\begin{aligned} f_{R F} & =\text { frequency of the } \\ h & =\text { harmonic number }\end{aligned}$
harmonic number in different machines AA EPA PS SPS $=$ harmonic number $1 \quad 8 \quad 20 \quad 4620$


## JUAS

Example: constant magnetic field


$$
\frac{d s_{1}-d s}{d s}=\frac{(\rho+x) \mathrm{d} \theta-\rho \mathrm{d} \theta}{\rho \mathrm{~d} \theta}=\frac{x}{\rho}=\frac{D_{x}}{\rho} \frac{\mathrm{~d} p}{p}
$$

By definition of dispersion $D_{x}$

To first order, only the bending magnets contribute to a change of the trajectory length
$(r=\infty$ in the straight sections) ( $r=\infty$ in the straight sections)


Momentum compaction in a ring
In a circular accelerator, a nominal closed orbit is defined for the nominal momentum $p$. For a particle with a momentum deviation $\Delta p$ produces an orbit length variation $\Delta C$ with

$$
\begin{array}{l|l}
\text { For } B=\text { const. } & \frac{\Delta C}{C}=\alpha_{p} \frac{\Delta p}{p}
\end{array}
$$



The momentum compaction factor is defined by the ratio

$$
\alpha_{p}=\frac{d C / C}{d p / p}=\frac{d R / R}{d p / p} \quad \text { and } \quad \alpha_{p}=\frac{1}{C} \int_{C} \frac{D_{x}(s)}{\rho(s)} \mathrm{d} s
$$

N.B.: in most circular machines, $\alpha_{\mathrm{p}}$ is positive $\Rightarrow$ higher momentum means longer circumference

JUAS - Jan 2017-EMétral
Page 41
$E=\frac{p c}{\beta} \quad \Rightarrow \quad \frac{\mathrm{~d} E}{E}=\beta^{2} \frac{d p}{p}$

$$
\alpha_{p}=\beta^{2} \frac{E}{R} \frac{\mathrm{~d} R}{\mathrm{~d} E}
$$

JUAS- - Tan 2017- EMêtral
Page 42

## JUAS

Transition energy
Proton (ion) circular machine with $\alpha_{\mathrm{p}}$ positive

1. Momentum larger than the nominal $(p+\Delta p) \Rightarrow$ longer orbit $(C+\Delta C)$
2. Momentum larger than the nominal $(p+\Delta p) \Rightarrow$ higher velocity $(v+\Delta v)$

What happens to the revolution frequency $f=v / C$ ?

- At low energy, $v$ increases faster than $C$ with momentum
- At high energy $v \approx c$ and remains almost constant
$\Rightarrow$ There is an energy for which the velocity variation is compensated by the trajectory variation $\Rightarrow$ transition energy

For $B_{f}=$ const

$$
\alpha_{p}=1-\frac{\mathrm{d}<B\rangle}{\langle B>} / \frac{\mathrm{d} p}{p}
$$

$\begin{array}{ll}\text { Below transition: } & \text { higher energy } \Rightarrow \\ \text { Above transition: } & \text { higher revolution frequency } \\ \text { Aighergy } \Rightarrow & \text { lower revolution frequency }\end{array}$
JUAS - Jan 2017-EMêtral

## JUAS

## Transition energy - quantitative approach

We define a parameter $\eta$ (revolution frequency spread per unit of momentum spread):


$$
\frac{\mathrm{d} f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{p}\right) \frac{\mathrm{d} p}{p}
$$

JUAS - Jan 2017-EMÉtral

## LESSON III

Equations related to synchrotrons

Synchronous particle

Synchrotron oscillations

Principle of phase stability
N.B.: $\begin{aligned} & \text { for electrons, } \gamma \gg \gamma_{t r} \Rightarrow \eta<0 \\ & \text { for linacs } \alpha_{p}=0 \Rightarrow \eta>0\end{aligned}$

JUAS- Jon 2017-EMétral Page 46

Equations related to synchrotrons
The transition energy is the energy that corresponds to $\eta=0$ ( $\alpha_{\mathrm{p}}$ is fixed, and $\gamma$ variable )


