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Scope

- Beam transport in long, ~periodic machines (linacs,
storage rings...) — general beam dynamics, beta
functions etc — not here

- Beam transport in a short line

- Beta functions not relevant (they suppose a quasi-harmonic
motion) or unuseful

- Geometrical optics is needed (ex: spectrometers)

- Programme

General matricial optics for accelerators
Description/matrix for standard focusing elements
Beam description (emittance) and transport

Basic properties (achromatic systems, spectrometers)
Exercises



| orentz force

- General case dmv .
— = q(E +V A B)
dt
- Non relativistic case only E— q(E VN |§)‘
- Remark: If no acceleration, you can SRR
often do as for non-relativistic case
with (see later) B="/c
1
- Electric field: focusing, bending and Y = m

energy change (“ acceleration”)

- Magnetic field: focusing and bending
only



Magnetic rigidity

- T is the kinetic energy in
electronvolts

E =ym,c* =1V, =eT +m,c%

- nis the number of charge T +V,

- e is the elementary charge =)=

V0
2
- We consider the energy atrestV, |= p=1-1y
and compute the Lorentz factors

- We get the radius of curvature in a
magnetic field B




General frame — Gauss conditions

Coordinates relative to a

reference particle 4 Vertical axis (y)
dx d s
Xl —__ = & y, — _y = & y /.-
ds p. ds p.
: Gauss conditions —x,x’,y,y’
small
First order calculations X
Linéarities Reference trajectory (s)
Non linearities = high order
terms Horizontal axis (x)
Please:
. Phase space (x,x,y,y’, AL, Ap + AE
Ap/p0) p E
. . Ap 1 AE
: Set of canonical conjugate — = —
coordinates p 2 E

We will work mainly with transverse coordinates



Equation of motion (illustration: one plane, non relativistic motion)

. Ti . dx ds X
Time—space transform = RO 2 X
ds dt \Y;
dx” dx’ds ) 1dv. 1 , ldv , 1.
= =WX'=———X+—X"=———X'+—X
dt ds dt v2dt v v dt v
dv _dvds _Vdv
dt ds dt ds
_ ) dv , 1. . .
- « acceleration » VX' =——X +—X ) X VA
ds V | — [ X"= ——X
.. 2 V2
X=vX"+w'X'

We suppose v~V



With a magnetic force (illustration, again)

- More generally:

! !

X Vo, . X p, force p',
X :—2——)( = X :—2——)(: 2——
Ve Ve p MV p
X .
- The « force term » — is 0’ 0’
linearized, for example: X"+ X =F(X) = X"+ X"~ k(5)X
P
- The equation of motion is
always the same ,
- Damping term related to p 1 Ap

acceleration X"+ X'+ k(S)X S
- The force term

P p, P
—» Calculation rather easy Z / o Mo
» Relativistic equation / / /

Keywords: damping, focussing, dispersion




' x”+Ex'+k(s)x:i&
General 2D solution . 5 P

0 0

4 p’ /
X"+—X"+k(s)x=0 —
P

x(s) =x9-C(s)+x'y-S(s)
x'(s) =x5:C'(s)+x'g-S5'(s)
With C(0)=1, C'(0)=0, S(0)=0. S’(0)=1

x(s)] _ [C(s) S(s)

X(S) — [x/(s) C/(S) S’(S)] . XO

X(s) = Mg o - Xo

4

x”+£x’+k(s)x _1Aap —

P P, B, x(s)=x0-C(s)+x’0-S(s)+§~D(S)
0




General conclusion

- We suppose the equation of motion to be linearized with a good enough
approximation

- S0, the general (first order) solution in 6D phase space is
X(s) = Mg - X
M is the transfer (transport matrix) for abscissa O to abscissa s
- Transport to higher orders is much more complicated
- Composition: M54 = M3, - M54
- We will often work in lower dimensions (2 or 4)
- Particular case: horizontal motion with magnetic dispersion

Ap
x(s) =xy:C(s)+x'y-5(s)+—"-D(s)
Po
- D is the dispersion function
- Beam transport is a LEGO play: assembly on transfer matrixes
- Calculation of elementary matrixes (lenses, drift space, bending magnet, edge focusing)
- General properties of systems versus the properties of matrixes (point to point imaging...)

