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 Colliders

 Luminosity (i.e. rate of particle 
production)

 Νb bunch population

 kb number of bunches

 frev the revolution frequency

 γ relativistic reduced energy

 εn normalized emittance

 β* “betatron” amplitude function at collision point

 R(φ) geometric reduction factor due to crossing angle 

 High intensity rings

 Average beam power
 mean current intensity

 Ε energy

 fN repetition rate

 Ν number of particles/pulse

 X-ray (low emittance) rings

 Brightness (photon density in phase 
space)

 Νp number of photons 

 εx,,y transverse emittances

Accelerator performance parameters

 Non-linear effects limit performance of particle accelerators 

but impact also design cost
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Non-linear effects in colliders

 At injection
 Non-linear magnets 

(sextupoles, octupoles)

 Magnet imperfections and 
misalignments

 Power supply ripple

 Ground motion (for e+/e-)

 Electron (Ion) cloud

 At collision
 Non-linear magnets (sextupoles 

and octupoles 

 Field imperfections in the 
insertion quadrupoles

 Magnets in experimental areas 
(solenoids, dipoles)

 “Incoherent” Beam-beam 
effects (head on and long 
range)

 “Incoherent” E-cloud effect
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Non-linear effects in colliders

 At injection
 Non-linear magnets 

(sextupoles, octupoles)

 Magnet imperfections and 
misalignments

 Power supply ripple

 Ground motion (for e+/e-)

 Electron (Ion) cloud

 At collision
 Non-linear magnets (sextupoles 

and octupoles 

 Field imperfections in the 
insertion quadrupoles

 Magnets in experimental areas 
(solenoids, dipoles)

 “Incoherent” Beam-beam 
effects (head on and long 
range)

 “Incoherent” E-cloud effect

 Limitations affecting 
(integrated) luminosity
 Particle losses causing

 Reduced lifetime

 Radio-activation (super-
conducting magnet quench)

 Reduced machine availability

 Emittance blow-up

 Reduced number of bunches 
(either due to electron cloud or 
long-range beam-beam)

 Increased crossing angle

 Reduced intensity

 Cost issues
 Number of magnet correctors

and families (power 
convertors)

 Magnetic field and alignment
tolerances

 Design of the collimation
system
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Non-linear effects in high-intensity rings

 Non-linear magnets 

(sextupoles, octupoles)

 Magnet imperfections and 

misalignments

 Injection chicane

 Magnet fringe fields

 Space-charge effect
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Non-linear effects in high-intensity accelerators

 Non-linear magnets 

(sextupoles, octupoles)

 Magnet imperfections and 

misalignments

 Injection chicane

 Magnet fringe fields

 Space-charge effect

 Limitations affecting beam 
power
 Particle losses causing

 Reduced intensity

 Radio-activation (hands-on 
maintenance)

 Reduced machine 
availability

 Emittance blow-up which 
can lead to particle loss

 Cost issues
 Number of magnet correctors 

and families (power 
convertors)

 Magnetic field and alignment 
tolerances

 Design of the collimation
system
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Non-linear effects in low emittance rings

 Chromaticity sextupoles

 Magnet imperfections and 

misalignments

 Insertion devices (wigglers, 

undulators)

 Injection elements

 Ground motion

 Magnet fringe fields

 Space-charge effect (in the 

vertical plane for damping 

rings)

 Electron cloud (Ion) effects
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Non-linear effects in low emittance rings

 Chromaticity sextupoles

 Magnet imperfections and 

misalignments

 Insertion devices (wigglers, 

undulators)

 Injection elements

 Ground motion

 Magnet fringe fields

 Space-charge effect (in the 

vertical plane for damping 

rings)

 Electron cloud (Ion) effects

 Limitations affecting beam 

brightness

 Reduced injection efficiency

 Particle losses causing

 Reduced lifetime

 Reduced machine 

availability

 Emittance blow-up which can 

lead to particle loss

 Cost issues

 Number of magnet correctors 

and families (power 

convertors)

 Magnetic field and alignment 

tolerances
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Reminder: Harmonic oscillator
 Described by the differential equation:

 The solution obtained by the substitution

and the solutions of the characteristic polynomial are 

which yields the general solution 
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Reminder: Harmonic oscillator
 Described by the differential equation:

 The solution obtained by the substitution

and the solutions of the characteristic polynomial are 

which yields the general solution 

 The amplitude and phase depend on the initial conditions

 A negative sign in the differential equation provides a 

solution described by an hyperbolic sine function

 Note also that  for no restoring force , the 

motion is unbounded
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Integral of motion
 Rewrite the differential equation of the harmonic 

oscillator as a pair of coupled 1st order equations

which can be combined to provide

or 

with      an integral of motion

identified as the mechanical energy of the system
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Integral of motion
 Rewrite the differential equation of the harmonic 

oscillator as a pair of coupled 1st order equations

which can be combined to provide

or 

with      an integral of motion

identified as the mechanical energy of the system

 Solving the previous equation for       , the system 

can be reduced to a unique 1st order equation
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Integration by quadrature 

 The last equation can be be solved as an explicit 

integral or “quadrature”

, yielding 

or the well-known solution 
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Integration by quadrature 

 The last equation can be be solved as an explicit 

integral or “quadrature”

, yielding 

or the well-known solution 

 Although the previous route may seem complicated, 

it becomes more natural when non-linear terms

appear, where a substitution of the type 

is not applicable

 The ability to integrate a differential equation is not 

just a nice mathematical feature, but deeply 

characterizes the dynamical behavior of the 

system described by the equation
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Frequency of motion
 The period of the harmonic oscillator is calculated 

through the previous integral after integration 

between two extrema, i.e. when the velocity

vanishes,  at 
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Frequency of motion
 The period of the harmonic oscillator is calculated 

through the previous integral after integration 

between two extrema, i.e. when the velocity

vanishes,  at 

 The integration  yields

 The frequency (or the period) of linear systems is 

independent of the integral of motion (energy)
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Frequency of motion

 The previous remark is not true for non-linear 

systems, e.g. for an oscillator with a non-linear 

restoring force

 The integral of motion is 
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Frequency of motion

 The previous remark is not true for non-linear 

systems, e.g. for an oscillator with a non-linear 

restoring force

 The integral of motion is 

 Solving for vanishing velocity, we get

 The integration yields

i.e. the period (frequency) depends on the integral 

of motion (energy), i.e. the maximum “amplitude”
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The pendulum

 An important non-linear equation which can be 

integrated is the one of the pendulum, for a string of 

length L and gravitational constant g

 For small displacements it reduces to an harmonic 

oscillator with frequency

 The integral of motion (scaled energy) is

and the quadrature is written as
assuming that for
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Solution for the pendulum  

 The integral can be solved, 

using the substitution

with .  

 The integral then becomes  

 It is solved using Jacobi elliptic functions, with the 

final result:
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Period of the pendulum  

 For recovering the period, the integration is 

performed between the two extrema, i.e.               

and , corresponding to

and          

 The period is 

i.e. the complete elliptic integral multiplied by four 

times the period of the harmonic oscillator

 By expanding 

with , the “amplitude” 

dependence of the frequency becomes apparent
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

integral of motion Hamiltonian (energy)
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Phase space dynamics

 Valuable description when examining 

trajectories in phase space 

 Existence of integral of motion imposes 

geometrical constraints on phase flow

 For the simple harmonic oscillator     

phase space curves are ellipses around  

the equilibrium point parameterized by the 

integral of motion Hamiltonian (energy)

 By simply changing the sign of the 

potential in the harmonic oscillator, the 

phase trajectories become hyperbolas, 

symmetric around the equilibrium point 

where two straight lines cross, moving 

towards and away from it
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential
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Non-linear oscillators

 Conservative non-linear oscillators have Hamiltonian                                

with the potential being a general (polynomial) function of positions

 Equilibrium points are associated with extrema of the potential

 Considering three non-linear oscillators

 Quartic potential (left): two minima and one maximum

 Cubic potential (center): one minimum and one maximum

 Pendulum (right): periodic minima and maxima
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity
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Fixed point analysis

 Consider a general second order system 

 Equilibrium or “fixed” points                                            are 

determinant for topology of trajectories at their vicinity

 The linearized equations of motion at their vicinity are

 Fixed point nature is revealed by eigenvalues of         , i.e. 

solutions of the characteristic polynomial  

Jacobian matrix
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the 

second order characteristic polynomial for any fixed point has 

two possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

elliptic
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Fixed point for conservative systems

 For conservative systems of 1 degree of freedom, the second 

order characteristic polynomial for any fixed point has two 

possible solutions:

