CORPUSCULAR OPTICS

Jean-Marie De Conto
Université Grenoble-Alpes
Laboratoire de Physique Subatomique et de Cosmologie

Scope

- Beam transport in long, ~periodic machines (linacs, storage rings...) \rightarrow general beam dynamics, beta functions etc \rightarrow not here
- Beam transport in a short line
- Beta functions not relevant (they suppose a quasi-harmonic motion) or unuseful
- Geometrical optics is needed (ex: spectrometers)
- Programme
- General matricial optics for accelerators
- Description/matrix for standard focusing elements
- Beam description (emittance) and transport
- Basic properties (achromatic systems, spectrometers)
- Exercises

Lorentz force

- General case

$$
\frac{d m \vec{v}}{d t}=q(\vec{E}+\vec{v} \wedge \vec{B})
$$

- Non relativistic case only

$$
\vec{F}=q(\vec{E}+\vec{v} \wedge \vec{B})
$$

- Remark: If no acceleration, you can often do as for non-relativistic case with (see later)

$$
\begin{gathered}
m=\gamma \cdot m_{0} \\
\beta=v / c
\end{gathered}
$$

- Electric field: focusing, bending and energy change (" acceleration")

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

- Magnetic field: focusing and bending only

Magnetic rigidity

- T is the kinetic energy in electronvolts
- n is the number of charge
- e is the elementary charge
- We consider the energy at rest V_{0}

$$
\begin{aligned}
& E=\gamma m_{0} c^{2}=\gamma e V_{0}=e T+m_{0} c^{2}{ }_{0} \\
& \Rightarrow \gamma=\frac{T+V_{0}}{V_{0}} \\
& \Rightarrow \beta=\sqrt{1-1 / \gamma^{2}}
\end{aligned}
$$ and compute the Lorentz factors

- We get the radius of curvature in a magnetic field B

$$
B \rho=\frac{m v}{q}=\frac{\gamma m_{0} \beta c}{n e}=\frac{\gamma \beta V_{0}}{n c}
$$

General frame - Gauss conditions

Coordinates relative to a reference particle

$$
x^{\prime}=\frac{d x}{d s}=\frac{p_{x}}{p_{s}} \quad y^{\prime}=\frac{d y}{d s}=\frac{p_{v}}{p_{s}}
$$

Gauss conditions $\rightarrow \mathrm{x}, \mathrm{x}^{\prime}, \mathrm{y}, \mathrm{y}^{\prime}$ small

- First order calculations
- Linéarities
- Non linearities = high order terms

Horizontal axis (x)

Please:

$$
\begin{gathered}
\frac{\Delta p}{p} \neq \frac{\Delta E}{E} \\
\frac{\Delta p}{p} \neq \frac{1}{2} \cdot \frac{\Delta E}{E}
\end{gathered}
$$

We will work mainly with transverse coordinates

Equation of motion (illustration: one plane, non relativistic motion)

- Time \rightarrow space transform

$$
\dot{x}=\frac{d x}{d s} \frac{d s}{d t}=v x^{\prime} \Rightarrow x^{\prime}=\frac{\dot{x}}{v}
$$

$$
\begin{aligned}
& \frac{d x^{\prime}}{d t}=\frac{d x^{\prime}}{d s} \frac{d s}{d t}=v x^{\prime \prime}=-\frac{1}{v^{2}} \frac{d v}{d t} \dot{x}+\frac{1}{v} x^{\prime \prime}=-\frac{1}{v} \frac{d v}{d t} x^{\prime}+\frac{1}{v} \ddot{x} \\
& \frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}=v \frac{d v}{d s}
\end{aligned}
$$

- «acceleration»

$$
\begin{aligned}
& v x^{\prime \prime}=-\frac{d v}{d s} x^{\prime}+\frac{1}{v} \ddot{x} \\
& \ddot{x}=v^{2} x^{\prime \prime}+v v^{\prime} x^{\prime}
\end{aligned} \rightarrow x^{\prime \prime}=\frac{\ddot{x}}{v^{2}}-\frac{v^{\prime}}{v} x^{\prime}
$$

We suppose $\mathrm{v}_{\mathrm{s}} \sim \mathrm{v}$

With a magnetic force (illustration, again)

- More generally:

$$
x^{\prime \prime}=\frac{\ddot{x}}{v^{2}}-\frac{v^{\prime}}{v} x^{\prime} \Rightarrow x^{\prime \prime}=\frac{\ddot{x}}{v^{2}}-\frac{p^{\prime}}{p} x^{\prime}=\frac{\text { force }}{m_{0} v^{2}}-\frac{p^{\prime}}{p} x^{\prime}
$$

- The «force term» $\frac{\ddot{x}}{2^{2}}$ is linearized, for example:

$$
x^{\prime \prime}+\frac{p^{\prime}}{p} x^{\prime}=F(x) \Rightarrow x^{\prime \prime}+\frac{p^{\prime}}{p} x^{\prime} \approx k(s) x
$$

- The equation of motion is always the same
- Damping term related to acceleration
- The force term
\rightarrow Calculation rather easy
>Relativistic equation

