
Summary

integrated dipole field over a turn
´
Bdl ⇡ NLBendB = 2⇡ P

0

q

transfer matrix of a FODO cell MFODO =

 
1 + L

2f L+ L2

4f
� 2L

f 2
1 � L

2f � L2

4f 2

!

stability in a FODO cell f > L/4

phase advance in a FODO cell µ = arccos
� 1

2 trace (M)
�

matching sections provide

0

@
�
↵
�

1

A

s

= M3⇥3

0

@
�
↵
�

1

A

0
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Part 4.

Dispersion
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Introducing dispersion: D (s)
So far we have studied monochromatic beams of particles, but this is slightly unrealistic:
We always have some (small?) momentum spread among all particles:
�P = P � P0 6= 0.

Consider three particles with P respectively: less than, greater than, and equal to P0 ,
traveling through a dipole. Remembering B⇢ = P

q
:

0

p=p
0

p<p
0

p>p

The system introduces a correlation of momentum with transverse position. This
correlation is known as dispersion (an intrinsic property of the dipole magnets).
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The Inhomogeneous Hill’s equation
Let’s go back to the magnetic rigidity. If P 6= P0 (define � = P�P

0

P
0

= �P
P
0

) we can work out how
the bending radius ⇢ depends on the particle momentum, w.r.t. ⇢0:

) B⇢ =
P

q
=

P0 (1 + �)

q
= B⇢0 (1 + �) ) ⇢ = ⇢0 (1 + �) .

When we derived the equation of motion at some point we had (slide 18):

x 00|{z}
term 1

�
1

⇢+ x
| {z }
term 2

= �
By

P/q
that later became: x 00 +

✓
1
⇢2 + k

◆
x = 0

On the way we had "Taylor expanded" term 2:
1

⇢+ x
⇡

1
⇢

✓
1 �

x

⇢

◆
.

Now we need to redo it for ⇢ as ⇢0 (1 + �):
1

⇢+ x
=

1
⇢0 (1 + �) + x

⇡
1
⇢0

✓
1 �

x

⇢0
��

◆

and the equation of motion becomes:

x 00 +

✓
1
⇢2
0
+ k

◆
x�

�

⇢0
= 0.

If we drop the suffix 0 and explicit �, this is "the inhomogeneous Hill’s equation":

x

00
+

⇣
1
⇢2 + k

⌘
x=

1
⇢
�P
P0
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Solution of the inhomogeneous Hill’s equation

A particle with �P = P � P0 6= 0 satisfies the inhomogeneous Hill equation for the
horizontal motion:

x

00 (s) + K (s) x (s) =
1
⇢
�P

P0

the total deviation of the particle from the reference orbit can be written as

x (s) = x� (s) + xD (s)

where:

I
x� (s) describes the betatron oscillation around the new closed orbit, and it’s the
solution of the homogeneous equation x

00
� (s) + K (s) x� (s) = 0

I
xD (s) describes the deviation of the closed orbit for an off-momentum particle with
P = P0 +�P . It is rewritten as xD (s) = D (s) �P

P
0

, where D (s) is the solution of
the equation

D

00 (s) + K (s)D (s) =
1
⇢

D (s) is the dispersion function.
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Dispersion function and orbit
The dispersion function D (s) is the solution of the inhomogeneous Hill’s equation:

D

00 (s) + K (s)D (s) =
1
⇢

D(s):

I is that special orbit that an ideal particle would have for �P/P0 = 1

I It can be proved that the solution is:

D (s) = S (s)

ˆ s

0

1
⇢ (t)

C (t) dt � C (s)

ˆ s

0

1
⇢ (t)

S (t) dt

Once one knows D (s), the orbit x (s) = x� (s) + xD (s), with xD (s) = D (s) �P
P
0

, can be
rewritten as

x (s) = x� (s) + xD (s)

= C (s) x0 + S (s) x 0
0 + D (s)

�P

P0
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Dispersion function and orbit

The equation of motion:

x (s) = x� (s) + xD (s)

= C (s) x0 + S (s) x 00 + D (s)
�P

P0

can be written in matrix form:
✓

x

x

0

◆

s

=

✓
C S

C

0
S

0

◆✓
x

x

0

◆

0
+

�P

P0

✓
D

D

0

◆

0

Or, in a more compact way:
0

@
x

x

0

�P/P
0

1

A

s

=

0

@
C S D

C

0
S

0
D

0

0 0 1

1

A

0

@
x

x

0

�P/P
0

1

A

0
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Dispersion function and orbit

We need to study the motion for particles with �P = P � P0 6= 0 :

x

00 (s) + K (s) x (s) =
1
⇢
�P

P0

The general solution of this equation is:

x (s) = x� (s) + xD (s)

8
<

:

x

00
� (s) + K (s) x� (s) = 0

D

00 (s) + K (s)D (s) =
1
⇢

with xD (s) = D (s) �P
P
0

.

