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., " . Accelerator performe

m Colliders
O Luminosity (i.e. rate of particle
2 production)
Nb kb frev7 = NN, bunch population
L — R(¢) m k, number of bunches

2

f.ey the revolution frequency

y relativistic reduced energy

&, normalized emittance

B* “betatron” amplitude function at collision point
R(¢) geometric reduction factor due to crossing angle

m High intensity rings

O Average beam power
= |/ mean current intensity
m E energy
m fy repetition rate
m N number of particles/pulse

4re3*

PZI_EZ fNNeE

B = NP m X-ray (low emittance) rings
o A2¢ € 0 Brightness (photon density in phase
LY space)

m N, number of photons
m ¢ ,transverse emittances

m Non-linear effects limit performance of particle accelerators
but impact also design cost
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L =

NbQ kbfrevfy

dme3* R(¢)

B Atinjection

a

a

a
a
Q

Non-linear magnets
(sextupoles, octupoles)

Magnet imperfections and
misalignments

Power supply ripple
Ground motion (for e+/e-)
Electron (lon) cloud

B At collision

Q

Q

Non-linear magnets (sextupoles
and octupoles

Field imperfections in the
insertion quadrupoles

Magnets in experimental areas
(solenoids, dipoles)

“Incoherent” Beam-beam
effects (head on and long
range)

bl Aan~nlan Aaranst? I AlAariA AFEA A
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4re3*

At injection

Non-linear magnets
(sextupoles, octupoles)

Magnet imperfections and
misalignments

Power supply ripple
Ground motion (for e+/e-)
Electron (lon) cloud

At collision

Non-linear magnets (sextupoles
and octupoles

Field imperfections in the
Insertion quadrupoles

Magnets in experimental areas
(solenoids, dipoles)

“Incoherent” Beam-beam
effects (head on and long
range)

bl Aan~nlan Aaranst? I AlAariA AFEA A
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B Limitations affecting
(integrated) luminosity
Particle losses causing

B Reduced lifetime

B Radio-activation (super-
conducting magnet quench)

B Reduced machine availability
Emittance blow-up

Reduced number of bunches
(either due to electron cloud or
long-range beam-beam)

Increased crossing angle
Reduced intensity

B Costissues

Number of magnet correctors
and families (power
convertors)

Q Magnetic field and alignment
tolerances

a Design of the collimation
system
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P:fE:fNNeE

B Non-linear magnets
(sextupoles, octupoles)

B Magnet imperfections and
misalignments

B |njection chicane
B Magnet fringe fields
B Space-charge effect




Non-linear effects, JUAS, February 2017

P:I_E:fNNGE

B Non-linear magnets
(sextupoles, octupoles)

B Magnet imperfections and
misalignments

B [njection chicane
B Magnet fringe fields
B Space-charge effect

B Limitations affecting beam
power

Particle losses causing
B Reduced intensity

B Radio-activation (hands-on
maintenance)

B Reduced machine
availability

Emittance blow-up which
can lead to particle loss

B Cost issues

Number of magnet correctors
and families (power
convertors)

Q Magnetic field and alignment
tolerances

Q Design of the collimation
system
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‘Non-linear effects in low e

n - f. 5 :&»
L7 N M
) M=
- A e
v

B Chromaticity sextupoles

B Magnet imperfections and
misalignments

Insertion devices (wigglers,
undulators)

Injection elements
Ground motion
Magnet fringe fields

Space-charge effect (in the
vertical plane for damping
rngs)

B Electron cloud (lon) effects
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Chromaticity sextupoles

Magnet imperfections and
misalignments

Insertion devices (wigglers,
undulators)

Injection elements
Ground motion
Magnet fringe fields

Space-charge effect (in the
vertical plane for damping
rngs)

Electron cloud (lon) effects

B Limitations affecting beam
brightness
Reduced injection efficiency
Particle losses causing

B Reduced lifetime
B Reduced machine
availability
Emittance blow-up which can
lead to particle loss

B Cost issues

Number of magnet correctors
and families (power
convertors)

Q Magnetic field and alignment
tolerances

11
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B Linear and non-linear oscillators
2 Integral and frequency of motion
2 The pendulum
2 Damped harmonic oscillator

12
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“. Reminder: Harmoni

B Described by the differential equation:
d*u(t) 2

T Fwgu(t) =0

m The solution obtained by the substitution wu(t) = e

and the solutions of the characteristic polynomial are

Ay = 117w which yields the general solution

u(t) = ce™0t + c*e "0 = (O cos(wot) + Cy sin(wpt) = Asin(wot + ¢)

Non-linear effects, JUAS, February 2017
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“. Reminder: Ha
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B Described by the differential equation:

u(?) - wpu(t) =0

dt?

B The solution obtained by the substitution w(t) = et

and the solutions of the characteristic polynomial are

A+ = Z2wqp which yields the general solution

u(t) = ce™0t + c*e "0 = (O cos(wot) + Cy sin(wpt) = Asin(wot + ¢)
B The amplitude and phase depend on the initial conditions

4 (502 +edu(?) tan(g) — 0

wo wou(0)

B A negative sign in the differential equation provides a
solution described by an hyperbolic sine function

B Note also that for no restoring forcevg = 0 , the
motion is unbounded 14



" Integral of moti

2

B Rewrite the differential equation of the harmonic

oscillator as a pair of coupled 15t order equations
du(t)

— pu(t)
dt
dpy (t) ) which can be combined to provide
o = —wju(t)
dp,, > du 1d 5 2\
ftp“+w0udt g Putwou’) =0 or

~ (p2 +wgu®) = I, with I; an integral of motion
identified as the mechanical energy of the system

Non-linear effects, JUAS, February 2017
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B Rewrite the differential equation of the harmonic

oscillator as a pair of coupled 15t order equations

dl;iﬂ = DPu (t)

dpy (t) ) which can be combined to provide
o = —wju(t)

dp,, > du 1d 5 2\

g Dot eugy =5 (et wout) =0 or

1 (p; +wiu®) =1, with Iy anintegral of motion

identified as the mechanical energy of the system

B Solving the previous equation for Pu , the system
can be reduced to a unigue 15t order equation

du
= \/211 — wiu?