 Two complex eigenvalues with opposite sign, corresponding to 

elliptic fixed points. Phase space flow is described by ellipses, with 

particles evolving clockwise or anti-clockwise

 Two real eigenvalues with opposite sign, corresponding to 

hyperbolic (or saddle) fixed points. Flow described by two lines (or 

manifolds), incoming (stable) and outgoing (unstable)

elliptic
hyperbolic
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are
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Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points

elliptic
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elliptic

Pendulum fixed point analysis
 The “fixed” points for a pendulum can be found at 

 The Jacobian matrix is 

 The eigenvalues are

 Two cases can be distinguished: 

 , for which

corresponding to elliptic fixed points 

 , for which

corresponding to hyperbolic fixed points

 The separatrix are the stable and unstable  

manifolds through the hyperbolic points,     

separating bounded librations and unbounded rotations

hyperbolic
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Non-autonomous systems
 Consider a linear system with explicit dependence in time

 Time now is not an independent variable but can be 

considered as an extra dimension leading to a completely 

new type of behavior
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Non-autonomous systems
 Consider a linear system with explicit dependence in time

 Time now is not an independent variable but can be 

considered as an extra dimension leading to a completely 

new type of behavior

 Consider two independent solutions of the homogeneous 

equation and

 The general solution is a  sum of the homogeneous

solutions and a particular

solution, ,  where the coefficients 

are computed as  

with the Wronskian of the system 
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Driven harmonic oscillator
 Consider periodic force pumping energy into the system

 General solution is a combination of the homogeneous

and a particular solution found as
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Driven harmonic oscillator
 Consider periodic force pumping energy into the system

 General solution is a combination of the homogeneous

and a particular solution found as

 Obviously a resonance condition appears when driving 

frequency hits the oscillator eigen-frequency. 
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Driven harmonic oscillator
 Consider periodic force pumping energy into the system

 General solution is a combination of the homogeneous

and a particular solution found as

 Obviously a resonance condition appears when driving 

frequency hits the oscillator eigen-frequency. 

 In the limit of  the solution  becomes

 The 2nd secular term implies unbounded growth of 

amplitude at resonance
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems
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Phase space for time-dependent systems

 Consider now a simple harmonic oscillator 

where the frequency is time-dependent 

 Plotting the evolution in phase space, provides 

trajectories that intersect each other 

 The phase space has time as extra dimension

 By rescaling the time to become and 

considering every integer interval of the new

“time” variable, the phase space looks like the 

one of the harmonic oscillator 

 This is the simplest version of a Poincaré

surface of section, which is useful for studying 

geometrically phase space of multi-dimensional 

systems

 The fixed point in the surface of section is now

a periodic orbit
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Contents of the 1st lecture
 Accelerator performance parameters and non-linear effects

 Linear and non-linear oscillators
 Integral and frequency of motion

 The pendulum

 Damped harmonic oscillator

 Phase space dynamics
 Fixed point analysis

 Non-autonomous systems
 Driven harmonic oscillator, resonance conditions

 Linear equations with periodic coefficients – Hill’s equations
 Floquet solutions and normalized coordinates

 Perturbation theory 
 Non-linear oscillator

 Perturbation  by periodic function – single dipole perturbation

 Application to single multipole – resonance conditions

 Examples: single quadrupole, sextupole, octupole perturbation

 General multi-pole perturbation– example: linear coupling

 Resonance conditions and working point choice

 Summary

 Appendix: Damped harmonic oscillator
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Linear equation with periodic coefficients

 A very important class of equations especially 
for beam dynamics (but also solid state physics)
are linear equations with periodic coefficients

with a periodic function of time
George Hill
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Linear equation with periodic coefficients

 A very important class of equations especially 
for beam dynamics (but also solid state physics)
are linear equations with periodic coefficients

with a periodic function of time

 These are called Hill’s equations and can be thought as 
equations of harmonic oscillator with time dependent 
(periodic) frequency

 There are two solutions that can be written as

with periodic but also                           with     a 

constant which implies that is periodic

 The solutions are derived based on Floquet theory

George Hill
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Amplitude, phase and invariant

 Differentiating the solutions twice and substituting  to Hill’s 

equation, the following two equations are obtained

 The 2nd one can be integrated to give , i.e. the 

relation between the “phase” and the amplitude
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Amplitude, phase and invariant

 Differentiating the solutions twice and substituting  to Hill’s 

equation, the following two equations are obtained

 The 2nd one can be integrated to give , i.e. the 

relation between the “phase” and the amplitude

 Substituting this to the 1st equation, the amplitude equation is 

derived (or the beta function in accelerator jargon)