The parameter $\eta$ can also be written as

$$
\begin{array}{lll}
\eta=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t r}{ }^{2}} & \begin{array}{l}
\text { At low energy } \\
\\
\text { At high energy }
\end{array} & \eta<0 \\
\end{array}
$$

Equations related to synchrotrons

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} R}{R}+\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=\gamma^{2} \frac{\mathrm{~d} f}{f}+\gamma^{2} \frac{\mathrm{~d} R}{R} \\
& \frac{\mathrm{~d} B}{B}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} f}{f}+\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
& \frac{\mathrm{~d} B}{B}=\gamma^{2} \frac{\mathrm{~d} f}{f}+\left(\gamma^{2}-\gamma_{t r}{ }^{2}\right) \frac{\mathrm{d} R}{R}
\end{aligned}
$$

$$
p[\mathrm{MeV} / \mathrm{c}] \text { momentum }
$$

$$
R[\mathrm{~m}] \quad \text { orbit radius }
$$

$$
B[\mathrm{~T}] \quad \text { magnetic field }
$$

$$
f[\mathrm{~Hz}] \quad \text { rev. frequency }
$$

$$
\gamma_{t r} \quad \text { transition energy }
$$

$$
\text { JUAS- -Jon 2017- EMêtral } \quad \text { Page 48 }
$$




## JUAS

IV-Constant frequency $\mathrm{d} f=0$

Beam driven by an external oscillator

$$
\begin{aligned}
\frac{\mathrm{d} p}{p}=\gamma^{2} \frac{\mathrm{~d} R}{R} \quad \frac{\mathrm{~d} B}{B} & =\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
\frac{\mathrm{~d} B}{B} & =\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R} \\
& \text { If } \mathrm{p} \text { increases } \\
& \Rightarrow \begin{array}{l}
\mathrm{R} \text { increases } \\
\mathrm{B} \text { decreases } \gamma<\gamma_{t r} \\
\text { increase } \gamma>\gamma_{t r}
\end{array}
\end{aligned}
$$

If $p$ increases
$R$ increases
$\begin{array}{ll}\text { increase } & \gamma<\gamma_{t r} \\ \text { decreases } & \gamma>\gamma\end{array}$

JUAL- Jan 2017-EMẾrral $\quad \gamma>\gamma_{\text {Page } 51}$

JUAS

| Beam | Parameter | Variations |
| :---: | :---: | :---: |
| Debunched | $\Delta p=0$ | $B \Uparrow, R \Downarrow, f \Uparrow$ |
| Fixed orbit | $\Delta R=0$ | $B \Uparrow, p \Uparrow, f \Uparrow$ |
| Magnetic flat-top | $\Delta B=0$ | $\begin{array}{r} p \Uparrow, R \Uparrow, f \Uparrow(\eta>0) \\ f \Downarrow(\eta<0) \end{array}$ |
| External oscillator | $\Delta f=0$ | $\left.\begin{array}{r} B \Uparrow, p \Downarrow, R \Downarrow(\eta>0) \\ p \Uparrow, R \Uparrow(\eta<0) \end{array} \right\rvert\,$ |

JUAS-Jan 2017-EMétral
$\phi_{1}$
Below transition, an increase in energy means an increase in revolution frequency The particle arrives earlier - tends toward $\phi_{0}$

$\phi_{2}$ - The particle is decelerated
decrease in energy - decrease in revolution frequency
The particle arrives later - tends toward $\phi_{0}$


In order to keep the resonant condition, the particle must keep a constant energy
In order to keep the resonant condition, the particle must keep a constant energy
The phase of the synchronous particle must therefore be $\phi_{D}=0$ (circular machines convention) Let's see what happens for a particle with the same energy and a different phase (e.g., $\phi_{1}$ )

JUAS


Phase space picture


JUAS- Jan 2017-EMMétral
Page 56


JUAS


The phase of the synchronous particle is now $\phi_{s}>0$ (circular machines convention)
The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius $R$

$$
R=\frac{\gamma v m^{\prime}}{e B}
$$

The RF frequency is increased as well in order to keep the resonant condition

$$
\omega=\frac{e B}{\gamma m_{0}}=\frac{\omega_{R F}}{h}
$$

JUAS- - Tan 2017- EMêtral Page 58


RF acceleration for synchronous particle - energy gain

RF acceleration for synchronous particle
RF acceleration for non-synchronous particle
Small amplitude oscillations
Large amplitude oscillations - the RF bucket
Synchrotron frequency and tune
Tracking
Nonadiabatic theory needed "close" to transition
Double RF systems
JUAS - Jon 2017- EMétral Page 61
Let's assume a synchronous particle with a given $\phi_{s}>0$
We want to calculate its rate of acceleration, and the related rate of increase of $B, f$.