Remarks
I

D (s) is that special orbit that a particle would have for �P/P0 = 1
I

xD (s) describes the deviation of the new closed orbit for an off-momentum
particle with a certain �P

I the orbit of a generic particle is the sum of the well known x� (s) and xD (s)
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Closed orbit of off-momentum particles

Orbit x (s) = x� (s) + D (s) �P
P

0

.

Closed orbit for particles with momentum P 6= P0 in
a weakly (a) and strongly (b) focusing circular accelerator.

I
xD (s) describes the deviation from the reference orbit of an off-momentum particle
with P = P0 +�P

I
x� (s) describes the betatron oscillation around the orbit xD (s)
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Dispersion and orbit propagation
The dispersion orbit is solution of D 00 (s) + K (s)D (s) = 1

⇢ :

D (s) = S (s)

ˆ s

0

1
⇢ (t)

C (t) dt � C (s)

ˆ s

0

1
⇢ (t)

S (t) dt

Now the orbit:

x (s) = x� (s) + xD (s)

x (s) = C (s) x0 + S (s) x 00 + D (s)
�P

P0

In matrix form ✓
x
x 0

◆

s

=

✓
C S
C 0 S 0

◆✓
x
x 0

◆

0
+

�P

P0

✓
D
D0

◆

0

We can rewrite the solution in matrix form:
0

@
x
x 0

�P/P
0

1

A

s

=

0

@
C S D
C 0 S 0 D0

0 0 1

1

A

0

@
x
x 0

�P/P
0

1

A

0

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions D0 = D

0
0 = 0.
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Examples of dispersion function

Let’s study, for different magnetic elements, the solution of:

D (s) = S (s)

ˆ s

0

1
⇢ (t)

C (t) dt � C (s)

ˆ s

0

1
⇢ (t)

S (t) dt

at the exit of the element: that is, D (s) with s = Lmagnet

I Drift space:

MDrift =

✓
1 L

0 1

◆

C (t) = 1, S (t) = L, ⇢ (t) = 1 ) the integrals cancel

MDrift =

0

@
1 L 0
0 1 0
0 0 1

1

A
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Dispersion function in a sector dipole

I Sector dipole:
K = 1

⇢2

:

MDipole =

0

@
cos
⇣p

KL

⌘
1p
K

sin
⇣p

KL

⌘

�
p
K sin

⇣p
KL

⌘
cos
⇣p

KL

⌘

1

A =

 
cos L

⇢ ⇢ sin L
⇢

� 1
⇢ sin L

⇢ cos L
⇢

!

which gives

D (L) = ⇢

✓
1 � cos

L

⇢

◆

D

0 (L) = sin
L

⇢

therefore

MDipole =

0

B@
cos L

⇢ ⇢ sin L
⇢ ⇢

⇣
1 � cos L

⇢

⌘

� 1
⇢ sin L

⇢ cos L
⇢ sin L

⇢

0 0 1

1

CA

Notice: L
⇢ = � is the bending angle.
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Dispersion function in a quadrupole

I Focusing quadrupole, K > 0:

MQF =

0

BB@

cos
⇣p

KL

⌘
1p
K

sin
⇣p

KL

⌘
0

�
p
K sin

⇣p
KL

⌘
cos
⇣p

KL

⌘
0

0 0 1

1

CCA ;

I Defocusing quadrupole, K < 0:

MQD =

0

BB@

cosh
⇣p

|K |L
⌘

1p
|K |

sinh
⇣p

|K |L
⌘

0
p

|K | sinh
⇣p

|K |L
⌘

cosh
⇣p

|K |L
⌘

0
0 0 1

1

CCA
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Dispersion propagation through the lattice

I The equation:

D (s) = S (s)

ˆ s

0

1
⇢ (t)

C (t) dt � C (s)

ˆ s

0

1
⇢ (t)

S (t) dt

allows to compute the dispersion inside a magnet, which does not depend
on the dispersion that might have been generated by the upstreams magnets.

