Summary

integrated dipole field over a turn
transfer matrix of a FODO cell

stability in a FODO cell

phase advance in a FODO cell

matching sections provide
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Part 4.

Dispersion
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Introducing dispersion: D (s)
So far we have studied monochromatic beams of particles, but this is slightly unrealistic:

We always have some (small?) momentum spread among all particles:
AP =P — Py #0,

Consider three particles with P respectively: less than, greater than, and equal to Py ,

traveling through a dipole. Remembering Bp = g:

The system introduces a correlation of momentum with transverse position. This

Lorrelation s known as dispersion, (an. ingrinsic property of the dipgle magnets).

The Inhomogeneous Hill's equation

Let's go back to the magnetic rigidity. If P # Pg (define § = P;°P° = %f) we can work out how

the bending radius p depends on the particle momentum, w.r.t. pg:

P Po(1+46
q
When we derived the equation of motion at some point we had (slide 18):

Bpo (1 +9) = p=po(1+9).

1 B 1
x" - = ——2 that later became: x"" + <— + k> x=0
~~  p+x P/q p?
term 1 N —
term 2
1 1 X
On the way we had "Taylor expanded" term 2: ~ - (1 — —).
prx p P
1 1 1
Now we need to redo it for p as pg (1 + 6): = ~ — (1 — 1—6)
p+x  po(l+3d)+x  po po

and the equation of motion becomes:

1 1)
x" + (—2 —i—k) x—— =0.
Po
If we drop the suffix 0 and explicit §, this is "the inhomogeneous Hill's equation":

AP

1
P ro

x”+(pl2 + k)x=
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Solution of the inhomogeneous Hill's equation

A particle with AP = P — Py # 0 satisfies the inhomogeneous Hill equation for the

horizontal motion:
1 AP

p Po

the total deviation of the particle from the reference orbit can be written as

x"(s) + K(s)x(s) =

x(s) = xg (s) +xo (s)
where:

> xg3 (s) describes the betatron oscillation around the new closed orbit, and it's the
solution of the homogeneous equation x5 (s) + K (s) xz (s) =0

> xp (s) describes the deviation of the closed orbit for an off-momentum particle with
P = Py + AP . It is rewritten as xp (s) = D (s) %—f , where D (s) is the solution of
the equation
D" (s)+ K(s)D(s) ==

D (s) is the dispersion function.
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Dispersion function and orbit

The dispersion function D (s) is the solution of the inhomogeneous Hill's equation:

D" (s)+ K (s)D(s) =

I

D(s):

> is that special orbit that an ideal particle would have for AP/Py =1

» It can be proved that the solution is:

D (s) = 5(5)/ s C(0)de - C(s)/ TORIO

Once one knows D (s), the orbit x (s) = x3 (s) + xp (s), with xp (s) = D (s) %f, can be
rewritten as

x(s) = xg (s) + xp (s)

= C(s)x+S5(s) %+ D(s)
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Dispersion function and orbit

The equation of motion:
x(s) = xg (s) +xp (s)
AP

= C(8)0+S(s) %+ D(s) 5

can be written in matrix form:
(X)_(C 5)<X>+AP(D>
x' ). c s x'Jo Po \ D/,

Or, in a more compact way:

X cC S D X
x' = c s D x’
AP/p, 0 0 1 AP/p,

S
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Dispersion function and orbit

We need to study the motion for particles with AP =P — Py # 0 :

1 AP
X"(s)+ K(s)x(s) = = —
() +K(&)x(0) = 5
The general solution of this equation is:
<4 () + K (s) x5 (5) = 0

x(s) = xp (s) + xp (s) { D" (s)+ K(s)D(s) =

Dl

with xp (s) = D (s) %:.

Remarks
» D (s) is that special orbit that a particle would have for AP/Py =1

> xp (s) describes the deviation of the new closed orbit for an off-momentum
particle with a certain AP

> the orbit of a generic particle is the sum of the well known x3 (s) and xp (s)
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Closed orbit of off-momentum particles

Orbit x (s) = xg (s) + D (s) %f.