16



o« |ntegration by quadr
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B The last equation can be be solved as an explicit
iIntegral or “quadrature”

/dt = / du yielding t+ 1, = L arcsin ( oo >
B V211 — wiu? ’ > wo V214

: 21
or the well-known solution  u(t) = = !
0

Sin(th + wolg)

17
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B The last equation can be be solved as an explicit

Integral or “quadrature”
uwo

/dt—/ du yielding ¢+ 1, = iar(:sin( )
\/ZIl—w(Q)uQ ’ > W V21

or the well-known solution u(t) = \/jTl
B Although the previous route may seem complicated,
It becomes more natural when non-linear terms
appear, where a substitution of the type
is notwafplicabld
B The ability to integrate a differential equation is not
just a nice mathematical feature, but deeply
characterizes the dynamical behavior of the

system described by the equation

sin(wot + wQIQ)

18
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du

dt

\/2[1—(,0

2
0

u? vanishes, at Uext =

2

B The period of the harmonic oscillator is calculated
through the previous integral after integration
between two extrema, i.e. when the velocity

V214

o

19
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B The period of the harmonic oscillator is calculated
through the previous integral after integration
between two extrema, i.e. when the velocity

2

V214

du .
E = \/2]1 — w%uz vanishes, at Uext — T

B The integration yields

Ve
T—Q/ wol du o 2T
_¥2h (2 — wiu? wo

B The frequency (or the period) of linear systems is
Independent of the integral of motion (energy)

Non-linear effects, JUAS, February 2017
(9
o

20
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B The previous remark is not true for non-linear

systems, e.qg. for an oscillator with a non-linear
. d?
restoring force —— 4 k u(t)? = 0
dt? |

1
B The integral of motionis I1 = §pi + ok u

2

21
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B The previous remark is not true for non-linear

systems, e.qg. for an oscillator with a non-linear
2

restoring force dtg -k u(t)® =0
1 1
B The integral of motion is 11 = ipi + Zk u
1/4
B Solving for vanishing velocity, we get ue =+ (2—]?)

B The integration yields
(411 /k)L/4 1 1
r=2 =
(411 /)14 \/211 L

l.e. the period (frequency) depends on the integral
of motion (energy), i.e. the maximum “amplitude” =




"~ The pendulu
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B An important non-linear equation which can be
Integrated Is the one of the pendulum, for a string of
length L and gravitational constant g

d’¢ g

| sinp = 0

gz e .

B For small displacements it reduces to an harmonic

oscillator with frequency wo = \/%
B The integral of motion (scaled energy) is

1 (dp\° g ,
— =) == =L =E
2<dt> s =nh

and the quadrature is written as t =
assuming thatfor ¢t =0, ¢ =

/\/2 [1—|— COSQb)
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d¢
I + 4 cos ¢)
using the substitution cos (b =1 — 2k?sin” 0

with k= +/1/2(1 4+ 1, L/g).
B The integral then becomes

t\F/e do
9Jo V1—Kk2sin?6

M |t is solved using Jacobi elliptic functions, with the
final result:

¢(t) = 2 arcsin k SN (t\/%, k>

can be solved,

O —
The integral ¢ = /\/2

24



" Period of the pe
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B For recovering the period, the integration is
performed between the two extrema, i.e. ¢ = (
d@rdarccos(—I11L/g) , correspondifg=d)

Qaﬁdw/Z .
_4\/7/ \/1—k2 sin® 6 _4\/;K(k)

B The period is

..e. the complete elliptic integral multiplied by four
times the perloct@fm?é rné@hlc)osmueﬁcém L2y )

B By expanding(1 + IlL/g)
with , the “amplitude” 2
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B Phase space dynamics
2 Fixed point analysis

26
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B Valuable description when examining
trajectories in phase spacéu, p,,)

B Existence of integral of motion imposes
geometrical constraints on phase flow

B For the simple harmonic oscillator

1
2 2
H = 2 (pu T “o )
phase space curves are ellipses around
the equilibrium point parameterized by the
integral of motion Hamiltonian (energy)

27
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Valuable description when examining
trajectories in phase spacéu, p,,)

Existence of integral of motion imposes
geometrical constraints on phase flow

For the simple harmonic oscillator

1 2 2

H = 2 (pu T “o )
phase space curves are ellipses around
the equilibrium point parameterized by the
integral of motion Hamiltonian (energy)
By simply changing the sign of the
potential in the harmonic oscillator, the
phase trajectories become hyperbolas,
symmetric around the equilibrium point
where two straight lines cross, moving
towards and away from it
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B Conservative non-linear oscillators have Hamiltonian

1
H=E= p,+V(u)

with the potential being a general (polynomial) function of positions

B Equilibrium points are associated with extrema of the potential

29
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B Conservative non-linear oscillators have Hamiltonian
1
2
H=E= p,+V(u)

with the potential being a general (polynomial) function of positions

B Equilibrium points are associated with extrema of the potential

B Considering three non-linear oscillators
2 Quartic potential (left): two minima and one maximum
1 Cubic potential (center): one minimum and one maximum
2 Pendulum (right): periodic minima and maxima 30
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Fixed point analysi
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du

. E — fl(u7PU)
B Consider a general second order system .
Pu
At = fo(u,pu)

B Equilibrium or “fixed” points  f1(%0;Puo) = f2(uo,pu0) =0 are
determinant for topology of trajectories at their vicinity

2

31



Fixed point & E@
d_u = f (uaPU)
B Consider a general second order system dgt :
d—tu — fz(U,pu)

B Equilibrium or “fixed” points  f1(uo, puo) = f2(uo,pu0) =0 are
determinant for topology of trajectories at their vicinity

B The linearized equations of motion at their vicinity are
O0f1(vo,puo)  Of1(uo,Puo)]

d | du M ou | ou Oy, du
T opu| | 9f2(uo, puo)  Of2(uo, Puo) | | 0D
L 8u apu -

\ J
I

Jacobian matrix
B Fixed point nature is revealed by eigenvalues ofM; | i.e.
solutions of the characteristic polynomial det | M ; — AI| =0

o
~~
o
!
Q
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.~ Fixed point for conserve