Keywords: damping, focussing, dispersion

General 2D solution $\quad x^{*}+\frac{p^{\prime}}{p^{\prime}} x^{\prime}+k(s) x=\frac{1 \Delta p}{\rho_{0}} p_{p}$

$$
x^{\prime \prime}+\frac{p^{\prime}}{p} x^{\prime}+k(s) x=0
$$

$$
\begin{gathered}
x(s)=x_{0} \cdot C(s)+x_{0}^{\prime} \cdot S(s) \\
x^{\prime}(s)=x_{0} \cdot C^{\prime}(s)+x_{0}^{\prime} \cdot S^{\prime}(s)
\end{gathered}
$$

$$
\text { With } C(0)=1, C^{\prime}(0)=0, S(0)=0 . S^{\prime}(0)=1
$$

$$
X(s)=\left[\begin{array}{c}
x(s) \\
x^{\prime}(s)
\end{array}\right]=\left[\begin{array}{cc}
C(s) & S(s) \\
C^{\prime}(s) & S^{\prime}(s)
\end{array}\right] \cdot X_{0}
$$

$$
x^{\prime \prime}+\frac{p^{\prime}}{p} x^{\prime}+k(s) x=\frac{1}{\rho_{0}} \frac{\Delta p}{p_{0}}
$$

$$
X(s)=M_{s \leftarrow 0} \cdot X_{0}
$$

$$
x(s)=x_{0} \cdot C(s)+x^{\prime}{ }_{0} \cdot S(s)+\frac{\Delta p}{p_{0}} \cdot D(s)
$$

General conclusion

- We suppose the equation of motion to be linearized with a good enough approximation
- So, the general (first order) solution in 6D phase space is

$$
X(s)=M_{s \leftarrow 0} \cdot X_{0}
$$

M is the transfer (transport matrix) for abscissa 0 to abscissa s

- Transport to higher orders is much more complicated
- Composition: $M_{3 \leftarrow 1}=M_{3 \leftarrow 2} \cdot M_{2 \leftarrow 1}$
- We will often work in lower dimensions (2 or 4)
- Particular case: horizontal motion with magnetic dispersion

$$
x(s)=x_{0} \cdot C(s)+x_{0}^{\prime} \cdot S(s)+\frac{\Delta p}{p_{0}} \cdot D(s)
$$

- D is the dispersion function
- Beam transport is a LEGO play: assembly on transfer matrixes
- Calculation of elementary matrixes (lenses, drift space, bending magnet, edge focusing)
- General properties of systems versus the properties of matrixes (point to point imaging...)
- It can be shown from hamiltonian mechanics that this is equivalent to geometrical optics (non only an analogy)

Magnetic force versus electric force

- $x^{\prime \prime}{ }_{M}=\frac{q v B}{m v^{2}}$
- $x^{\prime \prime}{ }_{E}=\frac{q E}{m v^{2}}$
- $\frac{x^{\prime \prime} M}{x^{\prime \prime}}=\frac{B}{E} \cdot v$
- For $\mathrm{B}=1 \mathrm{~T}$ and $\mathrm{E}=1 \mathrm{MV} / \mathrm{m} \frac{x^{\prime \prime} M}{x^{\prime \prime}{ }_{E}}=10^{-6} \cdot v$
- Limit for $v=10^{6} \rightarrow \beta=0.0033 \rightarrow \sim 10 \mathrm{keV}$ protons
- Electrostatic focusing is used for low energy beams ($\sim 100 \mathrm{keV}$ protons -order of magnitude, please do the appropriate design-)
- $x^{\prime \prime}{ }_{E}=\frac{q E}{m v^{2}}=\frac{q E}{2 q V}=\frac{E}{2 V}$: no charge separation (ex: solenoids at source exit)

GENERAL OPTICAL PROPERTIES OF MATRIXES

Goal:

- Express a transport (optical property) in terms of matrix properties (coefficients)
- Choose and tune the optical elements to get these matrix properties (coefficients)
- Provide you the useful formulas

Basic elements

Convention

- Distances are positive from left to right
- Focusing lengths are positive (with the appropriate sign for focussing/defocussing

Fundamental property (2D case)

$$
\operatorname{det}\left(M_{s \leftarrow 0}\right)=\frac{p_{0}}{p_{s}}=\Delta
$$

Thin lenses

Focusing thin lens

- Superposition (linear) of two elementary beams
- $x_{s}=x_{e}$
- $x_{s}^{\prime}=x_{e}^{\prime}-\frac{x_{e}}{f}$
- $M=\left[\begin{array}{cc}1 & 0 \\ -\frac{1}{f} & 1\end{array}\right]$

Defocusing thin lens

- $x_{s}=x_{e}$
- $x^{\prime}{ }_{s}=x^{\prime}{ }_{e}+\frac{x_{e}}{f}$
- $M=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{f} & 1\end{array}\right]$

Point to point imaging

$$
M_{S \leftarrow e}=\left[\begin{array}{cc}
M_{11} & 0 \\
M_{21} & M_{22}
\end{array}\right]
$$