A
X ”’g\i
Pe
<
~—~closed orbit ]
for p<pg / closed orbit for p>p

central design orbit g AD
=closed orbit for p=p, Xp!S

Closed orbit for particles with momentum P # Py in

a weakly (a) and strongly (b) focusing circular accelerator.

> xp (s) describes the deviation from the reference orbit of an off-momentum particle
with P = Py + AP

> x3 (s) describes the betatron oscillation around the orbit xp (s)
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Dispersion and orbit propagation

The dispersion orbit is solution of D" (s) + K (s) D (s) = % :

D(s):S(s)/OSﬁC(t)dt—C(s)/OSLS(t)dt

p(t)
Now the orbit:

x(s) = x5 () +x (5)

x(s) = C(S)XO—FS(S)X(I)"’D(S)g

(2)=(e )0 )= (o),

We can rewrite the solution in matrix form:

X C S D X
x! = c' s D x!
AP/p,y < 0 0 1 o

AP/PO

In matrix form

Exercise: show that D (s) is a solution for the equation of motion, with the initial
conditions Dy = D{ = 0.
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Examples of dispersion function

Let's study, for different magnetic elements, the solution of:

D (s) = 5(5)/ T C(6)de - C(s)/ SO

at the exit of the element: that is, D (s) with s = Lmagnet

» Drift space:

1 L

C(t)=1, S(t)=L, p(t) =00 = the integrals cancel
MDrift - ( )
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oo
o R~
= oo

Dispersion function in a sector dipole

» Sector dipole:

_ 1.
K_p—z.

Mbipole = ( o8 (\/RL) \/LR sin (\/RL) ) _ ( cosl%

—v/K sin (\/RL) cos (\/RL) —% sin %
which gives
D (L) :p(l—cos£>
p
/ L
D" (L) =sin —
(L) p
therefore
cos% psm% p(l—cos 5)
MDlpoIe - —=sin L COos L sin L
P P p
0 0 1

Notice: I—L) = ¢ is the bending angle.
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psin =
cos =



Dispersion function in a quadrupole

» Focusing quadrupole, K > 0:

cos (\/RL) \/LR sin (\/RL) 0
Mar = | —\/K sin (ﬁL) cos (\/RL) 0
1

0 0
» Defocusing quadrupole, K < 0:
cosh( |K|L> \/Tﬂsinh( |K|L> 0
Map = \/|K|sinh( |K|L> cosh( |K|L> 0
0 0 1
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Dispersion propagation through the lattice

» The equation:
D (s) :5(5)/05$C(t)dt— C(s)/(jﬁS(t)dt

allows to compute the dispersion inside a magnet, which does not depend
on the dispersion that might have been generated by the upstreams magnets.

> At the exit of a magnet of length L., the dispersion reaches the value D (L)

» The dispersion (also indicated as 7, with its derivative 1’ ) propagates from
there, through the rest of the machine, just like any other particle:

n c S D n
,',]/ — C/ S/ D/ ,',]/
1 0 0 1 1
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Periodic dispersion

In a periodic lattice, also the dispersion must be periodic.

n
That is, for ( n ) we need to have:
1

The solution is:

(g’)z(l—C)(liS’)—C’S( 12/51 1fC)(lL))’)
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Dispersion function in a FODO lattice

The dispersion function in a FODO cell is a periodic function with maxima at the

focusing quadrupoles and minima at the defocusing quadrupoles:

Lo (1 + 2 5 sin 2)

©
4S|n 5

D* =

where:
» L is the total length of the cell
» ¢ is the total bending angle of the cell

» u is the phase advance of the cell
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Example of dispersion function in a FODO lattice

25 meter 180° Arc based on 90°-FODO lattice

T T T T

(=) T T o
< p=3.8GeVic 1<
= =
= S
=t 1%
<
i 1o
[11] [=]