2

B For conservative systems of 1 degree of freedom, the
second order characteristic polynomial for any fixed point has
two possible solutions:

2 Two complex eigenvalues with opposite sign, corresponding to
elliptic fixed points. Phase space flow is described by ellipses, with
particles evolving clockwise or anti-clockwise

elliptic

Non-linear effects, JUAS, February 2017
I\J_ / \\
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. " Fixed point for conse

=

B For conservative systems of 1 degree of freedom, the second
order characteristic polynomial for any fixed point has two
possible solutions:

Two complex eigenvalues with opposite sign, corresponding to
elliptic fixed points. Phase space flow is described by ellipses, with
particles evolving clockwise or anti-clockwise

Two real eigenvalues with opposite sign, corresponding to
hyperbolic (or saddle) fixed points. Flow described by two lines (or
manlfolds) mcomlng (stable) and o_utgomg (unstable)

2: elllptlc \\perjbO“C///

Non-linear effects, JUAS, February 2017
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"= "Pendulum fixed point
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N e “fixed” points for a pendulum can be found a
(¢napq5) — (——nﬂ', O) ., n=0,1,2...

B The Jacobian matrix is[ g 0 1]
—7cosg, 0

B The eigenvalues are ), , = ii\/% COS ¢,

t




e “Pendulum fixed PO

Non-linear effects, JUAS, February 2017

] he “fixed” points for a pendulum can be found at
(¢n7p¢) T (——nTrj O) ’ N — O, ].7 2 o o o

B The Jacobian matrix is[ g 0 1]
—7cosg, 0

B The eigenvalues are ), , = ﬂ\/ﬁ COS ¢,
R ~elliptic

B Two cases can be distinguished: |

0 ¢n = 2nm | for whichA1,2 = £ %

corresponding to elliptic fixed points




:’:\\??Pe ndulum fixec ‘

2

O e “fixed” points for a pendulum can be found at

(¢napq§) — (__mr,()) ,n=0,1,2...

B The Jacobian matrix Is [ 0 1]

—Zdcos¢p, 0

B The eigenvalues are ), , = ii\/ﬁ COS ¢,
L _elliptic

B Two cases can be distinguished: D,, |
| N7 / :
On = 2nm |, for whichA1,2 = T _/ \

g
L
corresponding to elliptic fixed points

¢n = (2n+ 1)7 , for which A1 2 = £ %

corresponding to hyperbolic fixed points

The separatrix are the stable and unstable | %erb\ﬁh/
manifolds through the hyperbolic points, = + = & + =+
separating bounded librations and unbounded rotations 37
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B Non-autonomous systems
2 Driven (damped) harmonic oscillator, resonance conditions

38
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B Time now is not an independent variable but can be
considered as an extra dimension leading to a completely
new type of behavior

2

B Consider a linear system with explicit dependence in time
d*u 5

39
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B Time now is not an independent variable but can be
considered as an extra dimension leading to a completely
new type of behavior

B Consider two independent solutions of the homogeneous
equation u1(t) and usx(t)

B The general solution is a sum of the homogeneous
solutions ux(t) = crui(t) + couz(t) and a particular
solution, u,(t) = csui(t) + cqua(t) , where the coefficients

are computed as
w()F() JE w(tF()

C3 —

Non-linear effects, JUAS, February 2017

| . W) W (t)
with the Wronskian of thde system ;
t
W(t) = (5 22 () 2210 ;



o P

- s A= -

s
R
u\g\-\-\

2

. Driven harmonic oscil

B Consider periodic force pumping energy into the system

d?u(t) 5 F

+ wiu(t) = — cos(wt
o T whu(t) = — cos(wt)

B General solution is a combination of the homogeneous
and a particular solution found as r

u(t) = ug sin(wot + ¢o) +

(@l — ) cos(wt)

Non-linear effects, JUAS, February 2017

41



S
By %

." - Driven harmonic o

2

B Consider periodic force pumping energy into the system

d?u(t) 5 F

+ wiu(t) = — cos(wt
o T whu(t) = — cos(wt)

B General solution is a combination of the homogeneous
and a particular solution found as

u(t) = uo sin(wot + ¢o) + m(w2 — w?)
0

B Obviously a resonance condition appears when driving
frequency hits the oscillator eigen-frequency.

cos(wt)

Non-linear effects, JUAS, February 2017
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.~ Driven harmoni

B Consider periodic force pumping energy into the system
d*u(t) 2

F
T + wiu(t) = — cos(wt)

B General solution is a combination of the homogeneous
and a particular solution found as
w(t) = ug sin(wot
B Obviously a resonance condition appears when driving
frequency hits the oscillator eigen-frequency.

B Inthe limitof W — Wqg the solution becomes

A F
w(t) = ug sin(wot + @) t sin(wot
(1 (wot + G0) + 5 —tsin(wot)
B The 2"d secular term implies unbounded growth of
amplitude at resonance

cos(wt)

Non-linear effects, JUAS, February 2017
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~."" Phase space for time- depend

ConS|der now a simple harmonic oscillator
where the frequency is time-dependent

H=—- (pi + w%(t)uZ)

B Plotting the evolution in phase space, provides
trajectories that intersect each other

B The phase space has time as extra dimension

Non-linear effects, JUAS, February 2017
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B Consider now a simple harmonic oscillator
where the frequency is time-dependent

1

H = 5 (pi -+ w%(t)u2)

B Plotting the evolution in phase space, provides

trajectories that intersect each other

B The phase space has time as extra dimension
B By rescaling the time to becoma = wqgt and

considering every integer interval of the new pu
“time” variable, the phase space looks like the
one of the harmonic oscillator

B This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

45
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B Consider now a simple harmonic oscillator
where the frequency is time-dependent

1
H = 5 (pi -+ wg(t)u2)

B Plotting the evolution in phase space, provides
trajectories that intersect each other