M_{11} is the magnification

$$
M_{11} \cdot M_{22}=\frac{p_{e}}{p_{s}}=\Delta
$$

Focal points versus system edges

Object

$$
\begin{gathered}
T=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & F_{0} \\
0 & 1
\end{array}\right] \\
\rightarrow \\
{\left[\begin{array}{c}
x_{S} \\
0
\end{array}\right]=\mathrm{T} \cdot\left[\begin{array}{c}
0 \\
x^{\prime}
\end{array}\right]} \\
\\
\left.\rightarrow M_{21} \cdot F_{O}+M_{22}\right)=0 \\
\\
\text { Positive if upstream }
\end{gathered}
$$

Image

$$
\begin{gathered}
T=\left[\begin{array}{cc}
1 & F_{i} \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right] \\
\rightarrow\left(\begin{array}{c}
0 \\
x^{\prime} \\
s
\end{array}\right]=\mathrm{T} \cdot\left[\begin{array}{c}
x_{e} \\
0
\end{array}\right] \\
\rightarrow\left(M_{21} \cdot F_{I}+M_{11}\right)=0 \\
\rightarrow F_{I}=-\frac{M_{11}}{M_{21}} \\
\text { Positive if downstream }
\end{gathered}
$$

A useful formula: drift/matrix/drift

p positive if upstream, q positive if downstream (ie: if there are physical drift spaces)

Principal planes

- Position of the 2 planes H_{1} and H_{2} with
- Point to point imaging from H_{1} to H_{2}
- Magnification equal to 1
\rightarrow any incoming beam exits with the same position $\left(x_{s}=x_{e}\right)$

Position

$\cdot\left\{\begin{array}{c}T_{11}=M_{11}+h_{2} M_{21}=1 \\ T_{12}=h_{1} \cdot h_{2} M_{21}+h_{1} \cdot M_{11}+h_{2} \cdot M_{22}+M_{12}=0\end{array}\right.$

- $h_{2}=\frac{1-M_{11}}{M_{21}}$
- $h_{1}=\frac{\Delta-M_{22}}{M_{21}}$

Warning: h_{1} is positive upstream, h_{2} is positive downstream

Foci vs principal planes

- We consider the T matrix instead of the M matrix
- $f_{o}=-\frac{T_{22}}{T_{21}}=-\frac{h_{1} \cdot M_{21}+M_{22}}{M_{21}}=-\frac{\Delta}{M_{21}}$
- $f_{i}=-\frac{T_{11}}{T_{21}}=-\frac{h_{2} \cdot M_{21}+M_{11}}{M_{21}}=-\frac{1}{M_{21}}$

$$
\frac{f_{0}}{f_{i}}=\Delta
$$

Use

- This description is useful when using non sharp edge elements like electrostatic lenses and to construct easily trajectories.
- It tells you "where" and "how" the system is. Ex H1 and H2 at the same location \leftrightarrow
- A tracking code provides the transfer
- The values of F_{o} and F_{i} depend on the choice of the plane: not constant not a
- The position of H_{0} and H_{i}, the values of
- The focal lengths given by codes are f_{0}
thin lens matrix M between given planes (far enough in a low field region). real lens characteristic f_{o} and f_{i} are constant and f_{i}

Symetric system

- Backward motion is obtained

 by changing $x^{\prime} \rightarrow-x^{\prime}$$$
\begin{gathered}
J=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=J^{-1} \\
J \cdot X_{m}=M_{1} \cdot J \cdot X_{s}=M_{1} \cdot J \cdot M_{2} \cdot X_{m} \\
M_{2}=J \cdot M_{1}^{-1} \cdot J \\
T=J \cdot M_{1}^{-1} \cdot J \cdot M_{1}
\end{gathered}
$$

Warning: structure is symetric, trajectory may be

$$
\cdot T=\frac{1}{\operatorname{det}\left(M_{1}\right)}\left[\begin{array}{cc}
M_{11} M_{22}+M_{12} M_{21} & 2 M_{22} M_{12} \\
2 M_{11} M_{21} & M_{11} M_{22}+M_{12} M_{21}
\end{array}\right]
$$

Two last properties

- General expression of the transfer matrix

$$
M=\frac{1}{f_{i}} \cdot\left[\begin{array}{cc}
F_{i} & f_{i} \cdot f_{O}-F_{i} \cdot F_{O} \\
-1 & F_{O}
\end{array}\right]
$$

- Point to point imaging for any system: an objet is at a distance p from an optical system. Where is the image?

$$
\begin{aligned}
T_{12}= & p q M_{21}+p M_{11}+q M_{22}+M_{12}=0 \\
& \rightarrow\left(p-F_{o}\right) \cdot\left(q-F_{i}\right)=f_{i} \cdot f_{0}
\end{aligned}
$$

Classical thin lens $\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$

FOCUSING ELEMENTS

Electrostatic lenses
Electrostatic quadrupole
Magnetic quadrupole
Solenoid

Electrostatic lenses

- Can be flat, round (cylindrical)...
- Can be accelerating or decelerating
- Always focusing

Equation of motion (non relativistic)