I T
=) L . . L . . . . . N
0 BETA_X BETA_Y DISP_X DISP_Y 24.8792
L] | T s O o, s s, s, N s ) s, s, ) e, M | [ ]
N J\ J\ J
Y Y Y )
2 < ‘half-empty ' cells 4 - 90°-FODO cells 2 < ‘half-empty ' cells
Aperture radius: r =15 cm
12 « Dipoles: field: 3.9 Tesla length: 85 cm
15 « Quads: gradient: 25 Tesla/m (3.8 Tesla at the pole) length: 50 cm
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Impact of dispersion on the beam size
In this example from the HERA storage ring T S—————

(DESY) we see the Twiss parameters and the dis-
persion near the interaction point. In the periodic 5 [t i\

region, /1
xg(s)=1...2 mm i I
D(s)=1...2m
AP/py ~1-1073

Remember:

x(s)=X5(s)+D(s)AP—:

Beware: the dispersion contributes to the beam size:

p. AP
0

Rlsh

2
Ox = U)%ﬁ + std ( ) - €geometric B + D2 d

» We need to suppress the dispersion at the IP !

» We need a special insertion section: a dispersion suppressor

€normalised

Brel VYrel
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The momentum compaction factor

The dispersion function relates the momentum error of a particle to the horizontal orbit
coordinate
The general solution of the equation of motion is

X(5) = % () + D (s)

The dispersion changes also the length of the off-
energy orbit.

0 X particle with offset x w.r.t. the design orbit:
'/Afﬂ

/ ,
ds | | ds'zas(1.%) d' _ptx ds':(1+f)ds
( ds P P

The circumference change is AC, that is C' = ¢ (1 + %) ds=C+ AC

We define the “momentum compaction factor’ ap, such that:

A—CC = ap%f — to the lowest order in AP/Py:  ap = %¢
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D(s)dsz —

1
p Q?

Summary

inhomogeneous Hill's equation  x” + K (s) x = %%:
...and its solution  x (s) = xz (s) + D (s) %’

dispersion function D (s)
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Part 5.

Imperfections
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Fringe fields

» Hard-edge model:
12 1
X (S)—f—(?—’—k)X(S):O

this equation is not really correct (because it violates the Maxwell equations at the
magnet edges!)
» Bending and focusing forces -even inside a magnet- depend on the position s

x”(s)+{ +k(s)}x(s):0

1
p? (s)

-
s inge fig,
4

Fringe field of a dipole magnet (in this case:
a combined dipole + quadrupole magnet, no-
tice the slope of the field along the x axis)

20

-350

8 fmmy % 250

0 &
-200 -20
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Magnetic imperfections

High-order multipolar components and misalignments

Taylor expansion of the B field:

OB 1 0°B, » 1 0°B, ;
B, (x)= By + —2x+ = Y oxt 4 = L xT 4 divide by B
v () 2 ox 2 0x? 3! 0x3 Y By
dipol
pole
quad sextupole octupole
L Dpotes There can be undesired multipolar components,

. a due to small fabrication defects

Or also errors in the windings, in the gap h, ...
pon!

remember: B =

N IS N I S N —
0 2 & 6 8 0 12 W %

Moreover: “feed-down” effect = a misalign magnet of order n, behaves like a magnet of order

n, plus a magnet of order n — 1 overlapped
101/147 A. Latina - Transverse beam dynamics - JUAS 2017

Dipole magnet errors
Let's imagine to have a magnet with B = By + AB. This will give an additional kick to
each particle, and will distort the ideal design orbit

F. =ev(Bo+ AB); Ax' = ABds/Bp

A dipole error will cause a distortion of the closed orbit, that will ,,run around” the
storage ring, being observable everywhere. If the distortion is small enough, it will still
lead to a closed orbit.