B The phase space has time as extra dimension

B By rescaling the time to becoma = wqgt and
considering every integer interval of the new
“time” variable, the phase space looks like the
one of the harmonic oscillator

B This is the simplest version of a Poincaré
surface of section, which is useful for studying
geometrically phase space of multi-dimensional
systems

B The fixed point in the surface of section is now
a periodic orbit

|5 0

Pu
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B Linear equations with periodic coefficients — Hill's equations
2 Floquet solutions and normalized coordinates

47
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m Avery important class of equations especially
for beam dynamics (but also solid state physics)
are linear equations with periodic coefficient

d*u
T3 F K(t)u =0

with K (t) = K (¢ apgnodic function of time

George Hill

48
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m Avery important class of equations especially
for beam dynamics (but also solid state physics)
are linear equations with periodic coefficient

d*u
T3 F K(t)u =0

with K (t) = K (¢ apgnodic function of time

George Hill

m These are called Hill’ s equations and can be thought as
equations of harmonic oscillator with time dependent
(periodic) frequency

B There are two solutions that can be written as u(t) = % {w(t)e™® |

with w(t) = w(t pékipdic but also Y (t+T) ) —gpio
constant which implies that %(t +T) :is‘%eﬂ)iodic

B The solutions are derived based on Floquet theory

49
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2
_ (Y K _
e w( dt) + K(t)w 0
dwdp — d2y
ik hadlh
a ar Y 0

B The 2" one can be integrated to giv v _ 1 , 1.e. the

dt  w?
relation between the “phase” and the amplitude

2

B Differentiating the solutions twice and substituting to Hill’s

equation, the following two equations are obtained
d?w di

50
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2
_ (Y K _
T w( dt) + K (t)w 0
dwdp — d2
0V hadlh
g at TV 0

B The 2" one can be integrated to giv v _ 1 , 1.e. the

dt  w?
relation between the “phase” and the amplitude

B Substituting this to the 15t equation, the amplitude equation is
derived (or the beta function in accelerator jargon)
w + K(t)w — S 0
dt? w3
B By evaluating the quadratic sum of the solution and its
derivative an invariant l:an be constructTd, with the form

d 2 du  dw \°
I(u,d—?,t): u—+(w—u——wu>

w? dt dt

2

B Differentiating the solutions twice and substituting to Hill’s

equation, the following two equations are obtained
d?w d
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B Recall the Floguet solutions u(s) = v/€8(s) cos(¥(s) + to)

for betatron motion W (8) = | —— (sin(¥(s) + o) + a(s) cos(¥(s) + o))

. B(s)
B Introduce new variables

_u L, _dd o oY1
U= 75 U=g5="Jut Vi, o=7 u/ms)

B In matrix form (U,> _ (ﬁ 0 ) <u,)

52



2

" Normalized ¢

B Recall the Floguet solutions u(s) = v/€8(s) cos(¥(s) + to)

for betatron motion u'(s) =— ¢ (sin(¥(s) + o) + a(s) cos(¥(s) + o))

_ B(s)
B Introduce new variables

LU a Y L[ ds
U= —, U = —\/Bu—l—\/gu,gb—y—y/

VB d¢ B(s)
B In matrix form <U> B <ﬁ 0 ) <U>
Z/[, T \/&B \/B u/

B Hill' s equation becomes L (dQZ/{ 02U =0
= 12 33/2 % d 2
§' System becomes harmonic oscillator with frequency
¢ (U cos(vg 2 2
2‘ (M’) = Ve <— Singy¢;> U=+, o tu
E- Floquet transformation transforms /7 >\/\
; phase space in circles &/ U | ¥

53
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2

5"~ Perturbation o

B Hill' s equations in normalized coordinates with harmonic
perturbation, using U = U, or U, and ¢ = ¢, or @,

d*U
Jgp TVU = VEBEE Us(90) Uy (0y))
where the F is the Lorentz force from perturbing fields

Linear magnet imperfections: deviation from the design dipole
and quadrupole fields due to powering and alignment errors

Time varying fields: feedback systems (damper) and wake fields
due to collective effects (wall currents)

Non-linear magnets: sextupole magnets for chromaticity correction
and octupole magnets for Landau damping

Beam-beam interactions: strongly non-linear field
Space charge effects: very important for high intensity beams

non-linear magnetic field imperfections: particularly difficult to
control for super conducting magnets where the field quality is
entirely determined by the coil winding accuracy

Non-linear effects, JUAS, February 2017

54



Non-linear effects, JUAS, February 2017

B From Gauss law of magnetostatics, a vector potential exist

V-B=0 — dJA: B=VXxA
B Assuming transverse 2D field, vector potential has only one
component A.. The Ampere’ s law in vacuum (inside the
beampipe) VxB=0 — JV: B=-VV
B Using the previous equations, the relations between field
components and potentials are
3 oV 0A, oV 0A,

TOr C ay . YT T ay T on

2
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B From Gauss law of magnetostatics, a vector potential exist

V-B=0 — JA: B=V XA
B Assuming transverse 2D field, vector potential has only one
component A.. The Ampere’ s law in vacuum (inside the

beampipe) VxB=0 — JV: B=-VV
B Using the previous equations, the relations between field
components and potentials are

B, — _6_V _ 0A, B, - ov. aAS
Ox oy Oy 83:
l.e. Riemann conditions of analytic functions

Exists complex potential of =  + 1Y with / re ‘

power series expansion convergent in a X

circle with radius 7. (dlstance from |ron

Az +iy) = As(z,y) + iV (x,y) = Z/ﬁ;nz = n)(x + 1y)"
n— 1




" Multipole expansion

Non-linear effects, JUAS, February 2017

B From the complex potential we can derive the fields

0
B, +iB, = — ax(A (x,y) + iV (z,y)) Zn n+ ipn)(x + iy)
B Setting b, = —n\,, a,=nu,
00
: : : 1
by +15, = Z(bn — ian ) (z +iy)"
n=1

57
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B From the complex potential we can derive the fields