- Example on a cylindrical lens
- Poisson
- $\mathrm{A}_{0}(\mathrm{~s})=$ potential on axis
- Paraxial equation of motion
- Same equation for another

$$
\Delta V=\frac{\partial^{2} V}{\partial s^{2}}+\frac{1}{r} \cdot \frac{\partial}{\partial r} \cdot\left(r \cdot \frac{\partial V}{\partial r}\right)=0
$$

$$
V(r, s)=\sum_{n=0}^{+\infty} A_{n}(s) \cdot r^{2 n}
$$ lens

- In practise:

$$
V(r, s)=A_{0}(s)-\frac{A_{0}{ }_{0}}{2^{2}} r^{2}+\sum_{n=2}^{+\infty}(-1)^{n} \frac{A_{0}^{(2 n)}}{(2 n!)^{2}} r^{2 n}
$$

- No formula for transfer matrix
- Tables with principal planes and associated focal lengths
- Computer codes. Be careful with the numbers (meaning of

$$
r^{\prime \prime}+\frac{A_{0}^{\prime}}{2 A_{0}} r^{\prime}+\frac{A_{0} 0_{0}}{4 A_{0}} r=0
$$ the focal lengths, again)

Electrostatic quadrupole: useful for non relativistic particles

- $\vec{F}=\left[\begin{array}{c}m \ddot{x} \\ m \ddot{y}\end{array}\right]=-2 q \frac{\Delta V}{R_{0}^{2}} \cdot\left[\begin{array}{c}x \\ -y\end{array}\right]$
- $x^{\prime \prime}=--2 q \frac{\Delta V}{R_{0}^{2} \cdot m v^{2}} x \equiv-K^{2} \cdot x$ (case of x-focusing)
- $y^{\prime \prime}=K^{2} \cdot y$
- $x=x_{0} \cdot \cos (K L)+x^{\prime}{ }_{0} \cdot \frac{1}{K} \cdot \sin (K L)$
- $y=y_{0} \cdot \operatorname{ch}(K L)+x^{\prime}{ }_{0} \cdot \frac{1}{K} \cdot \operatorname{sh}(K L)$

Electrodes at $\pm \Delta V$

$$
V(x, y)=\frac{\Delta V}{R_{0}^{2}} \cdot\left(x^{2}-y^{2}\right)
$$

$K^{2}=\frac{\Delta V}{R_{0}^{2} \cdot T_{e V}}$
$T_{e V}$: kinetic energy in eV

$$
M=\left[\begin{array}{cccl}
\cos (K L) & \sin (K L) / K & 0 & 0 \\
-K \sin (K L) & \cos (K L) & 0 & 0 \\
0 & 0 & \operatorname{ch}(K L) & \operatorname{sh}(K L) / K \\
0 & 0 & K \operatorname{shh}(K L) & \operatorname{ch}(K L)
\end{array}\right]
$$

- Inside the vacuum chamber
- No power losses
- Insulators must be protected (collimators)

Magnetic quadrupoles

SOLEIL quadrupoles Courtesy Bernard Launé

Magnetic quadrupole

- Scalar potential: $\phi=g x y$
- Field: $\vec{B}=\operatorname{grad} \phi=\left[\begin{array}{l}g y \\ g x\end{array}\right]$
- $g={ }^{B_{0}} / R_{0}$
- Velocity: longitudinal
- $\vec{F}=q \vec{v} \wedge \vec{B}$
- $x^{\prime \prime}=-\frac{q v g x}{m v^{2}}=-\frac{g}{(B \rho)} x$
- $x^{\prime \prime}=-K^{2} x$

- $y^{\prime \prime}=K^{2} y$

Optical properties of quadrupoles

- Principal planes (ex foc plane):
- $h_{1}=h_{2}=\frac{1-M_{11}}{M_{21}}=\frac{1-\cos (K L)}{-K \sin (K L)} \sim-\frac{K^{2} L^{2}}{2 K^{2} L}=-\frac{L}{2}$
- A quadrupole is equivalent (up to the validity of the approximation before) to a thin lens surrounded by two drift spaces of half-length
- The focal length of the lens is given by:
- $\frac{1}{f}=K^{2} L$ ie $\frac{\Delta \Delta V \cdot L}{v(B \rho) R_{0}^{2}} \sim \frac{\Delta V \cdot L}{T R_{0}^{2}}$ (electrostatic, then non relativistic) and $\frac{g L}{(B \rho)}=\frac{B_{0} L}{R_{0}(B \rho)}$ (magnetic)
- A quadrupole is not stigmatic: $\left|M_{21}\right| \neq\left|M_{34}\right|$

Doublet and triplet of identical quads

- Doublet: FOD (focusing, drift, defocusing)

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1-L / f & L \\
-L / f^{2} & 1+L / f
\end{array}\right] \\
h_{1}=-f \text { and } h_{2}=f
\end{gathered}
$$

- A doublet is always convergent but never equivalent to a thin lens
- Symmetric triplet with identical focal lengths: FODOF

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1-\frac{L}{f}-L^{2} / f^{2} & L\left(2+\frac{L}{f}\right) \\
\left(L^{2}-f^{2}\right) / f^{3} & 1-L / f /-L^{2} f^{2}
\end{array}\right] \\
h_{1}=h_{2}=\frac{-L}{1-L / f} \sim-L \text { if } f \gg L \text { (thin lens) }
\end{gathered}
$$