I At the exit of a magnet of length Lm the dispersion reaches the value D (Lm)

I The dispersion (also indicated as ⌘, with its derivative ⌘0 ) propagates from
there, through the rest of the machine, just like any other particle:

0

@
⌘
⌘0

1

1

A

s

=

0

@
C S D

C

0
S

0
D

0

0 0 1

1

A

0

@
⌘
⌘0

1

1

A

0
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Periodic dispersion

In a periodic lattice, also the dispersion must be periodic.

That is, for

0

@
⌘
⌘0

1

1

A we need to have:

0

@
⌘
⌘0

1

1

A =

0

@
C S D

C

0
S

0
D

0

0 0 1

1

A

0

@
⌘
⌘0
1

1

A

Let’s rewrite this in 2 ⇥ 2 form:
✓

⌘
⌘0

◆
=

✓
C S

C

0
S

0

◆✓
⌘
⌘0

◆
+

✓
D

D

0

◆

✓
1 � C �S

�C

0 1 � S

0

◆✓
⌘
⌘0

◆
=

✓
D

D

0

◆

The solution is:
✓

⌘
⌘0

◆
=

1
(1 � C) (1 � S

0)� C

0
S

✓
1 � S

0
S

C

0 1 � C

◆✓
D

D

0

◆
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Dispersion function in a FODO lattice

The dispersion function in a FODO cell is a periodic function with maxima at the

focusing quadrupoles and minima at the defocusing quadrupoles:

D

± =
L�

�
1 ± 1

2 sin µ
2

�

4 sin2 µ
2

where:
I

L is the total length of the cell
I � is the total bending angle of the cell
I µ is the phase advance of the cell
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Example of dispersion function in a FODO lattice
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Impact of dispersion on the beam size
In this example from the HERA storage ring
(DESY) we see the Twiss parameters and the dis-
persion near the interaction point. In the periodic
region,

x� (s) = 1 . . . 2 mm
D (s) = 1 . . . 2 m
�P/P

0

⇡ 1 · 10�3

Remember:

x (s) = x� (s) + D (s)
�P

P0

Beware: the dispersion contributes to the beam size:

�x =

s

�2
x� + std

✓
D · �P

P0

◆2

=

s

✏geometric · � + D

2 · �
2
P

P

2
0

I We need to suppress the dispersion at the IP !
I We need a special insertion section: a dispersion suppressor

I Remember: ✏geometric =
✏normalised

�rel�rel
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The momentum compaction factor
The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate

The general solution of the equation of motion is

x (s) = x� (s) + D (s)
�P

P0

The dispersion changes also the length of the off-
energy orbit.

particle with offset x w.r.t. the design orbit:

ds 0

ds
=

⇢+ x

⇢
! ds 0 =

✓
1 +

x

⇢

◆
ds

The circumference change is �C , that is C

0 =
¸ ⇣

1 + x
⇢

⌘
ds = C +�C

We define the “momentum compaction factor” ↵P , such that:

�C

C

= ↵P
�P

P0
! to the lowest order in �P/P0 : ↵P =

1
C

˛
D (s)
⇢

ds ⇡ 1
Q

2
x
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Summary

inhomogeneous Hill’s equation x

00 + K (s) x = 1
⇢

�P
P
0

...and its solution x (s) = x� (s) + D (s) �P
P
0

dispersion function D (s)
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Part 5.

Imperfections
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Fringe fields
I Hard-edge model:

x

00 (s) +

✓
1
⇢2 + k

◆
x (s) = 0

this equation is not really correct (because it violates the Maxwell equations at the
magnet edges!)

I Bending and focusing forces -even inside a magnet- depend on the position s

x

00 (s) +

⇢
1

⇢2 (s)
+ k (s)

�
x (s) = 0

Fringe field of a dipole magnet (in this case:

a combined dipole + quadrupole magnet, no-

tice the slope of the field along the x axis)
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Magnetic imperfections
High-order multipolar components and misalignments

Taylor expansion of the B field:

By (x) = By0|{z}
dipole

+
@By

@x|{z}
quad

x +
1
2

@2
By

@x2
| {z }

sextupole

x

2 +
1
3!

