Non-linear effects

Hannes BARTOSIK and Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN

Joint University Accelerator School
Archamps, FRANCE
3 February 2017

- Resonances and the path to chaos
\square Topology of $3^{\text {rd }}$ and $4^{\text {th }}$ order resonance
\square Path to chaos and resonance overlap
\square Dynamic aperture simulations
- Frequency map analysis
\square NAFF algorithm
\square Aspects of frequency maps
\square Frequency and diffusion maps for the LHC
\square Frequency map for lepton rings
\square Working point choice
\square Beam-beam effect
- Experiments
\square Experimental frequency maps
- Beam loss frequency maps
\square Space-charge frequency scan

Contents of the 2nd lecture

- Resonances and the path to chaos
\square Topology of $3^{\text {rd }}$ and $4^{\text {th }}$ order resonance
\square Path to chaos and resonance overlap
\square Dynamic aperture simulations
> - Frequency map analysis - NAFF algorithm
> - Aspects of frequency maps
> - Frequency and diffusion maps for the LHC
> \square Frequency map for lepton rings
> \square Working point choice
> - Beam-beam effect
> - Experiments
> - Experimental frequency maps
> - Beam loss frequency maps
> \square Space-charge frequency scan

Poincaré Section

■ Record the particle coordinates at one location (BPM)
■ Unperturbed motion lies on a circle in normalized coordinates (simple rotation)

Poincaré Section:

■ Record the particle coordinates at Poincaré Section: one location (BPM)
■ Unperturbed motion lies on a circle in normalized coordinates (simple rotation)

U

■ Resonance condition corresponds to a periodic orbit or in fixed points in phase space

■ Record the particle coordinates at

Poincaré Section:

 one location (BPM)■ Unperturbed motion lies on a circle in normalized coordinates (simple rotation)

■ Resonance condition corresponds to a periodic orbit or in fixed points in phase space
■ For a multi-pole perturnation $\delta \mathcal{U}^{\prime}=\overline{b_{n}} \mathcal{U}^{n-1}$
■ The particle does not lie on a circle!

- Close to the periodic orbit, the motion is described by circles and the "invariant" is still almost an integral of motion
- Further away the circles get distorted, until the resonance condition is met
- It can be shown that close to a resonance, motion can be described by a pendulum-like invariant, and some analytical results can be derived

Fixed points for $3^{\text {rd }}$ order resonance
■ In the vicinity of a third order resonance, three fixed points can be found at

$$
\psi_{20}=\frac{\pi}{3}, \frac{3 \pi}{3}, \frac{5 \pi}{3}, \quad J_{20}=\left(\frac{2 \delta}{3 A_{3 p}}\right)^{2}
$$

- For $\frac{\delta}{A_{3 p}}>0$ all three points are unstable
- Close to the elliptic one at $\psi_{20}=0$ the motion in phase space is described by circles that they get more and more distorted to end up in the "triangular" separatrix uniting the unstable fixed points
- The tune separation from the resonance (stop-band width)
 is center, with curves getting more deformed towards a rectangular shape
■ The separatrix passes through 4 unstable fixed points, but motion seems well contained ■ Four stable fixed points
 stable motion (islands of stability)
■ Question: Can the central
 fixed point become hyperbolic (answer in the appendix)

Path to chaos

■ When perturbation becomes higher, motion around the separatrix becomes chaotic (producing tongues or splitting of the separatrix)
■ Unstable fixed points are indeed the source of chaos when a perturbation is added

■ Poincare-Birkhoff theorem states that under perturbation of a resonance only an even number of fixed points survives (half stable and the other half unstable) \square Themselves get destroyed when perturbation gets higher, etc. (self-similar fixed points)

■ Resonance islands grow and
resonances can overlap allowing diffusion

- When perturbation grows, the resonance island width grows

■ Chirikov $(1960,1979)$ proposed a criterion for the overlap of two neighboring resonances and the onset of orbit diffusion