$$
p=e B \rho
$$

Want to keep $\rho=$ const
$\Rightarrow \frac{\mathrm{d} p}{\mathrm{~d} t}=e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t}=e \rho \dot{B}$
Over one turn:

$$
(\Delta p)_{t u r n}=e \rho \dot{B} T_{r e v}=e \rho \dot{B} \frac{2 \pi R}{\beta c}
$$

We know that (relativistic equations) : $\Delta p=\frac{\Delta E}{\beta c}$

$$
\Rightarrow(\Delta E)_{t u r n}=e \rho \dot{B} 2 \pi R
$$

JUAS - Jan Rol7-EMétral
Page 62

RF acceleration for synchronous particle - frequency

$$
\begin{aligned}
& \omega_{R F}=h \omega_{s}=h \frac{e}{m}<B>\quad\left(v=\frac{e}{m} B \rho\right) \\
& \omega_{R F}=h \frac{e}{m} \frac{\rho}{R} B
\end{aligned}
$$

From relativistic equations:

$$
\omega_{R F}=\frac{h c}{R} \sqrt{\frac{B^{2}}{B^{2}+\left(E_{0} / e c \rho\right)^{2}}}
$$

Let

$$
B_{0} \equiv \frac{E_{0}}{e c \rho} \quad f_{R F}=\frac{h c}{2 \pi R}\left(\frac{B}{B_{0}}\right) \frac{1}{\sqrt{1+\left(B / B_{0}\right)^{2}}}
$$

JUAS- Jon 2017-EMétral

At the CERN Proton Synchrotron machine, one has:
$R=100 \mathrm{~m}$
$\dot{B}=2.4 \mathrm{~T} / \mathrm{s}$

100 dipoles with $I_{\text {eff }}=4.398 \mathrm{~m}$. The harmonic number is 20
Calculate:

1. The energy gain per turn
2. The minimum RF voltage neede
3. The RF frequency when $B=1.23 \mathrm{~T}$ (at extraction)

JUAS- Jan 2017- EMêtral Par Page 65
$\square$

Parameter definition (subscript "s" stands for synchronous particle):

| $f=f_{s}+\Delta f$ | revolution frequency |
| :--- | :--- |
| $\phi=\phi_{s}+\Delta \phi$ | RF phase |
| $p=p_{s}+\Delta p$ | Momentum |
| $E=E_{s}+\Delta E$ | Energy |
| $\theta=\theta_{s}+\Delta \theta$ | Azimuth angle |
| $\mathrm{d} s=R \mathrm{~d} \theta$ |  |
| $\theta(t)=\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau$ |  |

JUAS- Jon 2017-EMétral Page 66

JUAS

1. Angular frequency Parameters versus $\dot{\phi}$
$\theta(t)=\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau$
$\Delta \omega=\frac{\mathrm{d}}{\mathrm{d} t}(\Delta \theta)$
$=-\frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} t}(\Delta \phi)$
$=-\frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\phi-\phi_{s}\right) \quad \frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0$ by definition
$=-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}$
Since $\quad f_{R F}=h f_{\text {rev }}$
$\Rightarrow \Delta \phi=-h \Delta \theta$
Over one turn $\theta$ varies by $2 \pi$ $\phi$ varies by $2 \pi h$

JUAS- Jan 2017-EMétral
Page 67
JUAS - Jan 2017- EMétral
Poge 68
e69

## JUAS

Derivation of equations of motion
After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

$$
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{s}}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

An approximated version of the above is

$$
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}\left(\sin \phi-\sin \phi_{s}\right)
$$

Which, together with the previously found equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=-\frac{\omega_{s} \eta h}{p_{s}} \Delta p
$$