FODO structure

- A quadrupole focusing in one direction is defocusing in the other one
- The only way to have a stable system is to have an alternate gradient structure with identical quadrupoles: the FODO cell
- Exercise: show a FODO cell is always converging

fodo1.xls

Solenoid - Glaser lenses

Transfer matrix

- Equation of radial motion

$$
r^{\prime \prime}+\left[\frac{B_{s}}{2(B \rho)}\right]^{2} \cdot r=0
$$

- Radial focusing+rotation.
- The transfer matrix is the product of a rotation $R_{K L}$ and a focusing matrix N
- Coupling H/V

$$
N=\left[\begin{array}{cccc}
C & S / K & 0 & 0 \\
-K S & C & 0 & 0 \\
0 & 0 & C & S / K \\
0 & 0 & -K S & C
\end{array}\right]
$$

$$
\begin{gathered}
K=\frac{B_{S}}{2(B \rho)} \\
C=\cos (K L) \text { and } S=\sin (K L) \\
M=\left[\begin{array}{cccc}
C^{2} & S C / K & S C & S^{2} / K \\
-K S C & C^{2} & -K S^{2} & S C \\
-S C & -S^{2} / K & C^{2} & S C / K \\
K S^{2} & -S C & -K S C & C^{2}
\end{array}\right] \\
M=N \cdot R_{K L}
\end{gathered}
$$

MAGNETS

Sector magnet

Field index
Edge focusing
Achromatic systems

Dipole magnet: beam bending and focusing

- Here: focusing in the deviation plane
- Field index : horizontal component out of the middle plane \rightarrow vertical focusing
- The choice of the index allows any kind of focusing
- No index: focusing in the deviation plane, drift space in the other one

$$
n=-\frac{R}{B_{0}} \frac{\partial B_{y}}{\partial x}=-\frac{R}{B_{0}} \frac{\partial B_{x}}{\partial y}
$$

$$
\begin{aligned}
& x^{\prime \prime}+\frac{1-n}{R^{2}} x=\frac{1}{R} \frac{\Delta p}{p_{0}} \\
& y^{\prime \prime}+\frac{n}{R^{2}} y=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime \prime}+\frac{1-n}{R^{2}} x=\frac{1}{R} \frac{\Delta p}{p_{0}} \\
& y^{\prime \prime}+\frac{n}{R^{2}} y=0
\end{aligned}
$$

$$
\begin{aligned}
& 1-n>0 \text { and } n>0 \\
& K_{x}=\sqrt{\frac{1-n}{R^{2}}}, K_{y}=\sqrt{\frac{n}{R^{2}}}, \theta_{x}=K_{x} L, \theta_{y}=K_{y} L \\
& C_{x}=\cos \left(\theta_{x}\right), S_{x}=\sin \left(\theta_{x}\right), C_{y}=\cos \left(\theta_{y}\right), S_{y}=\sin \left(\theta_{y}\right)
\end{aligned}
$$

$$
\left[\begin{array}{cccccc}
C_{x} & S_{x} / K_{x} & 0 & 0 & 0 & \frac{\left(1-C_{x}\right)}{R K_{x}^{2}} \\
-K_{x} S_{x} & C_{x} & 0 & 0 & 0 & \frac{S_{x}}{R K_{x}} \\
0 & 0 & C_{y} & S_{y} / K_{y} & 0 & 0 \\
0 & 0 & -K_{y} S_{y} & C_{y} & 0 & 0 \\
& & 0 & 0 & 1 & -\frac{\theta_{x}-S_{x}}{R^{2} K_{x}^{3}} \\
S_{x} / R K_{x} & -\left(1-C_{x}\right) / K_{x}^{2} & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& x^{\prime \prime}+\frac{1-n}{R^{2}} x=\frac{1}{R} \frac{\Delta p}{p_{0}} \\
& y^{\prime \prime}+\frac{n}{R^{2}} y=0
\end{aligned}
$$

$$
\begin{gathered}
1-n<0 \text { and } n>0 \\
K_{x}=\sqrt{\frac{1-n}{R^{2}}}, K_{y}=\sqrt{\frac{n}{R^{2}}}, \theta_{x}=K_{x} L, \theta_{y}=K_{y} L \\
C_{x}=\operatorname{ch}\left(\theta_{x}\right), S_{x}=\operatorname{sh}\left(\theta_{x}\right), C_{y}=\cos \left(\theta_{y}\right), S_{y}=\sin \left(\theta_{y}\right)
\end{gathered}
$$

$$
\left[\begin{array}{cccccc}
& & & 0 & -\frac{\left(1-C_{x}\right)}{R K_{x}^{2}} \\
C_{x} & S_{x} / K_{x} & 0 & 0 & & \frac{S_{x}}{R K_{x}} \\
K_{x} S_{x} & C_{x} & 0 & 0 & 0 & \\
& & & & C_{y} & S_{y} / K_{y} \\
0 & 0 & -K_{y} S_{y} & C_{y} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
S_{x} / R K_{x} & \left(1-C_{x}\right) / K_{x}^{2} & 0 & 0 & 0 & \frac{\theta_{x}-S_{x}}{R^{2} K_{x}^{3}} \\
0 & 0 & & & 0 & 1
\end{array}\right]
$$