- The distance between two resonances is $\delta \hat{J}_{1, n^{\prime}}=\frac{2\left(\frac{1}{n_{1}+n_{2}}-\frac{1}{n_{1}^{\prime}+n_{2}^{\prime}}\right)}{\left.\left|\frac{\partial^{2} \bar{H}_{\hat{\prime}}(\hat{\jmath})}{\partial \hat{J}_{1}^{2}}\right|_{\hat{J}_{1}=\hat{J}_{10}} \right\rvert\,}$ $\Delta \hat{J}_{n \text { max }}+\Delta \hat{J}_{n^{\prime} \max } \geq \delta \hat{J}_{n, n^{\prime}}$

■ Considering the width of chaotic layer and secondary islands, the "two thirds" rule apply $\quad \Delta \hat{J}_{n \max }+\Delta \hat{J}_{n^{\prime} \max } \geq \frac{2}{3} \delta \hat{J}_{n, n^{\prime}}$

- The main limitation is the geometrical nature of the criterion (difficulty to be extended for > $\mathbf{2}$ degrees of freedom)

■ The most direct way to evaluate the non-linear dynamics performance of a ring is the computation of Dynamic Aperture

- Particle motion due to multi-pole errors is generally nonbounded, so chaotic particles can escape to infinity
- This is not true for all non-linearities (e.g. the beam-beam force)
- Need a symplectic tracking code to follow particle trajectories (a lot of initial conditions) for a number of turns (depending on the given problem) until the particles start getting lost. This boundary defines the Dynamic aperture
- As multi-pole errors may not be completely known, one has to track through several machine models built by random distribution of these errors
- One could start with 4D (only transverse) tracking but certainly needs to simulate 5D (constant energy deviation) and finally 6D (synchrotron motion included)

■ Dynamic aperture plots show the maximum initial values of stable trajectories in $x-y$ coordinate space at a particular point in the lattice, for a range of energy errors.
\square The beam size can be shown on the same plot.
\square Generally, the goal is to allow some significant margin in the design - the measured dynamic aperture is often smaller than the predicted dynamic aperture.

- Including radiation damping and excitation shows that 0.7% of the particles are lost during the damping Certain particles seem to damp away from the beam core, on resonance islands

DA scanning for the LHC

- Min. Dynamic Aperture (DA) with intensity vs crossing angle, for nominal optics ($\beta^{*}=40 \mathrm{~cm}$) and BCMS beam ($2.5 \mu \mathrm{~m}$ emittance), 15 units of chromaticity
\square For $1.1 \times 10^{11} \mathrm{p}$
- At $\boldsymbol{\theta}_{\mathrm{c}} / \mathbf{2}=185 \boldsymbol{\mu r a d} \quad(\sim 12$ σ separation), DA around 6σ (good lifetime observed)
- At $\theta_{\mathrm{c}} / 2=140 \mu \mathrm{rad} \quad(\sim 9 \sigma$ separation), DA below 5 σ (reduced lifetime observed)
\square Improvement for low octupoles, low chromaticity and WP optimisation (observed in operation)

Genetic Algorithms for lattice optimisation

■ MOGA -Multi Objective Genetic Algorithms are being recently used to optimise linear but also non-linear dynamics of electron low emittance storage rings
■ Use knobs quadrupole strengths, chromaticity sextupoles and correctors with some constraints
■ Target ultra-low
 horizontal emittance, increased lifetime and high dynamic aperture

Contents of the 2nd lecture

- Topology of $3^{\text {rd }}$ and $4^{\text {th }}$ order resonance
\square Path to chaos and resonance overlap
- Dynamic aperture simulations

■ Frequency map analysis
\square NAFF algorithm
\square Aspects of frequency maps
\square Frequency and diffusion maps for the LHC
\square Frequency map for lepton rings
\square Working point choice
\square Beam-beam effect

- Experiments
- Experimental frequency maps
- Beam loss frequency maps
\square Space-charge frequency scan

Frequency map analysis
Frequency Map Analysis (FMA) is a numerical method which springs from the studies of J. Laskar (Paris Observatory) putting in evidence the chaotic motion in the Solar Systems
FMA was successively applied to several dynamical systems

- Stability of Earth Obliquity and climate stabilization (Laskar, Robutel, 1993)
\square 4D maps (Laskar 1993)
\square Galactic Dynamics (Y.P and Laskar, 1996 and 1998)
\square Accelerator beam dynamics: lepton and hadron rings (Dumas, Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and Laskar 2001)
- When a quasi-periodic function $f(t)=q(t)+i p(t)$ in the complex domain is given numerically, it is possible to recover a quasi-periodic approximation

$$
f^{\prime}(t)=\sum_{k=1}^{N} a_{k}^{\prime} e^{i \omega_{k}^{\prime} t}
$$

in a very precise way over a finite time span $[-T, T]$ several orders of magnitude more precisely than simple Fourier techniques
\square This approximation is provided by the Numerical Analysis of Fundamental Frequencies - NAFF algorithm

- The frequencies ω_{k}^{\prime} and complex amplitudes a_{k}^{\prime} are computed through an iterative scheme.