Example: 1 single dipole error x(9

X 0
( XI )S — MIattice( AX/ )0

In order to have bounded motion the tune @ must be non-integer, @ # 1. We see that
even for particles with reference momentum Py an integer Q value is forbidden, since
small field errors are always present.
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Orbit distortion for a single dipole field error

N |

X, dipole kick 1/p*4s

We consider a single thin dipole field error at the location s = sp, with a kick angle Ax’.

. X0 (X0
X‘_(X6+AX’>’ X*‘(xa)

are the phase space coordinates before and after the kick located at sy. The closed-orbit

condition becomes
X0 X0
MLattice <XC/)> - (X(/) —{—AX/)

The resulting closed orbit at sg is
BoAx’ , Ax’
= — cosTQ; Xxg = -
2sinT@ 2sinT@

where @ is the tune. The orbit at any other location s is

VBsBoAX!
x(s) = %COS(WQ— |is — piol)

X0 (sinTQ — g cos T Q)

.(see.the references.for.a demonstration)s 2017

Orbit distortion for distributed dipole field errors

One single dipole field error

VBsPoAX!
x(s) = %cos(w@— s — piol)

Distributed dipole field errors

xs) = g2 57 Vst cos (7@ — s — i

» orbit distortion is visible at any position s in the ring, even if the dipole error
is located at one single point sg

» the 5 function describes the sensitivity of the beam to external fields

» the 5 function acts as amplification factor for the orbit amplitude at the
given observation point

> there is a singularity at the denominator when @ integer = it's called
resonance
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Quadrupole errors: tune shift

Orbit perturbation described by a thin lens quadrupole:

Y, . 1 0 cos o + asin g Bsin po
Perturbed = | " Apds 1 —'sin o COS Lo — a:sin Lo
pertu;gation idea,Tring

Let's see how the tunes changes: one-turn map

Y, B Cos 1o + asin o Bsin o
Perturbed = { " A kds (cos po + asin po) — ysin o AkdsfBsin o + cos po — arsin o

Remember the rule for computing the tune:

2 cos pu = trace (M) = 2 cos puo + AkdsS sin o
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Quadrupole errors: tune shift (cont.)
We rewrite cos . = cos (uo + Ap)

cos (uo + Ap) = cos o + %Akdsﬁ sin Lo

from which we can compute that

Ap = %dsﬁ shift in the phase advance
AQ = yé Ak(s) B (s)ds tune shift
quads 4w

Important remarks:

» the tune shift if proportional to the S-function at the location of the
quadrupole

» field quality, power supply tolerances etc. are much tighter at places where (5
is large

» [ is a measurement of the sensitivity of the beam
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Quadrupole errors: tune shift example
Deliberate change of a quadrupole strength in a synchrotron:

po- AKESEE LKL Lo
B quads Am - 47

— o e
The tune is measured permanently

We change the strength of "trim" quads to
fix Q

Horizontal axis is a scan of K1 (quad in-
tegrated focusing strength): 03050

o . 0.3000 = S
» tune shift is proportional to 3 & =y
2850
through AQ < AK - 8 g . e
2900
» En passant, we use this to 02850
measure (. 02600 , Pooiiotiddom
0.01250 0.01300 0.01350 001400 001450
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Tune shift correction

Errors in the quadrupole fields induce tune shift:

Ak(s)B(s)ds

quads am

AQ =

Cure: we compensate the quad errors using other (correcting) quadrupoles

> If you use only one correcting quadrupole, with 1/f = AkiL
» it changes both Q« and Qy:

— /le

_ 51y
arf, and AQ, =

AQx 4f

» We need to use two independent correcting quadrupoles:
le B2x
AQ = 2 4 2
O = 4ne "ty (on)_i(ﬁlx %)(1/:&)
_ Bly 52)/ AQy 47 /Bly 52)/ 1/f2
AQ =——F — —
drnfi  Arnh
» Solve by inversion:

( 1/f1 ) — 4 ( BZy _52)( ) ( AQX )
1/f2 51x52y - 52x61y _Bly le AQy
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Quadrupole errors: beta beat
all quadrupoles:

ABs 1

A quadrupole error at sp causes distortion of S-function at s: AS(s) due to the errors of
Bs - 2sin 2w

Q Z B;Ak,' COS (2TI'Q -2 (M,‘ — /Ls))
Note: Unstable betatron motion if tune is half integer!

orbit is not affected to
first order !
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O

This imperfection can be corrected with an appropriate distribution of tuneable

T

Tunes and resonances

A

excited in case of resonant tunes to infinite high amplitudes.