Describes the motion of the non-synchronous particle in the longitudinal phase space ( $\Delta p, \phi)$

Energy gain after the RF cavity

$$
\begin{aligned}
& (\Delta E)_{\text {turn }}=e \hat{V}_{R F} \sin \phi \\
& (\Delta p)_{\text {turn }}=\frac{e}{\omega R} \hat{V}_{R F} \sin \phi
\end{aligned}
$$

Average increase per time unit

$$
\frac{(\Delta p)_{\text {turn }}}{T_{\text {rev }}}=\frac{e}{2 \pi R} \hat{V}_{R F} \sin \phi \quad 2 \pi R \dot{p}=e \hat{V}_{R F} \sin \phi \quad \text { valid for any particle ! }
$$

$$
\Rightarrow \quad 2 \pi\left(R \dot{p}-R_{s} \dot{p}_{s}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

JUAS- Jan 2017-EMêtral Page 70

## JUAS

## Equations of motion I

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=A\left(\sin \phi-\sin \phi_{s}\right) \\
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=B \Delta p
\end{array}\right.
$$

$$
\text { with } \quad A=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}
$$


$\qquad$

$$
B=-\frac{\eta h}{p_{s}} \frac{\beta_{s} c}{R_{s}}
$$

JUAA - Jan 2017-ENêtral

$$
\text { Prage } 71
$$

JuAs

## Equations of motion II

1. First approximation - combining the two equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{B} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)-A\left(\sin \phi-\sin \phi_{s}\right)=0
$$

We assume that $A$ and $B$ change very slowly compared to the variable $\Delta \phi=\phi-\phi_{s}$
$\Rightarrow \frac{\mathrm{d}^{2} \phi}{\mathrm{~d} t^{2}}+\frac{\Omega_{s y m}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0$

$$
\begin{aligned}
& \text { with } \quad \frac{\Omega_{s m n c}^{2}}{\cos \phi_{s}}=-A B \quad \text { We can also define: } \quad \Omega_{0}^{2}=\frac{\Omega_{s y n c}^{2}}{\cos \phi_{s}}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}^{2} E_{s}} \\
& \text { MAs- Jos 2017-E Enetral }
\end{aligned}
$$


2. Second approximation
$\sin \phi=\sin \left(\phi_{s}+\Delta \phi\right)$
$=\sin \phi_{s} \cos \Delta \phi+\cos \phi_{s} \sin \Delta \phi$
$\Delta \phi$ small $\Rightarrow \quad \sin \phi \cong \sin \phi_{s}+\cos \phi_{s} \Delta \phi$
$\frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(\phi_{s}+\Delta \phi\right)=\frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}$
by definition

$$
\Rightarrow \quad \frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}+\Omega_{\text {symc }}^{2} \Delta \phi=0 \quad \text { Harmonic oscillator! }
$$

$$
\text { JUAS - Jon 2017-EMétral Page } 74
$$

## Small amplitude oscillations - orbits

For $\eta \cos \phi_{s}>0$ the motion around the synchronous particle is a stable oscillation:

$$
\left\{\begin{array}{l}
\Delta \phi=\Delta \phi_{\max } \sin \left(\Omega_{\text {symc }} t+\phi_{0}\right) \\
\Delta p=\Delta p_{\max } \cos \left(\Omega_{\text {syyc }} t+\phi_{0}\right)
\end{array}\right.
$$

with $\quad \Delta p_{\text {max }}=\frac{\Omega_{s y n c}}{B} \Delta \phi_{\text {max }}$

JUAS - Jan 2017-EMétral
Page 76

## JUAS

Synchrotron (angular) frequency and synchrotron tune (for small amplitudes)

$$
\Omega_{s y n c}=\omega_{s} \sqrt{\frac{e \hat{V}_{R F} h}{2 \pi \beta^{2} E_{s}} \eta \cos \phi_{s}} \quad \begin{aligned}
\Omega_{s y n c} & =2 \pi f_{s y n c} \\
\omega_{s} & =2 \pi f_{s}
\end{aligned}
$$