Aspects of the frequency map

- In the vicinity of a resonance the system behaves like a pendulum
- Passing through the elliptic point for a fixed angle, a fixed frequency (or rotation number) is observed
- Passing through the hyperbolic point, a frequency jump is oberved

Building the frequency map

- Choose coordinates $\left(x_{i}, y_{i}\right)$ with p_{x} and $p_{y}=0$

■ Numerically integrate the phase trajectories through the lattice for sufficient number of turns
■ Compute through NAFF Q_{x} and Q_{y} after sufficient number of turns
■ Plot them in the tune diagram

requency maps for the LHC

YP, PAC1999

Frequency maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

- Calculate frequencies for two equal and successive time spans and compute frequency diffusion vector:

$$
\left.\boldsymbol{D}\right|_{t=\tau}=\left.\boldsymbol{\nu}\right|_{t \in(0, \tau / 2]}-\left.\boldsymbol{\nu}\right|_{t \in(\tau / 2, \tau]}
$$

- Plot the initial condition space color-coded with the norm of the diffusion vector
- Compute a diffusion quality factor by averaging all diffusion coefficients normalized with the initial conditions radius

$$
D_{Q F}=\left\langle\frac{|\boldsymbol{D}|}{\left(I_{x 0}^{2}+I_{y 0}^{2}\right)^{1 / 2}}\right\rangle_{R}
$$

Diffusion maps for the LHC YP, PAC1999

Diffusion maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

- Non linear
 for minimization of resonance driving terms and tune-shift with amplitude
F.Antoniou, PhD thesis, 2103

■All dynamics represented in these two plots

- Regular motion represented by blue colors (close to zero amplitude particles or working point)

Example for the SNS ring: Working point $(6.4,6.3)$

- Integrate a large number of particles
- Calculate the tune with refined Fourier analysis
$\mathcal{F}_{\tau}: \underset{\left.\left(I_{x}, I_{y}\right)\right|_{p_{x}, p_{y}=0},}{\mathbb{R}^{2}} \quad \longrightarrow \underset{\left(\nu_{x}, \nu_{y}\right)}{\mathbb{R}^{2}}$
- Plot points to tune space SNS Working Point $\left(Q_{x}, Q_{y}\right)=(6.4,6.3)$
Non-linear effects, JUAS, February 2017

- $|D| \leq 10^{-7}$
- $10^{-7}<|D| \leq 10^{-6}$
- $10^{-6}<|D| \leq 10^{-5}$
- $10^{-5}<|D| \leq 10^{-4}$
- $10^{-4}<|D| \leq 10^{-3}$
- $10^{-3}<|D| \leq 10^{-2}$
- $10^{-2}<|D|$

Horizontal Tune
Horizontal Position [m]
$\delta p / p=0 @ 480 \pi \mathrm{~mm}$ mrad

$\delta \mathbf{p} / \mathbf{p}=\mathbf{0}$

Working Point Comparison

Tune Diffusion quality factor $D_{Q F}=\left\langle\frac{|\boldsymbol{D}|}{\left(I_{x 0}^{2}+I_{y 0}^{2}\right)^{1 / 2}}\right\rangle_{R}$
Working point comparison (no sextupoles)