$$
x^{\prime \prime}+\frac{1-n}{R^{2}} x=\frac{1}{R} \frac{\Delta p}{p_{0}}
$$

$$
\begin{aligned}
& 1-n<0 \text { and } n<0 \\
& K_{x}=\sqrt{\frac{1-n}{R^{2}}}, K_{y}=\sqrt{\frac{n}{R^{2}}}, \theta_{x}=K_{x} L, \theta_{y}=K_{y} L \\
& C_{x}=\operatorname{ch}\left(\theta_{x}\right), S_{x}=\operatorname{sh}\left(\theta_{x}\right), C_{y}=\operatorname{ch}\left(\theta_{y}\right), S_{y}=\operatorname{sh}\left(\theta_{y}\right)
\end{aligned}
$$

Edge focusing

Less horizontal focussing $=>$ vertical focussing
Edge focusing provides more focusing in one plane and the opposite (less focusing) in the other plane

$$
\left|\frac{1}{f}\right| \approx \frac{1}{\rho} \tan \beta
$$

Focussing in x
No focussing in y
No edge focussing

Extra focussing in x Defocussing in y Edge /fringing field effect
y

Can add/substract focussing in x / y

Opposite effect x / y

$$
\left|\frac{1}{f}\right| \approx \tan \left(\frac{\beta}{R}\right)
$$

A little bit more complicated in y vs fringing field extent

remark

$1 / 4$ angle sur chaque face: \sim même focalisation x / y

- If the edge angle is defocusing in the deviation plane and equal to $1 / 4$ rotation angle, the global focusing is ~identical in each plane
- If the edge angle is defocusing in the deviation plane and equal to $1 / 2$ rotation angle, there no longer focusing in the deviation plane (drift) : use of rectangular magnets

$$
\left[\begin{array}{cccc}
4 \cos \left(\frac{\theta}{4}\right)^{2}-3 & r o \sin (\theta) & 0 & 0 \\
-\frac{2 \sin \left(\frac{\theta}{4}\right)}{\cos \left(\frac{\theta}{4}\right) r o} & 4 \cos \left(\frac{\theta}{4}\right)^{2}-3 & 0 & 0 \\
0 & 0 & 1-\tan \left(\frac{\theta}{4}\right) \theta & r o \theta \\
0 & 0 & \frac{\tan \left(\frac{\theta}{4}\right)\left(-2+\tan \left(\frac{\theta}{4}\right) \theta\right)}{r o} & 1-\tan \left(\frac{\theta}{4}\right) \theta
\end{array}\right]
$$

Angle $1 / 2$ on chaque face : espace deglissement dans le plan de déviation

$$
\left[\begin{array}{cccc}
1 & r o \sin (\theta) & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1-\tan \left(\frac{\theta}{2}\right) \theta & r o \theta \\
0 & 0 & \frac{\tan \left(\frac{\theta}{2}\right)\left(-2+\tan \left(\frac{\theta}{2}\right) \theta\right)}{r o} & 1-\tan \left(\frac{\theta}{2}\right) \theta
\end{array}\right]
$$

Dispersion, achromats

- Let the system to be dispersive
- D = Dispersion function
- Separation versus momentum
- Spot size is increased

$$
\sigma_{x}=\sqrt{\sigma_{0}^{2}+D^{2} \sigma_{\Delta p / p_{0}}^{2}}
$$

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\frac{p^{\prime}}{p} x^{\prime}+k(s) x=\frac{1}{\rho} \frac{\Delta p}{p_{0}} \\
x(s)=C(s) x_{0}+S(s) x_{0}^{\prime}+D(s) \frac{\Delta p}{p_{0}} \\
x^{\prime}(s)=C^{\prime}(s) x_{0}+S^{\prime}(s) x_{0}^{\prime}+D^{\prime}(s) \frac{\Delta p}{p_{0}}
\end{array}\right.
$$

- Make D=D'=0
\rightarrow Achromatic system

Achromats

- Dispersive system

- One example

And for counterwise rotation?

Example

$$
\left.\left.\begin{array}{l}
D_{\text {dip }}=\rho(1-\cos \theta) \\
D_{\text {dip }}^{\prime}=\sin \theta
\end{array}, \begin{array}{c}
D_{\text {in }}=\rho(1-\cos \theta)+L \sin \theta \\
D_{\text {in }}^{\prime}=\sin \theta
\end{array}\right\} \begin{array}{c}
D_{\text {out }}=D_{\text {in }} \\
D_{\text {out }}^{\prime}=D_{\text {in }}^{\prime}-\frac{D_{\text {in }}}{f} \equiv-D_{\text {in }}^{\prime}
\end{array}\right\} \begin{aligned}
& \Rightarrow f=\frac{D_{\text {in }}}{2 D_{\text {in }}^{\prime}}=\frac{\rho(1-\cos \theta)+L \sin \theta}{2 \sin \theta}
\end{aligned}
$$