 By evaluating the quadratic sum of the solution and its 

derivative an invariant can be constructed, with the form
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Normalized coordinates
 Recall the Floquet solutions 

for betatron motion

 Introduce new variables

 In matrix form
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Normalized coordinates
 Recall the Floquet solutions 

for betatron motion

 Introduce new variables

 In matrix form

 Hill’s equation becomes 

 System becomes harmonic oscillator with frequency 

or

 Floquet transformation transforms 
phase space in circles
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Perturbation of Hill’s equations

 Hill’s equations in normalized coordinates  with harmonic 

perturbation, using and 

where the F is the Lorentz force from perturbing fields

 Linear magnet imperfections: deviation from the design dipole 

and quadrupole fields due to powering and alignment errors

 Time varying fields: feedback systems (damper) and wake fields 

due to collective effects (wall currents)

 Non-linear magnets: sextupole magnets for chromaticity correction 

and octupole magnets for Landau damping

 Beam-beam interactions: strongly non-linear field

 Space charge effects: very important for high intensity beams 

 non-linear magnetic field imperfections: particularly difficult to 

control for super conducting magnets where the field quality is 

entirely determined by the coil winding accuracy
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Magnetic multipole expansion
 From Gauss law of magnetostatics, a vector potential exist 

 Assuming transverse 2D field, vector potential has only one 
component As. The Ampere’s law in vacuum (inside the 
beam pipe) 

 Using the previous equations, the relations between field 
components and potentials are
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Magnetic multipole expansion
 From Gauss law of magnetostatics, a vector potential exist 

 Assuming transverse 2D field, vector potential has only one 
component As. The Ampere’s law in vacuum (inside the 
beam pipe) 

 Using the previous equations, the relations between field 
components and potentials are

i.e. Riemann conditions of analytic functions

Exists complex potential of with  

power series expansion convergent in a 

circle with radius (distance from iron 

yoke)

x

y

iron

rc
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Multipole expansion II
 From the complex potential we can derive the fields

 Setting
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Multipole expansion II
 From the complex potential we can derive the fields

 Setting

 Define normalized multipole coefficients 

on a reference radius r0, 10-4 of the main field to get

 Note: is the US convention
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Contents of the 1st lecture
 Accelerator performance parameters and non-linear effects

 Linear and non-linear oscillators
 Integral and frequency of motion

 The pendulum

 Damped harmonic oscillator

 Phase space dynamics
 Fixed point analysis

 Non-autonomous systems
 Driven harmonic oscillator, resonance conditions

 Linear equations with periodic coefficients – Hill’s equations
 Floquet solutions and normalized coordinates

 Perturbation theory 
 Non-linear oscillator

 Perturbation  by periodic function – single dipole perturbation

 Application to single multipole – resonance conditions

 Examples: single quadrupole, sextupole, octupole perturbation

 General multi-pole perturbation– example: linear coupling

 Resonance conditions and working point choice

 Summary

 Appendix: Damped harmonic oscillator
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 Completely integrable systems are exceptional

 For understanding dynamics of general non-linear 

systems composed of a part whose solution is 

known and a part parameterized by a small constant   

, perturbation theory is employed

Perturbation theory
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 Completely integrable systems are exceptional

 For understanding dynamics of general non-linear 

systems composed of a part whose solution is 

known and a part parameterized by a small constant   

, perturbation theory is employed

 The general idea is to expand the solution in a 

power series

and compute recursively the corrections

hoping that a few terms will be sufficient to find 

an accurate representation of the general solution

Perturbation theory
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 Completely integrable systems are exceptional

 For understanding dynamics of general non-linear 

systems composed of a part whose solution is 

known and a part parameterized by a small constant   

, perturbation theory is employed

 The general idea is to expand the solution in a 

power series

and compute recursively the corrections

hoping that a few terms will be sufficient to find 

an accurate representation of the general solution

 This may not be true for all times, i.e. facing series

convergence problems

 In addition, any series expansion breaks in the 

vicinity of a resonance

Perturbation theory
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 Consider a non-linear harmonic oscillator, 

 This is just the pendulum expanded to 3rd order in 

 Note that     is a dimensionless measure of smallness, which 

may represent a scaling factor of (e.g.            without loss of 

generality)

Perturbation of non-linear oscillator 
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 Consider a non-linear harmonic oscillator, 