Working point choice for SUPERB

- Figure of merit for choosing best working point is sum of diffusion rates with a constant added for every lost particle
- Each point is produced after tracking 100 particles
- Nominal working point had to be moved towards "blue" area

$$
e^{D}=\sqrt{\frac{\left(\nu_{x, 1}-\nu_{x, 2}\right)^{2}+\left(\nu_{y, 1}-\nu_{y, 2}\right)^{2}}{N / 2}}
$$

$$
W P S=0.1 N_{l o s t}+\sum e^{D}
$$

Beam-Beam interaction

Variable	Symbol	Value
Beam energy	E	7 TeV
Particle species	\ldots	protons
Full crossing angle	θ_{c}	$300 \mu \mathrm{rad}$
rms beam divergence	σ_{x}^{\prime}	$31.7 \mu \mathrm{rad}$
rms beam size	σ_{x}	$15.9 \mu \mathrm{~m}$
Normalized transv.		
rms emittance	$\gamma \varepsilon$	$3.75 \mu \mathrm{~m}$
IP beta function	β^{*}	0.5 m
Bunch charge	N_{b}	$\left(1 \times 10^{11}-2 \times 10^{12}\right)$
Betatron tune	Q_{0}	0.31

- Long range beam-beam interaction represented by a 4D kick-map

$$
\Delta x=-n_{p a r} \frac{2 r_{p} N_{b}}{\gamma}\left[\frac{x^{\prime}+\theta_{c}}{\theta_{t}^{2}}\left(1-e^{-\frac{\theta_{2}^{2}}{2 \theta_{x, y}^{2}}}\right)\right.
$$

$$
\left.-\frac{1}{\theta_{c}}\left(1-e^{-\frac{\theta_{c}^{2}}{2 \theta_{x, y}^{2}}}\right)\right]
$$

$$
\Delta y=-n_{p a r} \frac{2 r_{p} N_{b}}{\gamma} \frac{y^{\prime}}{\theta_{t}^{2}}\left(1-e^{-\frac{\theta_{t}^{2}}{2 \theta_{x, y}^{2}}}\right)
$$

with $\quad \theta_{t} \equiv\left(\left(x^{\prime}+\theta_{c}\right)^{2}+y^{\prime 2}\right)^{1 / 2}$

Head-on vs Long range interaction

Proved dominant effect of long range beam-beam effect - Dynamic Aperture (around 6σ) located at the folding of the map (indefinite torsion)

- Dynamics dominated by the $1 / r$ part of the force, reproduced by electrical wire, which was proposed for correcting the effect - Experimental verification in SPS and installation to the LHC IPs

Wire compensation

$■$ Current baring wire can improve DA by 1-2 σ

 ■ Tests in the LHC during 2017-2018 Without correction With correction

|
Reduced crossing angle of $450 \mu \mathrm{rad} @ 15 \mathrm{~cm}$
S. Fartoukh et al., PRSTAB, 2015
._ Nominal bunches with wire correction
\Perp Nominal bunches without wire correction

Frequency maps with space-charge

F.Asvesta, H.Bartosik and YP, 2017

- Evolution of frequency map over different longitudinal position
- Tunes acquired over each longitudinal period
- Particles with similar longitudinal offset but different amplitudes experience the resonance in different manner
- Particles with different longitudinal offset may experience different resonances

Contents of the 2nd lecture

- Resonances and the path to chaos
\square Topology of $3^{\text {rd }}$ and $4^{\text {th }}$ order resonance
\square Path to chaos and resonance overlap
\square Dynamic aperture simulations
■ Frequency map analysis
- NAFF algorithm
- Aspects of frequency maps
- Frequency and diffusion maps for the LHC
\square Frequency map for lepton rings
\square Working point choice
- Beam-beam effect

■ Experiments

\square Experimental frequency maps

- Beam loss frequency maps
\square Space-charge frequency scan
D. Robin, C. Steier, J. Laskar, and L. Nadolski, PRL 2000
- Frequency analysis of turn-by-turn data of beam oscillations produced by a fast kicker magnet and recorded on a Beam Position Monitors
- Reproduction of the nonlinear model of the Advanced Light Source storage ring and working point optimization for increasing beam lifetime

Experimental Methods - Tune scans

\square Study the resonance behavior around different working points in SPS
\square Strength of individual resonance lines can be identified from the beam loss rate, i.e. the derivative of the beam intensity at the moment of crossing the resonance
\square Vertical tune is scanned from about 0.45 down to 0.05 during a period of 3s along the flat bottom
\square Low intensity 4-5e10 p/b single bunches with small emittance injected
\square Horizontal tune is constant during the same period
\square Tunes are continuously monitored using tune monitor (tune postprocessed with NAFF) and the beam intensity is recorded with a beam current transformer