@3
By

@x3
| {z }
octupole

x

3 + . . . divide by By0

There can be undesired multipolar components,
due to small fabrication defects
Or also errors in the windings, in the gap h, ...

remember: B =
µ0nI

h

Moreover: “feed-down” effect ) a misalign magnet of order n, behaves like a magnet of order
n, plus a magnet of order n � 1 overlapped
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Dipole magnet errors

Let’s imagine to have a magnet with B = B0 +�B. This will give an additional kick to
each particle, and will distort the ideal design orbit

Fx = ev (B0 +�B) ; �x

0 = �Bds/B⇢

A dipole error will cause a distortion of the closed orbit, that will „run around“ the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error
✓

x

x

0

◆

s

= Mlattice

✓
0

�x

0

◆

0

In order to have bounded motion the tune Q must be non-integer, Q 6= 1. We see that
even for particles with reference momentum P0 an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

We consider a single thin dipole field error at the location s = s0, with a kick angle �x 0.

X� =

✓
x0

x 00 +�x 0

◆
, X+ =

✓
x0
x 00

◆

are the phase space coordinates before and after the kick located at s0. The closed-orbit
condition becomes

MLattice

✓
x0
x 00

◆
=

✓
x0

x 00 +�x 0

◆

The resulting closed orbit at s0 is

x0 =
�0�x 0

2 sin⇡Q
cos⇡Q; x 00 =

�x 0

2 sin⇡Q
(sin⇡Q � ↵0 cos⇡Q)

where Q is the tune. The orbit at any other location s is

x(s) =

p
�s�0�x

0

2 sin⇡Q
cos (⇡Q � |µs � µ0|)

(see the references for a demonstration)
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Orbit distortion for distributed dipole field errors
One single dipole field error

x(s) =

p
�s�0�x

0

2 sin⇡Q
cos (⇡Q � |µs � µ0|)

Distributed dipole field errors

x(s) =

p
�s

2 sin⇡Q

X

i

p
�i�x

0
i cos (⇡Q � |µs � µi |)

I orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point s0

I the � function describes the sensitivity of the beam to external fields
I the � function acts as amplification factor for the orbit amplitude at the

given observation point
I there is a singularity at the denominator when Q integer ) it’s called

resonance
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

MPerturbed =

✓
1 0

�kds 1

◆

| {z }
perturbation

✓
cosµ0 + ↵ sinµ0 � sinµ0

�� sinµ0 cosµ0 � ↵ sinµ0

◆

| {z }
ideal ring

Let’s see how the tunes changes: one-turn map

MPerturbed =

✓
cosµ0 + ↵ sinµ0 � sinµ0

�kds (cosµ0 + ↵ sinµ0)� � sinµ0 �kds� sinµ0 + cosµ0 � ↵ sinµ0

◆

Remember the rule for computing the tune:

2 cosµ = trace (M) = 2 cosµ0 +�kds� sinµ0
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Quadrupole errors: tune shift (cont.)
We rewrite cosµ = cos (µ0 +�µ)

cos (µ0 +�µ) = cosµ0 +
1
2
�kds� sinµ0

from which we can compute that

�µ =
�k ds �

2
shift in the phase advance

�Q =

˛
quads

�k (s)� (s) ds
4⇡

tune shift

Important remarks:
I the tune shift if proportional to the �-function at the location of the

quadrupole
I field quality, power supply tolerances etc. are much tighter at places where �

is large

I � is a measurement of the sensitivity of the beam
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Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

�Q =

˛
quads

�K (s)� (s) ds
4⇡

⇡ �K (s) Lquad �

4⇡

The tune is measured permanently

)

We change the strength of "trim" quads to
fix Q

Horizontal axis is a scan of K1 (quad in-
tegrated focusing strength):

I tune shift is proportional to �
through �Q / �K · �

I En passant, we use this to
measure �.
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Tune shift correction
Errors in the quadrupole fields induce tune shift:

�Q =

˛
quads

�k (s)� (s) ds
4⇡

Cure: we compensate the quad errors using other (correcting) quadrupoles

I If you use only one correcting quadrupole, with 1/f = �k1L

I it changes both Qx and Qy :