 This is just the pendulum expanded to 3rd order in 

 Note that     is a dimensionless measure of smallness, which 

may represent a scaling factor of (e.g.            without loss of 

generality) 

 Expanding and separating 

the equations with equal power in   :

 Order 0:

 Order 1: 

Perturbation of non-linear oscillator 
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 Consider a non-linear harmonic oscillator, 

 This is just the pendulum expanded to 3rd order in 

 Note that     is a dimensionless measure of smallness, which 

may represent a scaling factor of (e.g.            without loss of 

generality) 

 Expanding and separating 

the equations with equal power in   :

 Order 0:

 Order 1: 

 The 2nd equation has a particular solution with two terms. A 

well behaved one and

the first part of which grows linearly with time (secular term)

 But this cannot be true, the pendulum does not present 

such behavior. What did it go wrong?

Perturbation of non-linear oscillator 
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 It was already shown that the pendulum has an 

amplitude dependent frequency, so the frequency has 

to be developed as well (Poincaré-Linstead method):

Perturbation of non-linear oscillator 
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 It was already shown that the pendulum has an 

amplitude dependent frequency, so the frequency has 

to be developed as well (Poincaré-Linstead method):

 Assume that the solution is a periodic function of

which becomes the new independent variable. The 

equation at zero order gives the solution                   

and at leading perturbation order becomes

Perturbation of non-linear oscillator 
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 It was already shown that the pendulum has an 

amplitude dependent frequency, so the frequency has 

to be developed as well (Poincaré-Linstead method):

 Assume that the solution is a periodic function of

which becomes the new independent variable. The 

equation at zero order gives the solution                   

and at leading perturbation order becomes

 The last term has to be zero, if not it gives secular 

terms, thus which reveals the reduction of 

the frequency with the oscillation amplitude

 Finally, the solution is 

the leading order correction due to the non-linear term 

Perturbation of non-linear oscillator 
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Perturbation by periodic function

 In beam dynamics, perturbing fields are periodic functions

 The problem to solve is a generalization of the driven 

harmonic oscillator,

with a general periodic function         , with frequency 

 The right side can be Fourier analyzed:
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Perturbation by periodic function

 In beam dynamics, perturbing fields are periodic functions

 The problem to solve is a generalization of the driven 

harmonic oscillator,

with a general periodic function         , with frequency 

 The right side can be Fourier analyzed:

 The homogeneous solution is

 The particular solution can be found by considering that           

has the same form as         : 

 By substituting the following relation is derived for the 

Fourier coefficients of the particular solution

 There is a resonance condition for infinite number of 

frequencies satisfying 
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Perturbation by single dipole

 Hill’s equations in normalized coordinates with 

single dipole perturbation:

 The dipole perturbation is periodic, so it can be 

expanded in a Fourier series
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Perturbation by single dipole

 Hill’s equations in normalized coordinates with 

single dipole perturbation:

 The dipole perturbation is periodic, so it can be 

expanded in a Fourier series

 Note, as before that a periodic kick introduces 

infinite number of integer driving frequencies

 The resonance condition occurs when 

i.e. integer tunes should be avoided (remember 

orbit distortion due to single dipole kick)
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Perturbation by single multi-pole
 For a generalized multi-pole perturbation, Hill’s equation is:

 As before, the multipole coefficient 

can be expanded in Fourier series
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Perturbation by single multi-pole
 For a generalized multi-pole perturbation, Hill’s equation is:

 As before, the multipole coefficient 

can be expanded in Fourier series

 Following the perturbation steps, the zero-order solution is 

given by the homogeneous equation

 Then the position can be expressed as 
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Perturbation by single multi-pole
 For a generalized multi-pole perturbation, Hill’s equation is:

 As before, the multipole coefficient 

can be expanded in Fourier series

 Following the perturbation steps, the zero-order solution is 

given by the homogeneous equation

 Then the position can be expressed as 

with 
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Perturbation by single multi-pole
 For a generalized multi-pole perturbation, Hill’s equation is:

 As before, the multipole coefficient 

can be expanded in Fourier series

 Following the perturbation steps, the zero-order solution is 

given by the homogeneous equation

 Then the position can be expressed as 

with 

 The first order solution is written as
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Resonances for single multi-pole

 Following the discussion on the periodic perturbation, the 

solution can be found by setting the leading order solution 

to be periodic with the same frequency as the right hand 

side
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Resonances for single multi-pole