. 0 .
B, +iB; = — (%(A (x,y) +1V(z,y)) Zn n+ ipn)(x + iy)
B Setting b, = —n\,, a,=nu,
O
: : : 1
B, +iB, = E (bp, — tan)(x +1y)"
n=1
B Define normalized multipole coefficients
b a
b/ n n 1 / — n n—1
n T 10748, © T 10-4B, O

on a reference radius r,, 10 of the main field to get
O .
. 4 A
B, +iB; =107 "By E (b,, — 2a,, )(
ro
n=1
B Note:n' = n — 1is the US convention

)n

58
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B Perturbation theory
2 Non-linear oscillator
2 Perturbation by periodic function — single dipole perturbation
2 Application to single multipole — resonance conditions
0 Examples: single quadrupole, sextupole, octupole perturbation
- General multi-pole perturbation— example: linear coupling
Resonance conditions and working point choice

Non-linear effects, JUAS, February 2017
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~_ Perturbation the
O Completely Integrable systems are exceptional

B For understanding dynamics of general non-linear
systems composed of a part whose solution %o(t) is
known and a part parameterized by a small constant €
, perturbation theory is employed

2

Non-linear effects, JUAS, February 2017
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B Completely integrable systems are exceptional

B For understanding dynamics of general non-linear

systems composed of a part whose solution “o(?) is

known and a part parameterized by a small constant €

, perturbation theory is employed

B The general idea is to expand the solution in a

oower series u(t) = ug(t) + euy (t) + “usz(t) + .. .

and compute recursively the corrections1(t), us(t), . ..
hoping that a few terms will be sufficient to find

an accurate representation of the general solution
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B Completely integrable systems are exceptional

B For understanding dynamics of general non-linear

systems composed of a part whose solution “o(?) is

known and a part parameterized by a small constant €

, perturbation theory is employed

B The general idea is to expand the solution in a

oower series u(t) = ug(t) + euy (t) + “usz(t) + .. .

and compute recursively the corrections1(t), us(t), . ..
hoping that a few terms will be sufficient to find

an accurate representation of the general solution

B This may not be true for all times, I.e. facing series

convergence problems

B |n addition, any series expansion breaks in the

vicinity of a resonance 02




.~ Perturbation of non-line

2

Non-linear effects, JUAS, February 2017

d?u 1

B Consider a non-linear harmonic oscillator, —= + wiu, — gewgu?’ =0

B This is just the pendulum expanded to 3" order i

B Note that € Is a dimensionless measure of smallness, which
may represent a scaling factor ofu (e.g.e = 1 without loss of
generality)
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= =

B Consider a non-linear harmonic oscillator, —= + wiu, — 66w8u3 =0

B This is just the pendulum expanded to 3" order i

B Note that € Is a dimensionless measure of smallness, which
may represent a scaling factor ofu (e.g.e = 1 without loss of
generality)

B Expanding u(t) = ug(t) + euq (t) + 2us(t) + ... and separating
the equations with equal power in €

d2
O Order O: dt?;O + wiuo = 0 = ug(t) = Acos(wopt)
J2 2.3 2 43 2 43
O Order 1. dtflil + wiuy = wOGUO = w06 cos” (wot) = w%4 (cos(3wot) + 3 cos(wot))
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.." - Perturbation of

B Consider a non-linear harmonic oscillator, —= + wiu — éewgui* =0

2

d*u 1

B This is just the pendulum expanded to 3" order i

B Note that € Is a dimensionless measure of smallness, which
may represent a scaling factor ofu (e.g.e = 1 without loss of
generality)

B Expanding u(t) = ug(t) + euq (t) + e“ua(t) + ... and separating
the equations with equal power in €

2

Q Order 0: 4%
dt?

d?uq wiud Wi A3 W

72 + wiuy = 06 0 — 06 cos” (wot) = 34

B The 2" equation has a particular solution with two terms. A

A 3 o
well behaved one u,,(t) = — <55 Cos(3wt) and () = %@amg(mm + 2 cos(wot)

the first part of which grows linearly with time (secular term)
B But this cannot be true, the pendulum does not present
such behavior. What did it go wrong? 65

+wiug =0 = ug(t) = A cos(wpt)

2A3

O Order 1:

(cos(3wot) + 3 cos(wot))

Non-linear effects, JUAS, February 2017
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" Perturbation of non-line

B [t was already shown that the pendulum has an
amplitude dependent frequency, so the frequency has
to be developed as well (Poincare-Linstead method):

w:wg—l—ew1—|—62w2+...

Non-linear effects, JUAS, February 2017
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"+, Perturbation of nc
B [t was already shown that the pendulum has an

amplitude dependent frequency, so the frequency has
to be developed as well (Poincare-Linstead method):

w:wo—l—ewl—l—62w2+...

B Assume that the solution Is a periodic function of 7 = wt
which becomes the new independent variable. The
equation at zero order gives the solution uo(7) = A cos(7)
and at leading perturbation order becomes

d2u1 d2UO Wwo 3 WOA3
5 T Uy =
dr 6 24

2

A3
cos(37) + (wOS + 2Aw1> cos(T)

Non-linear effects, JUAS, February 2017
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B [t was already shown that the pendulum has an
amplitude dependent frequency, so the frequency has
to be developed as well (Pomcare Linstead method):

w—wo—l—ewl—l—e Wo + .