- One lens is needed
- In fact: one triplet
- Achromat+foc

The achromatic chicane

?

examples

The lens is enaverging for median-plane motien and divergine for vertical,

Fio. 13. Achromatic magnet system after H. A. Enge (1961).
4.2 DEFLECTING MAGNETS

10. Nondispersive stigmatic right-angle magnet.

Courtesy Bernard Launé

BEAM TRANSPORT

[^0]
Global description of a beam (2D case)

- Ex: trajectories of individual particles in a drift space
- Need of a global description
- Need to describe convergence,
divergence, beam enveloppe
- Need to describe extrema beam enveloppe ("waist")
- RMS description of the beam

Beam matrix

- Beam matrix
- Covariance matrix in phase space
- Here (x, x^{\prime}) only)
- RMS beam extension in phase space (nD variance)
- Linear transport easy
- Transformation is a tensorial transform
\rightarrow Not a matrix but a tensor
\rightarrow Matrix: tranformation
\rightarrow Tensor: property (here: RMS extent)

$$
\begin{aligned}
& X=\left[\begin{array}{c}
x \\
x^{\prime}
\end{array}\right] \rightarrow \tilde{X}=\left[\begin{array}{ll}
x & x^{\prime}
\end{array}\right] \\
& X \tilde{X}=\left[\begin{array}{cc}
x^{2} & x x^{\prime} \\
x x^{\prime} & x^{\prime 2}
\end{array}\right] \rightarrow<X \tilde{X}>=\left[\begin{array}{cc}
\left\langle x^{2}\right\rangle & <x x^{\prime}> \\
\left\langle x x^{\prime}\right\rangle & \left.<x^{\prime 2}\right\rangle
\end{array}\right] \equiv \Sigma
\end{aligned}
$$

$$
\begin{aligned}
& Y=M X \Rightarrow Y \tilde{Y}=M X \tilde{X} \tilde{M} \\
& \Rightarrow\langle Y \tilde{Y}>=M<X \tilde{X}>\tilde{M} \\
& \Rightarrow \Sigma_{1}=M \Sigma_{0} \tilde{M}
\end{aligned}
$$

Emittance (Twiss) parameters

- From the beam matrix
- Defines the ellipses including n\% of the beam in an RMS (intuitive) sense.
- The ellipse corresponding to $\varepsilon_{R M S}$ is the concentration ellipse
- Warning; RMS emittance definition changes upon authors, by a factor $1 / 2,2$ or 4...

$$
\begin{aligned}
& \Sigma=\left[\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x x^{\prime}\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right] \equiv\left[\begin{array}{cc}
\beta \varepsilon_{\text {Rus }} & -\alpha \varepsilon_{\text {Rus }} \\
-\alpha \varepsilon_{\text {Rus }} & \gamma \varepsilon_{\text {Rus }}
\end{array}\right] \\
& \beta \gamma-\alpha^{2} \equiv 1 \\
& \Rightarrow\left\{\begin{array}{c}
\varepsilon_{\text {Rus }}=\sqrt{\operatorname{det}(\Sigma)}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left(\left\langle x x^{\prime}\right\rangle\right)^{2}} \\
\beta=\frac{\left\langle x^{2}\right\rangle}{\varepsilon_{\text {Rus }}} \\
\alpha=-\frac{\left\langle x x^{\prime}\right\rangle}{\varepsilon_{\text {Rus }}}
\end{array}\right.
\end{aligned}
$$

Not to be confused with Lorentz factors

Ellipses

$$
A=\pi \varepsilon
$$

- RMS ellipses
- Include more or less (ex : 95\%) particles.
- 4 paramèters $(\alpha, \beta, \gamma, \varepsilon)$ - in fact 3 .
- Ex: if the beam is gaussian in two dimensions, the number of particles in the ellipse is $N_{0} \cdot[1-\exp (-\varepsilon /$

Emittance transport

- Explicit formula

$$
\left[\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right]_{1}=\frac{1}{\Delta}\left[\begin{array}{ccc}
M_{11}^{2} & -2 M_{11} M_{12} & M_{12}^{2} \\
-M_{11} M_{21} & M_{12} M_{21}+M_{11} M_{22} & -M_{22} M_{12} \\
M_{21}^{2} & -2 M_{22} M_{21} & M_{22}^{2}
\end{array}\right]\left[\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right]_{0}
$$

- Beam RMS enveloppe $\sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\beta \cdot \varepsilon_{r m s}}$
- α versus β

$$
\begin{gathered}
x(s+d s)=x(s)+x^{\prime}(s) d s \rightarrow M_{d s}=\left[\begin{array}{ll}
1 & d s \\
\ldots & \ldots
\end{array}\right] \\
\beta(s+d s)=\beta(s)-2 \alpha \cdot d s \\
\boldsymbol{a}=-\frac{\boldsymbol{\beta}^{\prime}}{\mathbf{2}}
\end{gathered}
$$

- Enveloppe extremum if $\alpha=0$ (waist)

Liouville Theorem (2D)