 Following the discussion on the periodic perturbation, the 

solution can be found by setting the leading order solution 

to be periodic with the same frequency as the right hand 

side

 Equating terms of equal exponential powers, the  Fourier 

amplitudes are found to satisfy the relationship 
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Resonances for single multi-pole

 Following the discussion on the periodic perturbation, the 

solution can be found by setting the leading order solution 

to be periodic with the same frequency as the right hand 

side

 Equating terms of equal exponential powers, the  Fourier 

amplitudes are found to satisfy the relationship

 This provides the resonance condition 

or which means that there are resonant 

frequencies for  and “infinite” number of rationals
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Tune-shift for single multi-pole

 Note that for even multi-poles and             or , there 

is a Fourier coefficient         , which is independent of and 

represents the average value of the periodic perturbation

 The perturbing term in the r.h.s. is

which can be obtained for (it is indeed an integer 

only for even multi-poles)
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Tune-shift for single multi-pole

 Note that for even multi-poles and             or , there 

is a Fourier coefficient         , which is independent of and 

represents the average value of the periodic perturbation

 The perturbing term in the r.h.s. is

which can be obtained for (it is indeed an integer 

only for even multi-poles)

 Following the approach of the perturbed non-linear 

harmonic oscillator, this term will be secular unless a 

perturbation in the frequency is considered, thereby resulting 

to a tune-shift equal to 

with

 This tune-shift is amplitude dependent for 
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Example: single quadrupole perturbation

 Consider single quadrupole kick in one normalized plane:

 The quadrupole perturbation can be expanded in a Fourier 

series
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Example: single quadrupole perturbation

 Consider single quadrupole kick in one normalized plane:

 The quadrupole perturbation can be expanded in a Fourier 

series

 Following the perturbation approach, the 1st order equation 

becomes with

 For , the resonance conditions are

i.e. integer and half-integer tunes should be avoided
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Example: single quadrupole perturbation

 Consider single quadrupole kick in one normalized plane:

 The quadrupole perturbation can be expanded in a Fourier 

series

 Following the perturbation approach, the 1st order equation 

becomes with

 For , the resonance conditions are

i.e. integer and half-integer tunes should be avoided

 For ,  the condition

corresponds to a non-vanishing average value       , which can 

be absorbed in the left-hand side providing a tune-shift: 

or



N
o

n
-l
in

e
a

r 
e

ff
e

c
ts

, 
J
U

A
S

, 
F

e
b

ru
a

ry
 2

0
1

7

85

Single Sextupole Perturbation
 Consider a localized sextupole perturbation in the horizontal 

plane

 After replacing the perturbation by its Fourier transform and 

inserting the unperturbed solution to the right hand side

with 
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Single Sextupole Perturbation
 Consider a localized sextupole perturbation in the horizontal 

plane

 After replacing the perturbation by its Fourier transform and 

inserting the unperturbed solution to the right hand side

with 

 Resonance conditions:

3rd integer

integer
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Single Sextupole Perturbation
 Consider a localized sextupole perturbation in the horizontal 

plane

 After replacing the perturbation by its Fourier transform and 

inserting the unperturbed solution to the right hand side

with 

 Resonance conditions:

 Note that there is not a tune-spread associated. This is 

only true for small perturbations (first order perturbation 

treatment)

 Although perturbation treatment can provide approximations 

for evolution of motion, there is no exact solution

3rd integer

integer
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 Equations of motion including any multi-pole error term, in 

both planes 

 Expanding perturbation coefficient in Fourier series and 

inserting the solution of the unperturbed system on the rhs

gives the following series:  

General multi-pole perturbation
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 Equations of motion including any multi-pole error term, in 

both planes 

 Expanding perturbation coefficient in Fourier series and 

inserting the solution of the unperturbed system on the rhs

gives the following series:  

 The equation of motion becomes

 In principle, same perturbation steps can be followed for 

getting an approximate solution in both planes

General multi-pole perturbation
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 For a localized skew quadrupole we have

 Expanding perturbation coefficient in Fourier series and 

inserting the solution of the unperturbed system gives the 

following equation:

with 

Example: Linear Coupling
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 For a localized skew quadrupole we have