Number of synchrotron oscillations per turn

$$
Q_{s y n c}=\frac{\Omega_{\text {sync }}}{\omega_{s}}=\sqrt{\frac{e \hat{V}_{R F} h}{2 \pi \beta^{2} E_{s}} \eta \cos \phi_{s}} \quad \text { "synchrotron tune" }
$$

$$
\text { JUAS - Jon 2017-EMétral Page } 77
$$

## JUAS

Phase space separatrix and particle trajectories

- Equation of the bucket separatrix

$$
\frac{\dot{\phi}}{\Omega_{s}}= \pm \sqrt{\frac{2}{\cos \phi_{s}}\left[\cos \phi+\phi \sin \phi_{s}-\cos \left(\pi-\phi_{s}\right)-\left(\pi-\phi_{s}\right) \sin \phi_{s}\right]}
$$

- Equation of a particle trajectory

$$
\frac{\dot{\phi}}{\Omega_{s}}= \pm \sqrt{\frac{2}{\cos \phi_{s}}\left[\cos \phi+\phi \sin \phi_{s}\right]+\text { Cte }}
$$

## JUAS

Phase space separatrix and particle trajectories

- (Bucket) separatrices: Below transition
- Above transition


$$
\begin{array}{llll}
\phi_{s}=0^{\circ} & \phi_{s}=30^{\circ} & \phi_{s} \Rightarrow \pi-\phi_{s} & \phi_{s}=180^{\circ}
\end{array} \phi_{s}=150^{\circ}
$$

## JUAS

Phase space separatrix and particle trajectories

- Particle trajectories: Below transition


JUAS - Jan 2017- EMétral
Page 8 I

## JUAS

- 2 questions


JUAS - Jan 2aI7-E.Métral
29e 83

## JUAS

- Change of variables if one wants to use $(\Phi, \Delta E)$ or $(\Delta t, \Delta E)$ instead of ( $\Phi, d \Phi / d t)$

$$
\begin{aligned}
& \Delta \phi=\phi-\phi_{s} \\
= & \omega_{R F} \Delta t \\
= & h \omega_{s} \Delta t
\end{aligned} \quad \Delta p=\frac{\Delta E}{\beta_{s} c} \quad \dot{\phi}=-\frac{\eta h c}{\beta_{s} E_{s} R_{s}} \Delta E
$$

=> System of 2 equations to be solved

$$
\begin{gathered}
\frac{d}{d t}(\Delta E)=\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi}\left[\sin \left(\phi_{s}+h \omega_{s} \Delta t\right)-\sin \phi_{s}\right] \\
\frac{d}{d t}(\Delta t)=-\frac{\eta}{\beta_{s}^{2} E_{s}} \Delta E
\end{gathered}
$$

JUAS - Jan Rol7-EMétral
Page 82

## JUAS

- $\Phi_{\text {min }}$ is obtained from the equation of the separatrix when $\dot{\phi}=0$

$$
\Rightarrow \cos \phi+\phi \sin \phi_{s}-\cos \left(\pi-\phi_{s}\right)-\left(\pi-\phi_{s}\right) \sin \phi_{s}=0
$$



## JUAS

- $\Delta E_{\max }^{\text {sep }}$ is obtained from the equation of the separatrix when $\phi=\phi_{s}$
$\Delta E_{\max }^{\text {sp }}\left(\phi_{s}\right)=\sqrt{\frac{2 \beta_{s}^{2} E_{s} e \hat{V}_{R F}}{\pi h \eta}} G\left(\phi_{s}\right) \quad$ with $\quad G\left(\phi_{s}\right)=\frac{\sqrt{2 \cos \phi_{s}-\left(\pi-2 \phi_{s}\right) \sin \phi_{s}}}{\sqrt{2}}$


$\phi_{s}=0^{\circ} \phi_{s}=30^{\circ} \phi_{s}=60^{\circ} \phi_{s}=85^{\circ}$


## JUAS

- nTOF bunch in the CERN PS (near transition)



## JUAS

Tracking applied to the nTOF bunch at PS injection $\quad \phi_{s}=0 \mathrm{deg}$ $n_{\max }=758=1 / Q_{s}$


JUAS - Jan 2017-EMétral
Page 88

$$
\begin{aligned}
& \Delta E_{n+1}=\Delta E_{n}+e \hat{V}_{R F}\left[\sin \phi_{n}-\sin \phi_{s}\right] \\
& \phi_{n+1}=\phi_{n}-\frac{2 \pi h \eta}{\beta_{s}^{2} E_{s}} \Delta E_{n+1}
\end{aligned}
$$