- Let X_{1} and X_{2} be to vectors in phase space

$$
\begin{gathered}
Y_{1}=M \cdot X_{1} \text { and } Y_{2}=M \cdot X_{2} \\
\operatorname{det}\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right]=\operatorname{det}(M) \cdot \operatorname{det}\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]=\frac{p_{e}}{p_{s}} \cdot \operatorname{det}\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]
\end{gathered}
$$

- The area in phase space varies accordingly to momentum
- \rightarrow the area is constant if there is no acceleration
$-\rightarrow \beta_{\text {Lorentz }} \cdot \gamma_{\text {Lorentz } z} \cdot \varepsilon$ is constant (normalized emittance)
- Warning: if the motion is not linear, the "apparent" RMS emittance varies, even the surface in phase space is constant

Spectrometer (magnetic separation only)

Résolution

Spectrometer design

- Point to point imaging \rightarrow system size
- Waist to Waist imaging
- Beam size: $R_{S}=\left|M_{11}\right| \cdot R_{E}$
- Analysis if $D \frac{\Delta P}{P}=2 R_{S}$

$$
\frac{p}{\Delta p}=\frac{D}{2\left|M_{11}\right| \cdot R_{E}}
$$

- Resolution is directly depending on the magnetic area covered by the beam, not by optics
- Optics has operational aspects (ex: achievable slit size) and low effect on resolution

Object

SPEG spectrometer (GANIL)

Courant/Snyder invariant - Emittance matching

- Consider a periodic system made of identical cells (no acceleration). Let M be the matrix of each cell. M has 2 eigenvalues λ and $1 / \lambda$ (determinant is 1)
- Suppose the motion to be stable, then λ^{n} and $1 / \lambda^{n}$ must be bounded for any value of n (integer)
- The only way is $|\lambda|=1=|1 / \lambda| \rightarrow \lambda=e^{i \mu}$
- $\rightarrow \operatorname{Tr}(M)=\lambda+\frac{1}{\lambda}=2 \cos (\mu)$
- The motion is stable if and only if $-1 \leq \frac{1}{2} \operatorname{Tr}(M)<1$
- Ex: stability for FODO cell (L between lenses):

$$
\cos \mu=1-\frac{L^{2}}{2 f^{2}}>-1 \rightarrow f>\frac{L}{2}
$$

Courant/Snyder invariant - Emittance matching

- Suppose the motion to be stable
- The following formulas are straighforward, with the transfer matrix TWISS parameters

$$
\begin{aligned}
& M=\left[\begin{array}{cc}
\cos \mu+\alpha^{*} \sin \mu & \beta^{*} \sin \mu \\
\gamma^{*} \sin \mu & \cos \mu-\alpha^{*} \sin \mu
\end{array}\right] \\
& M=\cos \mu \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\sin \mu \cdot\left[\begin{array}{cc}
\alpha^{*} & \beta^{*} \\
\gamma^{*} & -\alpha^{*}
\end{array}\right] \equiv \cos \mu \cdot I+\sin \mu \cdot J \\
& J^{2}=-1 \\
& M \cdot\left[\begin{array}{cc}
\beta^{*} & -\alpha^{*} \\
-\alpha^{*} & \gamma^{*}
\end{array}\right] \cdot \tilde{M}=\left[\begin{array}{cc}
\beta^{*} & -\alpha^{*} \\
-\alpha^{*} & \gamma^{*}
\end{array}\right]
\end{aligned}
$$

Emittance matching: if the injected emittance Twiss parameters are equal to the system Twiss parameters, the oscillations of the beam enveloppe are minimized, and the
 beam occupies less space in phase space.

Beam matching (envelope)

A few words about emittance measurements

- The RMS enveloppe varies with focusing
- It is related to the initial emittance parameters
- A known lens (system) is used with differents tunings
- N profile (RMS) measurements are made
- N equation with 4 unknown are obtained
- Warning: numerically unstable with solenoids (even if a theoretical solution exists)

$$
\begin{aligned}
& <x^{2}>=\sigma_{0}^{2}=\beta_{0} \varepsilon_{R M S} \\
& \sigma^{2}=(A \beta+B \alpha+C \gamma) \varepsilon_{R M S}
\end{aligned}
$$

Moving slit (real phase picture)

Elliptic shape might be far from reality at low energy

Courtesy Bernard Launé

The reality (SILHI source, Saclay)

Saclay source SILHI
Courtesy Bernard Launé

Collimators on some examples

- Collimator: $\left[\begin{array}{l}A \\ \lambda\end{array}\right]$ (A=aperture, $\lambda \in \mathbb{R}$)
- M: transfer matrix from collimator to target

- Case 1: $M_{22}=0$. A `vertical line is transformed to an horizontal one. No effect on beam size
- Case 2: $M_{12}=0$. A vertical line is transformed to an vertical one. Effect is maximum. In this case $R_{\text {target }}=\left|M_{11}\right| \cdot A$

Thank you!

[^0]: Beam description: emittance, RMS emittance Emittance transport, Liouville theorem Courant-Snyder invariant - Twiss matrix
 Emittance matching
 Emittance measurements(examples)
 Collimators