 Expanding perturbation coefficient in Fourier series and 

inserting the solution of the unperturbed system gives the 

following equation:

with 

 The coupling resonance are found for 

Example: Linear Coupling

Linear sum resonance Linear difference resonance
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 The general resonance conditions is 

or , with order 

 The same condition can be obtained in the vertical plane  

General resonance conditions
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 The general resonance conditions is 

or , with order 

 The same condition can be obtained in the vertical plane  

 For all the polynomial field terms of a       -pole, the main

excited resonances satisfy the condition                          but 

there are also sub-resonances for which 

 For  normal (erect) multi-poles, the main resonances are 

whereas for skew multi-poles

General resonance conditions



N
o

n
-l
in

e
a

r 
e

ff
e

c
ts

, 
J
U

A
S

, 
F

e
b

ru
a

ry
 2

0
1

7

94

 The general resonance conditions is 

or , with order 

 The same condition can be obtained in the vertical plane  

 For all the polynomial field terms of a       -pole, the main

excited resonances satisfy the condition                          but 

there are also sub-resonances for which 

 For  normal (erect) multi-poles, the main resonances are 

whereas for skew multi-poles

General resonance conditions

 If perturbation is large, all resonances 

can be potentially excited 

 The resonance conditions form 

lines in frequency space and fill it up as 

the order grows (the rational numbers 

form a dense set inside the real 

numbers), but Fourier amplitudes should 

also decrease
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 If lattice is made out of identical cells, and the 

perturbation follows the same periodicity, resulting in 

a reduction of the resonance conditions to the ones 

satisfying

 These are called 

systematic resonances

Systematic and random resonances
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 If lattice is made out of identical cells, and the 

perturbation follows the same periodicity, resulting in 

a reduction of the resonance conditions to the ones 

satisfying

 These are called 

systematic resonances

 Practically, any (linear)

lattice perturbation breaks 

super-periodicity and any 

random resonance can be 

excited 

Careful choice of the 

working point is necessary

Systematic and random resonances
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Contents of the 1st lecture
 Accelerator performance parameters and non-linear effects

 Linear and non-linear oscillators
 Integral and frequency of motion

 The pendulum

 Damped harmonic oscillator

 Phase space dynamics
 Fixed point analysis

 Non-autonomous systems
 Driven harmonic oscillator, resonance conditions

 Linear equations with periodic coefficients – Hill’s equations
 Floquet solutions and normalized coordinates

 Perturbation theory 
 Non-linear oscillator

 Perturbation  by periodic function – single dipole perturbation

 Application to single multipole – resonance conditions

 Examples: single quadrupole, sextupole, octupole perturbation

 General multi-pole perturbation– example: linear coupling

 Resonance conditions and working point choice

 Summary

 Appendix: Damped harmonic oscillator
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Summary
 Accelerator performance depends heavily on the 

understanding and control of non-linear effects

 The ability to integrate differential equations has a 
deep impact to the dynamics of the system

 Phase space is the natural space to study this 
dynamics

 Perturbation theory helps integrate iteratively 
differential equations and reveals appearance of 
resonances

 Periodic perturbations drive infinite number of 
resonances

 There is an amplitude dependent tune-shift at 1st

order for even multi-poles

 Periodicity of the lattice very important for reducing 
number of lines excited at first order
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Damped harmonic oscillator I

 Damped harmonic oscillator:

 is the ratio between the stored and lost energy 

per cycle with the damping ratio 

 is the eigen-frequency of the harmonic oscillator

 General solution can be found by the same ansatz

leading to an auxiliary  2nd order equation                         

with solutions 
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Damped harmonic oscillator II

 Three cases can be distinguished 

 Overdamping (    real, i.e.             or ): The 

system exponentially decays to equilibrium (slower for 

larger damping ratio values) 

 Critical damping (ζ = 1): The system returns to equilibrium 

as quickly as possible without oscillating. 

 Underdamping ( complex, i.e. or ): 

The system oscillates with the amplitude gradually 

decreasing to zero, with a slightly different frequency than 

the harmonic one:
 Note that there is no 

integral of motion, in 

that case, as the 

energy is not 

conserved (dissipative 

system)
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Damped oscillator with periodic driving

 Consider periodic force pumping energy into the system

 The solution of the homogeneous system is
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Damped oscillator with periodic driving

 Consider periodic force pumping energy into the system

 The solution of the homogeneous system is

 The particular solution is

 The homogeneous solution vanishes for ,  leaving 

only the particular one, for which there is an amplitude

maximum for but no divergence

 In that case, the energy pumped into the system 

compensates the friction, and a steady state is reached 

representing a limit cycle