\square Resonances in low γ_{t} optics Resonances in the nominal optics
\square Normal sextupole Qx+2Qy is the strongest
\square Skew sextupole 2Qx+Qy quite strong
\square Normal sextupole Qx-2Qy, skew sextupole at 3Qy and $2 \mathrm{Qx}+2 \mathrm{Qy}$ fourth order visible

\square Normal sextupole resonance $\mathrm{Qx}+2 \mathrm{Qy}$ is the strongest
\square Coupling resonance (diagonal, either Qx-Qy or some higher order of this), Qx-2Qy normal sextupole
\square Skew sextupole resonance 2Qx+Qy weak compared to Q20 case
\square Stop-band width of the vertical integer is stronger (predicted by simulations)
PhD thesis, 2103 Nominal Optics

Tune Scans with SC

H.Bartosik

■ Limiting resonances for space charge tune spread: (H, V) ~ (0.10, ~0.19)

- Blow-up at integer resonances as expected
\square Losses for working point close to the Qx + 2Qy normal sextupole resonance (studied in Fix-line experiment with Q26) and around the the $4 \mathrm{Qx}=81$ normal octupole resonance
- Identified optimum working point area for vertical tune spread of 0.2
- $20.16<\mathrm{Qx}<20.23,20.24<\mathrm{Qy}<20.33$
\square Losses around 0.5% for 3 s storage time on flat bottom

Summary

- Appearance of fixed points (periodic orbits) determine topology of the phase space
■Perturbation of unstable (hyperbolic points) opens the path to chaotic motion
■Resonance can overlap enabling the rapid diffusion of orbits
- Need numerical integration for understanding impact of non-linear effects on particle motion (dynamic aperture)
- Frequency map analysis is a powerful technique for analyzing particle motion in simulations but also in real accelerator experiments

Problems

1) A ring has super-periodicity of 4 . Find a relationship for the integer tune that avoids systematic $3^{\text {rd }}$ and $4^{\text {th }}$ order resonances. Generalize this for any super-periodicity.
2) Compute the tune-spread at leading order in perturbation theory for a periodic octupole perturbation in one plane.
3) Extend the previous approach to a general multi-pole.
4) Do skew multi-poles provide $1^{\text {st }}$ order tune-shift with amplitude?

■ For any polynomial perturbation of the form x^{k} the "resonant" Hamiltonian is written as

$$
\hat{H}_{2}=\delta J_{2}+\alpha\left(J_{2}\right)+J_{2}^{k / 2} A_{k p} \cos \left(k \psi_{2}\right)
$$

- Note now that in contrast to the sextupole there is a nonlinear detuning term $\alpha\left(J_{2}\right)$
- The conditions for the fixed points are

$$
\sin \left(k \psi_{2}\right)=0, \quad \delta+\frac{\partial \alpha\left(J_{2}\right)}{\partial J_{2}}+\frac{k}{2} J_{2}^{k / 2-1} A_{k p} \cos \left(k \psi_{2}\right)=0
$$

- There are k fixed points for which $\cos \left(k \psi_{20}\right)=-1$ and the fixed points are stable (elliptic). They are surrounded by ellipses
- There are alsok fixed points for which $\cos \left(k \psi_{20}\right)=1$ and the fixed points are unstable (hyperbolic). The trajectories are hyperbolas
\square The resonant Hamiltonian close to the $4^{\text {th }}$ order resonance is written as

$$
\hat{H}_{2}=\delta J_{2}+c J_{2}^{2}+J_{2}^{2} A_{k p} \cos \left(4 \psi_{2}\right)
$$

- The fixed points are found by taking the derivative over the two variables and setting them to zero, i.e.
$\sin \left(4 \psi_{2}\right)=0, \delta+2 c J_{2}+2 J_{2} A_{k p} \cos \left(4 \psi_{2}\right)=0$
- The fixed points are at

- For half of them, there is a minimúm in the potential as cos $\left(4 \psi_{20}\right)=-1$; and they are elliptic and half of them they are hyperbolic asicos $\left(4 \psi_{20}\right)=$ '