B Assume that the solution is a periodic function of 7= wt
which becomes the new independent variable. The
equation at zero order gives the solution uo(7) = A cos(7)
and at leading perturbation order becomes

d2u1 CZQUO wo CU()A3 woA3
T T + c up = o cos(37)+( 2 +2Aw1> cos(T)

B The last term has to be zero, if not it gives secular
2
terms, thus Al‘go which reveals the reduction of

the frequency with the oscillation amplitude

B Finally, the solution wui(t) = 199 (cos(wot) — cos(3wot)) IS

the leading order correction due to the non-linear term e



“_Perturbation by period

Non-linear effects, JUAS, February 2017

B |[n beam dynamics, perturbing fields are periodic functions
B The problem to solve is a generalization of the driven

harmonic oscillator, d”u
T wult) = gl

with a general periodic function ¢(¢), with frequency

m=—oo

2

m The right side can be Fourier analyzed:g(t) = ) ane™"

m=—0oo
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B [n beam dynamics, perturbing fields are periodic functions

B The problem to solve ig a generalization of the driven
harmonic oscillator, d“u o ()

with a general periodic function ¢(t), with frequency
m=-+4oo
B The right side can be Fourier analyzed:g(t Z a,,e'met

mMm=—0o0

B The homogeneous solution isux () = u(t) sin(wot + ¢o)
B The particular solution can be found by considering thatu ()

m=-+oo
has the same form asg(t) () = D upme™"

m=—0oo

B By substituting the following relation is derived for the

Fourier coefficients of the particular solution upm = 2 3,
2 _

B There is aresonance co2nditic%n2for Infinite number of
frequencies satisfying wg = m"w 70

Am,




= Perturbation by sin

NV
e I

B Hill' s equations in normalized coordinates with
single dipole perturbation:
d“U —
dgz T U =187 (9) = bi(9)
B The dipole perturbation is periodic, so it can be
expanded in a Fourier series

O

bi(¢) = > bipme™

m=—-0oo

2

Non-linear effects, JUAS, February 2017
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B Hill' s equations in normalized coordinates with
single dipole perturbation:

d“U _

dgz T U =187 (9) = bi(9)
B The dipole perturbation is periodic, so it can be
expanded in a Fourier series

O

Z mezmqb

B Note, as before that a boeoriodic Kick introduces
Infinite number of integer driving frequencies

B The resonance condition occurs whenll/g = TI
l.e. Integer tunes should be avoided (remember
orbit distortion due to single dipole kick)
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*_ " Perturbation by single m

O r a generalized multi-pole perturbation, Hill's equation is:

=l

d*U 2
—— tv
d¢?
B As before, the multlpole coefficient — > — i
can be expanded in Fourier series n(9) = Z nm€

m=—0oo

= 1582 b (U = ba(P)U" T

Non-linear effects, JUAS, February 2017
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- Perturbation by sin .l

~

=l

B Fora generallzed multi-pole perturbatlon Hill's equation is:

d? + U = v 82 by (o)U = b, (p)U
B As before, the multlpole coefficient — > — im
can be expanded in Fourier series n(P) = Z nm€

m=—oo

B Following the perturbation steps, the zero-order solution is
given by the homogeneous equation Uy, = W;e™°? + W_ e~ 09
B Then the position can be expressed as

n—1

1 |

Z/{(?)’L—l _ Z (n . >W{1—1—kwﬁlez(n—1—2k)l/o¢
k=0

Non-linear effects, JUAS, February 2017
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O or a generalized multi-pole perturbation, Hill's equation is:

dzu 2 2n05+1 n—1 __ 7 n—1
W+VOUZVOBQ bn(gb)u —bn(¢)u
B As before, the multipole coefficient _— =~ & —
can be expanded in Fourier series b () = Z bnm €

m=—oo

B Following the perturbation steps, the zero-order solution Is
given by the homogeneous equation Uy, = W;e™°? + W_ e~ 09
B Then the position can be expressed as

T{Vq g=-n+1,—n+3,....n—1
n—1[ N — 1 \ ‘—l—\ n—1 o
Z/{(’S’L—l — Z ( k >W{l—1—kwflez(n—1—2k)l/o¢ — Z ququ/oqb
k=0 g=—n+1

with W, 2=W, 4=W, = =W_,42=0
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O or a generalized multi-pole perturbation, Hill's equation is:

d2Z/{ 2 202 +1 n—1 _ 1 n—1

dng _|_ VOZ/{ p— ]/0/62 bn(¢)u — bn(¢)Z/{
B As before, the multipole coefficient _— = & —
can be expanded in Fourier series bn(¢) = m;oo brme

B Following the perturbation steps, the zero-order solution is
given by the homogeneous equation Uy, = W;e™°? + W_ e~ 09
B Then the position can be expressed as

qu q=-—n+1,—n+3,...,n—1
n—1[ N — 1 \ ‘—l—\ n—1 o
Z/{(’S’L—l — Z ( k )W{l—l—kwflez(n—l—Zk)l/oqﬁ — Z ququ/oqb
k=0 qg=—n+1
with W, o=W, 4,=W, ¢=-=W_,42=0

B The first order solution Is wrltten as

d2
d;{; + Vgul — b ( Un = Z Z an ez(m—l—qug)¢
qg=—n+1m=—oc




S

"~ . Resonances for single I@
B Following the discussion on the periodic perturbation, the
solution can be found by setting the leading order solution

to be periodic with the same frequency as the right hand

side s — nz—:l mfo Uy e (0208

Non-linear effects, JUAS, February 2017
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~. " Resonances for sing

2

B Following the discussion on the periodic perturbation, the
solution can be found by setting the leading order solution
to be periodic with the same frequency as the right hand
side n—l

" Z mfo ulmqei(m—l—qvo)qb

B Equating terms of equal exponential powers, the Fourier
amplitudes are found to satigfy tﬁﬁ relationship
nm q

U g =
T2 (m A+ qu)

2

Non-linear effects, JUAS, February 2017
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B Following the discussion on the periodic perturbation, the
solution can be found by setting the leading order solution
to be periodic with the same frequency as the right hand

side s — nz—:l mioo Uy e (0208

qg=—n+1m=—o0

B Equating terms of equal exponential powers, the Fourier
amplitudes are found to satigfy tﬁﬁ relationship
nm q

U g =
T2 (m A+ qu)

2

| | - m*E|qlve = v

B This prowqﬁs the resonance condition
Vg —
or 1+ ]q ’ which means that there are resonant

framiinnAQinc fAr AnAd fimfirnmita’? mismbhhar Af ratinnale
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~." Tune-shift for single

2
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B Note that for even multi-polesand ¢ =1 or m =0 , there
is a Fourier coefficient b,,o , which is independent of gb and
represents the average value of the periodic perturbation