�Qx =
�1x

4⇡f1
and �Qy = � �1y

4⇡f1
I We need to use two independent correcting quadrupoles:

�Qx =
�1x

4⇡f1
+

�2x

4⇡f2

�Qy = � �1y

4⇡f1
� �2y

4⇡f2

✓
�Qx

�Qy

◆
=

1
4⇡

✓
�1x �2x

�1y �2y

◆✓
1/f1
1/f2

◆

I Solve by inversion:
✓

1/f1
1/f2

◆
=

4⇡
�1x�2y � �2x�1y

✓
�2y ��2x

��1y �1x

◆✓
�Qx

�Qy

◆
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Quadrupole errors: beta beat
A quadrupole error at s0 causes distortion of �-function at s: ��(s) due to the errors of
all quadrupoles:

��s

�s
=

1
2 sin 2⇡Q

X

i

�i�ki cos (2⇡Q � 2 (µi � µs))

Note: Unstable betatron motion if tune is half integer!

This imperfection can be corrected with an appropriate distribution of tuneable
sextupoles.
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Tunes and resonances
The particles – oscillating under the influence of the external magnetic fields – can be
excited in case of resonant tunes to infinite high amplitudes.

There is particle loss within a short number of turns.

The cure:

1. avoid large magnet errors
2. avoid forbidden tune values in both planes

m·Qx+n·Qy 6=p

with m, n, p integer numbers
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Resonance diagram

m·Qx+n·Qy 6=p where |m|+|n| is the order of the resonance

A resonance diagram for the Diamond light source. The lines shown are the resonances
and the black dot shows a suitable place where the machine could be operated.
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Quadrupole errors: chromaticity, ⇠
Is an error (optical aberration) that happens in quadrupoles when �P/P0 6= 0:

The chromaticity ⇠ is the variation of tune �Q with the relative momentum error:

�Q = ⇠
�P

P0
) ⇠ =

�Q

�P/P0

Remember the quadrupole strength:

k =
g

P/q
with P = P0 +�P = P0 (1 + �)

then

k =
qg

P0 +�P

=
k0

1 + �
⇡ q

P0

✓
1 � �P

P0

◆
g = k0 +�k

�k = ��P

P0
k0
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Quadrupole errors: chromaticity (cont.)

�k = ��P

P0
k0

) Chromaticity acts like a quadrupole error and leads to a tune spread:

�Qone quad = � 1
4⇡

�P

P0
k0� (s) ds ) �Qall quads = � 1

4⇡
�P

P0

˛
k (s)� (s) ds

Therefore the definition of chromaticity ⇠ is

⇠ = � 1
4⇡

˛
quads

k (s)� (s) ds

The peculiarity of chromaticity is that it isn’t due to external agents, it is generated by
the lattice itself!

Remarks:
I ⇠ is a number indicating the size of the tune spot in the working diagram
I ⇠ is always created by the focusing strength k of all quadrupoles
I

natural chromaticity of a focusing quad is always negative

In other words, because of chromaticity the tune is not a sharp point, but is a spot
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Example: Chromaticity of the FODO cell
Consider a FODO cells like in figure, with two thin quads, each with focal length f ,
separated by length L/2, and total phase advance µ:

The natural chromaticity ⇠N of the cell is:

⇠N = �
1
4⇡

˛
�(s)k(s)ds

= �
1
4⇡

ˆ
cell

�(s) k(s)ds
| {z }

1

f

= �
1
4⇡


�+

f
�

��

f

�

= �
1

4⇡ sinµ

✓
L+

L2

4f

◆
1
f
�

✓
L�

L2

4f

◆
1
f

�

= �
1

4⇡ sinµ


L

f
�

L

f
+

L2

2f 2

�

= �
1

8⇡ sinµ

L2

f 2 ' �
1
⇡

tan
µ

2

For Ncell cells, the total chromaticity is Ncell times the chromaticity of each cell
⇠N,N

cell

= �N
cell

⇡ tan µ
2 .
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Quadrupole errors: chromaticity
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Chromaticity correction
Remember what is chromaticity: the quadrupole focusing experienced by particles
changes with energy

I it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional, energy-dependent, focusing. This is given by sextupoles

I The sextupole magnetic field rises quadratically:

Bx = g̃ xy

By =
1
2
g̃

�
x

2 � y

2� ) @Bx

@y
=

@By

@x
= g̃ x a "gradient"

it provides a linearly increasing quadrupole gradient
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Chromaticity correction (cont.)