The particles — oscillating under the influence of the external magnetic fields — can be
There is particle loss within a short number of turns

yr

(@Y,
N

vy = integer

The cure:

1. avoid large magnet errors

2. avoid forbidden tune values in both planes

m-Qx+n-Q, #p
with m, n, p integer numbers
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Resonance diagram

~
11.4 g
pd [ ]
11.2
o 4
2 /
= 11
o
€
i
-
10.8 ANV 4
N R .
ey —/ —
10.6 " K N—
VARV
286 288 29 292 294
Horizontal Tune
m-Qx+n-Q, #p where |m|+|n| is the order of the resonance

A resonance diagram for the Diamond light source. The lines shown are the resonances

and the black dot shows a suitable place where the machine could be operated.
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Quadrupole errors: chromaticity, &
Is an error (optical aberration) that happens in quadrupoles when AP /Py # 0:

sample trajectory

ﬁmw === x‘
SNl e——

The chromaticity £ is the variation of tune AQ with the relative momentum error:

AP _AQ

Remember the quadrupole strength:

k=2 with P=Py+ AP = Py(1+0)

q
then
q8 ko q AP
k = — ~ 2 (1-20 ) g =k + Ak
Po+ AP 140 Po( Po>g ot
AP
Ak = —"T g
Py °
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Quadrupole errors: chromaticity (cont.)

= Chromaticity acts like a quadrupole error and leads to a tune spread:

1 AP 1 AP
A('?one quad — _EP_OkOﬁ (S) ds = A(‘?all quads — _EP_O % k (5) 6 (5) ds
Therefore the definition of chromaticity £ is
1
= K(s)B(s)ds

quads

The peculiarity of chromaticity is that it isn't due to external agents, it is generated by
the lattice itself!

Remarks:

» £ is a number indicating the size of the tune spot in the working diagram
> ¢ is always created by the focusing strength k of all quadrupoles
» natural chromaticity of a focusing quad is always negative

In other words, because of chromaticity the tune is not a sharp point, but is a spot
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Example: Chromaticity of the FODO cell

Consider a FODO cells like in figure, with two thin quads, each with focal length f,
separated by length L/2, and total phase advance u:

F 0 D 0 F sample trajectory

e A
\\\\L4f’ ﬂ}\\:\
e I

— <
envelope

—L
cell length

The natural chromaticity £y of the cell is:

1
e =5 P BEK(s)ds ] 12\ 1 12\ 1
4m = — L+ —)=—(L-—=—)2=
1 47 sinp 4f ) f Af ) f
R RN [t
1 Arsinp | f f  2f2
_ 2
__1[s_B S B SR
4 | f £ 8msinp 2 T 2

For Nee cells, the total chromaticity is N times the chromaticity of each cell

— _ Neell )23
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Quadrupole errors: chromaticity

Tune signal for a nearly
uncompensated cromaticity
(Q'~20)

Ideal situation: cromaticity well corrected,

(Q'~1)
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Chromaticity correction
Remember what is chromaticity: the quadrupole focusing experienced by particles
changes with energy

» it induces tune shift, which can cause beam lifetime reduction due to resonances

Cure: we need additional, energy-dependent, focusing. This is given by sextupoles

Ap/p >0 focal length —— |
s |

| —
Ap/p =0 |
AL
T 1 —
"
quadrupole ; — |
Ap/p <0 |

- sextupole

» The sextupole magnetic field rises quadratically:

Bx = g;l:X_y = 8BX — aBy — ,g,_X a ”gradient"
By = Eg (X2 — y2) 8_)/ Ox

it provides a linearly increasing quadrupole gradient
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Chromaticity correction (cont.)