B The perturbing term in the r.n.s. Is

n —
n_1
which can be obtained for k = — — 1 (it Is indeed an integer
only for even multi-poles)

En()WleiVO(b _ 252+1bn0( >WTL 1W2 ’Ll/()(]5
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~. " Tune-shift for s

2

B Note that for even multi-polesand ¢ =1 or m =0 , there
is a Fourier coefficient b,,o , which is independent of gb and
represents the average value of the periodic perturbation

B The perturbing term in the r.n.s. Is

n —

5 — 1
which can be obtained for k = — — 1 (it Is iIndeed an integer
only for even multi-poles)

B Following the approach of the perturbed non-linear
harmonic oscillator, this term will be secular unless a
perturbation in the frequency is considered, thereby resulting
to a tune-shift equal to

1/05%_'_1[?”0 (TL — 1
oV = —
2 n_q

B This tune-shift is amplitude dependent for n > 2 81

Enowleiugqﬁ _ 263—|—1bn0( >WTL 1W2 ’Ll/o(]5

)W” 2 with 72 — WiW_,

Non-linear effects, JUAS, February 2017




' “Example: single quadrupole pe
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dQU 2 212 7

02 + vl = v5B8°ba(P)U = ba()U
B The quadrupole perturbation can be expanded in a Fourier
series Ba(6) = Z b e

2

B Consider single quadrupole kick in one normalized plane:

82



2

O onsider single quadrupole kick in one normalized plane:

o Jxamp|e single quadru

dQZ/[ 2 2102 7

02 + vl = vy 8°b2(P)U = ba()U
B The quadrupole perturbatlon can be expanded In a Fourier

ries
Sere 2 — Z b2me
B Following the perturbatlgﬁ éoﬁ)proach the 15t order equation
d ul z m 1) _
becomes d¢2 y‘ y‘ W baymet (mtavo)® with W, = 0
g=—1m=—o0

B For g = —1, the resonance conditions are*m — vy =1y =V = %

l.e. integer and half-integer tunes should be avoided

Non-linear effects, JUAS, February 2017
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', Example: single qué

O onsider single quadrupole kick in one normalized plane:

2

eu _

02 + vgU = 1§ B7ba(d)U = ba(p)U
B The quadrupole perturbatlon can be expanded In a Fourier
series ba(6) = Z ——

B Following the perturbatlon approach the 15t order equation

d*U
becomes Ty = 37 3T W e with 17, o
g=—1m=—o0

B For ¢ = —1, the resonance conditions are*m — vy = vy — Uy =

NME

l.e. integer and half-integer tunes should be avoided

B Forqg =1, the conditonm +1vyg =v9g — m =20
corresponds to a non-vanishing average value b2 , which can

be absorbed in the left-hand side providing a tune-shift:

= b vo3%b
1/2:V8—b200r 5V%—2£:— 052 20
140 84

Non-linear effects, JUAS, February 2017




2

" Single Sextupole
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B Consider a localized sextupole perturbation in the horizontal
plane

d? _
s + U = B8R (O = B

B After replacing the perturbation by its Fourier transform and
Inserting the unperturbed solution to the right hand side
2 o0

d2Z/{1 2 7 . t(m4qro prp—— pp——
do? + vl = Z Z qu3me( 7o) with W_{ =W, =0

g=—2m=—0o0
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" Single Sextupole
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B Consider a localized sextupole perturbation in the horizontal
plane

d? _
s+ U = BB O = B0

B After replacing the perturbation by its Fourier transform and
Inserting the unperturbed solution to the right hand side
2 o0

d*U,; 9 W b  otlmtqro 117 W
do? + vl = Z Z qu?»me( tavo)? with W_; =W; =0
=—2m=—0o0
! 3 integer —» 3y = m for ¢ = —2
B Resonance conditions: jnteger —» vg = m for ¢g = 0,2
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" Single Sextuf

B Consider a localized sextupole perturbation in the horizontal
plane

2

d? _
T+ U = B8RO = B

B After replacing the perturbation by its Fourier transform and
Inserting the unperturbed solution to the right hand side
2 o0

d2u]_ 2 117 .. t(m—+qrg Ir7 1A
Tor Trii= D0 3 Wibsme T iy T T, =0
=—2m=—0o0
! 3 integer — 319 = m for ¢ = —2
B Resonance conditions: jnteger —» vg = m for ¢g = 0,2

B Note that there is not a tune-spread associated. This is
only true for small perturbations (first order perturbation
treatment)

B Although perturbation treatment can provide approximations
for evolution of motion, there is no exact solution

Non-linear effects, JUAS, February 2017

87



S
= Ak

2

. . General multi-pole

B Equations of motion including any multi-pole error term, in
both planes

U,

n—1ymr—1
d¢2 | VOmux — bn,r(¢x)ux Z/{y
] Expandingperturbation coefficient in Fourier series and
Inserting the solution of the unperturbed system on the rhs

gives the followmg series: Ut ey — Z W, el

x

bn,r.mezmgbm qx:_n+1
Z r—1
M=o Uy m U = ) W efrou®e

Y

qy=——7+1

Non-linear effects, JUAS, February 2017
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" General multi-

B Equations of motion including any multi-pole error term, in
both planes

U,

2

n—1q/r—1
d¢2 | I/Oxux — bn/’“(¢$)ux Z/{y
] Expandinénperturbation coefficient in Fourier series and
Inserting the solution of the unperturbed system on the rhs

gives the foIIowmg series: Ut ey — Z W, el

T

Z bnrmeimgbac Q:c—_n‘|‘1
mM=—00 Z/{?" 1 u?“ I _ Z qu €ZQy Yoy Pa
B The equation of motion becomes gy=—7r+1

d2uU |
dgbzx + Vgazufc — E bnrmW(fx Wgy et Mtz oz +4qyvoy ) o
v m,qz,qdy

B In principle, same perturbation steps can be followed for
getting an approximate solution in both planes

Non-linear effects, JUAS, February 2017
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‘Example: Linear Cc