Now remember:

I Normalised quadrupole strength is

k =
g

P/q
[m�2]

I Sextupoles are characterised by a normalised sextupole strength k2, which
carries a focusing quadrupolar component k1:

k2 =
g̃

P/q
[m�3]; k̃1 =

g̃ x

P/q
[m�2]
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in
order to increase the focusing strength for particles with larger energy

I A sextupole at a location with dispersion does the trick: x = D · �P
P
0

k̃1 =
g̃

⇣
D

�P
P
0

⌘

P/q
[m�2]

I for x = 0 it corresponds to an energy-dependent focal length

1
fsext

= k̃1Lsext =

k̃
1z }| {

g̃

P/q
| {z }

k
2

D

�P

P0| {z }
[m]

·Lsext = k2D · �P

P0
· Lsext

Now the formula for the chromaticity rewrites:

⇠ = � 1
4⇡

˛
k (s)� (s) ds

| {z }
chromaticity due to quadrupoles

+
1
4⇡

˛
k2 (s)D� (s) ds

| {z }
chromaticity due to sextupoles
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Design rules for sextupole scheme

I Chromatic aberrations must be corrected in both planes ) you need at least
two sextupoles, SF and SD (sextupole strengths)

I In each plane the sextupole fields contribute with different signs to the
chromaticity ⇠x and ⇠y :

⇠x = � 1
4⇡

˛
�x (s) [ k (s)� SFDx (s) + SDDx (s)] ds

⇠y = � 1
4⇡

˛
�y (s) [�k (s) + SFDx (s)� SDDx (s)] ds

I To minimise chromatic sextupoles strengths, sextupoles should be located
near quadrupoles where �xDx and �yDx are large

I For optimal independent chromatic correction SF should be located where
the ratio �x/�y is large, SD where �y/�x is large.
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Example of chromaticity correction scheme
I

Chromatic aberrations introduced by quadrupoles are locally cancelled by
sextupoles placed near the quadrupoles, in dispersive regions (in straight sections
dispersion is generated using an upstream bending magnet)

I Notice that the sextupoles affect also the on-momentum particles: i.e. they
introduce geometric aberrations. These can be cancelled by adding one additional
sextupoles (per each direction), in opposite phase with them (�µ = ⇡)

The phase advance between the two sextupoles S1 and S2 must be ⇡, so that:

✓
x

x

0

◆

s
1

!

�µ = ⇡
m

M =

✓
�1 0
0 �1

◆

| {z }
s
1

!s
2

!
✓

�x

�x

0

◆

s
2

120/147 A. Latina - Transverse beam dynamics - JUAS 2017



Summary of imperfections

Error Effect Cure

fabrication imperfections
unwanted multipolar better fabrication /

components multipolar corrector coils

transverse offsets “feed-down” effect
better alignment /
corrector kickers

roll effects couplings x � y skew quads

dipole kicks along orbit distortion / �kick location, corrector kickers
the ring residual dispersion

quad field errors tune shift trim special quadrupoles
chromaticity tune spread design / sextupoles

power supplies closed orbit distortion try to correct /
tune shift / spread improve power supplies
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Summary

orbit for an off-momentum particle x (s) = x� (s) + D (s) �P
P
0

dispersion trajectory D (s) = S (s)
´ s
0

1
⇢(t)C (t) dt � C (s)

´ s
0

1
⇢(t)S (t) dt

equations of motion with dispersion

0

@
x
x 0

�P/P
0

1

A

s

=

0

@
C S D
C 0 S 0 D0

0 0 1

1

A

0

@
x
x 0

�P/P
0

1

A

0

definition of momentum compaction, ↵P
�C
C

= ↵P
�P
P
0

stability condition m · Qx + n · Qy 6= p with n,m, p integers

tune shift �Q = 1
4⇡

¸
quads �k (s)� (s) ds

beta beat

�� (s)

� (s)
=

1
2 sin 2⇡Q

·

·
˛

� (t)�k (t) cos (2⇡Q � 2 (µ (t)� µ (s))) dt

chromaticity ⇠ = �Q
�P/P

0

= � 1
4⇡

¸
quads k (s)� (s) ds
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