## JUAS

Nonadiabatic theory needed "close" to transition

- Reminder: the (general, nonlinear) equations, which have to be solved, using the variables $(\Delta \Phi, \Delta E)$, are

$$
\begin{aligned}
\frac{d \Delta \phi}{d t} & =-\frac{h \eta \omega_{s}}{\beta_{s}^{2} E_{s}} \Delta E \\
\frac{d \Delta E}{d t} & =\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi}\left[\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s}\right]
\end{aligned}
$$

- Assuming here only small amplitude particles
$\frac{d \Delta E}{d t}=\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi}\left[\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s}\right] \approx \frac{e \hat{V}_{R F} \omega_{s}}{2 \pi} \cos \phi_{s} \Delta \phi$

JUA4- Jan 2017-EMétral

## JUAS

Bucket height near transition (with "adiabatic" theory)

- Case of a stationary bucket in the PS with the nTOF bunch from injection (~ 2.4 GeV total energy) till top energy ( $\sim 20 \mathrm{GeV}$ total energy) assuming a constant RF voltage ( 200 kV )



## JUAS

Nonadiabatic theory needed "close" to transition
$\Rightarrow \quad \frac{d}{d t}\left(\frac{\beta_{s}^{2} E_{s}}{h \eta \omega_{s}} \frac{d \Delta \phi}{d t}\right)-\frac{e \hat{V}_{R F} \omega_{s}}{2 \pi} \cos \phi_{s} \Delta \phi=0$
where in general $\beta_{s}, E_{s}, \eta$ and $\omega_{s}$ depend on time

- Until now we assumed that these parameters were slowly moving => Adiabatic theory
- However, close to transition the particle will not be able to catch up with the rapid modification of the bucket shape and a nonadiabatic theory is needed


## JUAS

## Nonadiabatic theory needed "close" to transition

- Neglecting the slow time variations of all the parameters except $\frac{\eta}{E_{s}}$
one has to solve

$$
\frac{d}{d t}\left(\frac{E_{s}}{\eta} \frac{d \Delta \phi}{d t}\right)-\frac{h e \hat{V}_{R F} \omega_{s}^{2} \cos \phi_{s}}{2 \pi \beta_{s}^{2}} \Delta \phi=0
$$

- Assuming then that $\gamma=\gamma_{t}+\dot{\gamma} t$, with $t=0$ at transition,

$$
\begin{gathered}
-\eta=\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}} \approx \frac{2 \dot{\gamma} t}{\gamma_{t}^{3}} \quad E_{s}=\gamma E_{0} \approx \gamma_{t} E_{0} \\
\frac{\eta}{E_{s}} \approx-\frac{2 \dot{\gamma} t}{\gamma_{t}^{4} E_{0}}
\end{gathered}
$$

## JUAS

## Nonadiabatic theory needed "close" to transition

- The (small amplitude) equation which needs to be solved close to transition is

$$
\frac{d}{d t}\left(\frac{T_{c}^{3}}{|t|} \frac{d \Delta \phi}{d t}\right)+\Delta \phi=0
$$

with $T_{c}$ a nonadiabatic time defined by (with $E_{0}$ in eV )

$$
T_{c}=\left(\frac{\beta_{s}^{2} E_{0} \gamma_{t}^{4}}{4 \pi f_{s}^{2} \dot{\gamma} h \hat{V}_{R F}\left|\cos \phi_{s}\right|}\right)^{1 / 3}
$$



JUAS- Jan Roit-EMétral
Page 94


## jJUS

## Double RF systems

- Show that the motion of the particles can be tracked turn by turn using the recurrence relation (between turn $n$ and turn $n+1$ )



## JUAS

## LESSON V

Measurement of the longitudinal bunch profile and Tomography

The pyHEADTAIL simulation code (by Benoit Salvant)

$\Rightarrow$ WALL CURRENT MONITOR $=$ Device used to measure the



| JUAS | The pyHEADTAIL simulation code |
| :--- | :--- |
| See Tutorial by Benoit Salvant |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