Non-linear effects, JUAS, February 2017

B For a localized skew quadrupole we have

U,

d¢2 | V()xuw — @(¢$)Z/{y

B Expanding perturbation coefficient in Fourier series and
Inserting the solution of the unperturbed system gives the
following equation:

=1
dQZ/{g; 2 = qy t(m=+qy,voy )P
gz TVt = D D bam W g

M=—00 qy=—
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" Example: Linear
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B For a localized skew quadrupole we have

U,

de2 Vol = 1 2(d2)Uy

B Expanding perturbation coefficient in Fourier series and
Inserting the solution of the unperturbed system gives the
following equation:

=1
U, | = % (v
T . t(m 0y )Pz
ig2 Vialle = D D Duam W el TI0 Wy =0

M=—00 qy=—

B The coupling resonance are found for ¢, = +1
Linear sum resonance Linear difference resonance

M = Vg V0 =Tz — Doy
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B The general resonance conditions ism + q;Voz + qyVoy = Vou

or Im + qyVos + qyVoy = 0, with order [g.| + |g,| + 1
B The same condition can be obtained in the vertical plane
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" General resona

B The general resonance conditions iSm + g, Yoz + qyVoy = Voz

2

or fm + q. Voz + qyloy = 0|, With order |g.| + [g,] + 1

B The same condition can be obtained in the vertical plane
B For all the polynomial field terms of a 2n pole, the main
excited resonances satisfy the condltlonqx +qy =N  but
there are also sub-resonances for whighgq, < n

B For normal (erect) multi-poles, the main resonances are
(¢, qy) = (n,0), (n—2,42),... whereas for skew multi-poles

(¢h,q,) = (n—1,£1), (n—3,£3),...

Non-linear effects, JUAS, February 2017
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" General resc

B The general resonance conditions iSm + g, Yoz + qyVoy = Voz

or Im + qyVos + qyVoy = 0, with order [g.| + |g,| + 1

B The same condition can be obtained in the vertical plane
B For all the polynomial field terms of a 2n pole, the main
excited resonances satisfy the condltlonqx +qy =N  but
there are also sub-resonances for whighg, < n

B For normal (erect) multi-poles, the main resonances are

(¢, qy) = (n,0), (n—2,%+2),... whereas for skew multl poles
(¢hrqy) = (n—1,£1), (n— 3,£3), AR
W |f perturbation is large, all resonancess | L

can be potentially excited os RN AR
B The resonance conditions form o
lines in frequency space and fill itup as ;
the order grows (the rational numbers S
form a dense set inside the real AR
numbers), but Fourier amplitudes should 0 o o

Non-linear effects, JUAS, February 2017




" Systematic and rand

S0
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B If lattice Is made out of N identical cells, and the
perturbation follows the same periodicity, resulting in
a reduction of the resonance conditions to the ones
satisfying  qxlox + qyloy = JIN

B These are called

systematic resonances
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" Systematic and
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B [f [attice is made out of N identical cells, and the
perturbation follows the same periodicity, resulting in
a reduction of the resonance conditions to the ones

satisfying  qzVoz + qyloy = JIN

B These are called

6.45

systematic resonance |

B Practically, any (linear) *r;
lattice perturbation breaks , | |, -0 8
super-periodicity and any £ | - U NN Y
random resonance canbe Eus & S o7
excited Ce S e
mCareful choice of the il e T
working point is necessary i N

Horizontal Tune



_ " Contents of the 15t lect
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B Summary
B Appendix: Damped harmonic oscillator
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w . Summary

B Accelerator performance depends heavily on the
understanding and control of non-linear effects

B The ablility to integrate differential equations has a
deep impact to the dynamics of the system

B Phase space Is the natural space to study this
dynamics

B Perturbation theory helps integrate iteratively
differential equations and reveals appearance of
resonances

B Periodic perturbations drive infinite number of
resonances

B There is an amplitude dependent tune-shift at 1t
order for even multi-poles

B Periodicity of the lattice very important for reducing
number of lines excited at first order

Non-linear effects, JUAS, February 2017
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B Damped harmonic oscillator:
d*u(t)  wo du(t) )
| | t) =20
w2z to e Twould)

| .
Q= 5 IS the ratio between the stored and lost energy

per cycle Wi{ﬁ the damping ratio

e : :\\\i.%,:7 D am ped h almyc

2

wo Is the eigen-frequency of the harmonic oscillator
B General solution can be found by the same ansatz

: u(t) = e

s leading to an auxiliary 2" order equation

; A2 A wo)\ | w% — ( with solutions
Ai—?“’”(—li¢1—4@2>——w0c<—1i\/1—1)
- 20) (27 %



-~ Damped harmc

2
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B Three cases can be distinguished

Overdampiny ( realdi.es 1 Qer 1/2 ): The
system exponentially decays to equilibrium (slower for
larger damping ratio values)

Critical damping (¢ = 1): The system returns to equilibrium
as quickly as possible without oscillating.

Underdamping ( complex(i€. 1 Q > oy2 ):
The system oscillates with the amplitude gradually
decreasmg to zero, with a sllghtly different frequengy/than?

1.0

B Note that there is no
iIntegral of motion, Iin
that case, as the
energy IS not
conserved (dissipative
system) 100
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B Consider periodic force pumping energy into the system

d*u(t)  wo du(t) 5 F
oo T 0 dl + wiu(t) = Ecos(wt)

B The solution of the homogeneous system is
up (t) = uo(t)e 0% sin(wy \/1 — (2t + ¢o)

2
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B Consider periodic force pumping energy into the system

d*u(t)  wo du(t) 5 F
o + 0 di +w0u(t)—acos(wt)

B The solution of the homogeneous system is

up (t) = uo(t)e 0% sin(wy \/1 — (2t + ¢o)
B The particular solution is
F cos(wt + ¢
up(t) = ( 0)

muwdy /(1 - )% + 4624
B The homogeneous solution vanishes for— o<, leaving

only the particular one, for which there is an amplitude
maximum for wg = w but no divergence

B |n that case, the energy pumped into the system
compensates the friction, and a steady state is reached
representing a limit cycle

2

102