Now remember:

» Normalised quadrupole strength is

g -2
k=—"—m
P/q ]

» Sextupoles are characterised by a normalised sextupole strength k>, which
carries a focusing quadrupolar component ki :

g m=3; ~ gx m~2]

ko = —=— — -
" PJq T P/g
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Cure for chromaticity: we need sextupole magnets installed in the storage ring in
order to increase the focusing strength for particles with larger energy

AP

» A sextupole at a location with dispersion does the trick: x = D - P

ao%)
k= ——% [m~
Pla [m™7]
» for x = 0 it corresponds to an energy-dependent focal length

k1

1 g AP AP
7 g
:kLsex :_D_'Lsex :kD'_'Lsex
fe o Plq Py St TRy e
——

Now the formula for the chromaticity rewrites:

= \—%fk(S)B(S)dSJ ; ﬁ%ygkz(S)DB(S)di

chromaticity due to quadrupoles chromaticity due to sextupoles
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Design rules for sextupole scheme

» Chromatic aberrations must be corrected in both planes = you need at least
two sextupoles, Sr and Sp (sextupole strengths)

» In each plane the sextupole fields contribute with different signs to the
chromaticity &, and &,:

@:—%%@@Hk@—&@@+%@@%s

@:_%ﬁ@@n«@+&@@—%@@ms

» To minimise chromatic sextupoles strengths, sextupoles should be located
near quadrupoles where 3, D, and ,D; are large

» For optimal independent chromatic correction Sg should be located where
the ratio 8x/B, is large, Sp where 3, /5, is large.
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Example of chromaticity correction scheme

» Chromatic aberrations introduced by quadrupoles are locally cancelled by
sextupoles placed near the quadrupoles, in dispersive regions (in straight sections
dispersion is generated using an upstream bending magnet)

» Notice that the sextupoles affect also the on-momentum particles: i.e. they
introduce geometric aberrations. These can be cancelled by adding one additional
sextupoles (per each direction), in opposite phase with them (Ap = )

dipole

|

H\ sextupoles —

The phase advance between the two sextupoles S; and S> must be 7, so that:
Ap=m
( X ) — 0 — -
X ( -1 0 ) —X
S1 M = O S2

-1

N J/

~~
S1—S2
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Summary of imperfections

Error

Effect

Cure

fabrication imperfections

unwanted multipolar
components

better fabrication /
multipolar corrector coils

transverse offsets

“feed-down" effect

better alignment /
corrector kickers

roll effects

couplings x — y

skew quads

dipole kicks along
the ring

orbit distortion o< Skick location.
residual dispersion

corrector kickers

quad field errors

tune shift

trim special quadrupoles

chromaticity

tune spread

design / sextupoles

power supplies

closed orbit distortion
tune shift / spread
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Summary

try to correct /
improve power supplies

orbit for an off-momentum particle

dispersion trajectory

equations of motion with dispersion

definition of momentum compaction, ap

stability condition

tune shift

beta beat

chromaticity
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x(s) = xs (s) + D (s) &2

D(s):5(s)fgﬁC(t)dt—

X c S

XI — C/ 5/

AP/Py ) 0 O
AC _ AP
C T PPy

m-Qx+n-Qy #p

_ 1
AQ = 47 Jquads

AB(s) _ 1
B(s)  2sin27Q

Ak(s)B(s)ds

D X
D’ x!
1 AP/pg

with n, m, p integers

C(s) fg =15 S (t)dt

p(t)
) 0

: y§5 (£) Ak (t) cos (27Q — 2 (4 (t) — i (5))

_ _AQ  _ 1
§= AP/ Po

i Pauaas K () B (s)ds