- It can be shown from hamiltonian mechanics that this is equivalent to geometrical
optics (non only an analogy)



Magnetic force versus electric force

n _ quB
X M muv2
no__ CIE
XY E = muv?2
" B
) x"M —_— — v
X E E
. For B=1T and E=1MV/m =2 = 1076 - v

X'E
- Limit for v = 10® -> B = 0.0033 - ~10 keV protons

- Electrostatic focusing is used for low energy beams (~100 keV
protons —order of magnitude, please do the appropriate design-)

" qE qE E . : :
"X =5 = = . no charge separation (ex: solenoids at
muv 2qV 2V

source exit)




GENERAL OPTICAL
PROPERTIES OF MATRIXES

Goal:

Express a transport (optical property) in terms of matrix
properties (coefficients)

Choose and tune the optical elements to get these matrix
properties (coefficients)

Provide you the useful formulas



Basic elements

Convention Drift space
- Distances are positive from left «x(L) =x9+L- Xlo
to right
’ (L) = ¥

- Focusing lengths are positive
(with the appropriate sign for
focussing/defocussing

Fundamental property (2D case) /
det(M, o) =22 = A X

S

M=ly

A\




Thin lenses

Focusing thin lens Defocusing thin lens
- Superposition (linear) of two * Xg = X,
elementary beams
_ cx's=x, + 28
Xy = X, f
/ / X
- x's=x', 7"’ 1 O
M =1 1
f

A //
A
Xe 1 /

A\

A\




Point to point imaging

. M11 O
Msce = |y, MZJ

M., Is the magnification

Myp My, =2 =A
11 22 De

\I



Focal points versus system edges

Object

Positive if upstream

Image

T=[1 Fi].[Mll M12]
0 11 [My; My,

[x(?s] =T [383]

Positive if downstream



A useful formula: drift/matrix/drift

=l b wil

T11 = Myq + qMy,
T, = pqMyq + pMy1 + qMy; + My,
T71 = My,
\ Ty = pM3q + My,

p positive if upstream, g positive if downstream (ie: if there are physical drift spaces)

f




Principal planes

- Position of the 2 planes H, and H, with
- Point to point imaging from H; to H,,
- Magnification equal to 1
— any incoming beam exits with the same position (X;=X,)




Position
) Tyy =My +hoMp; =1
Ty = hy-hyMy; +hy - Myq +hy - My, + My, =0
_ 1-Myq
h2 N M34
A—M
R h — 22
1 M34

Warning: h, is positive upstream, h, is positive downstream
Foci vs principal planes

- We consider the T matrix instead of the M matrix

. f, = _ Tz _ _haMptMp, A f

o T21 M3, M3, 0 _ A
. f . _h — hz‘M21+M11 - 1 f‘l

= — - —

T21 Mj3q M34



Use

This description is useful when using

non sharp edge elements like I
electrostatic lenses and to construct

easily trajectories.

H, H,
It tells you “where” and “how” the system
is. Ex H1 and H2 at the same location«>
thin lens
fo_,
A tracking code provides the transfer fi

matrix M between given planes (far w1 r ' ' r ‘ 1 : : :
enough in a low field region).

The values of F, and F; depend on the
choice of the plane: not constant not a
real lens characteristic

The position of H, and H;, the values of
f, and f, are constant

The focal lengths given by codes are f, ...
and f, —




Symetric system

- Backward motion is obtained

I motion I / N X
by changing x’—-x /\x/\ X

jzl(l) —01]=]_1

J X =My ] Xg=My-]-My-Xp, M

M; =] M1_1 -]
Warning: structure is symetric,
trajectory may be

T=J]-M"'-]-M

1 [MyyMyy + My, Myy 2M5, My, ]
det(Ml) 2M11M21 M11M22 + M12M21




Two last properties

- General expression of the transfer matrix

vl [Fi fifo-Fi'Fo
7 -1 F,

- Point to point imaging for any system: an objet is at a
distance p from an optical system. Where is the image?
T1; = pqMyq + pMyy + qMpy + M1, =0
> @—-FK)-(q@-F)=fifo

Classical thin lens = + = = =
p q f



FOCUSING ELEMENTS

Electrostatic lenses
Electrostatic quadrupole
Magnetic quadrupole
Solenoid



Electrostatic lenses

- Can be flat, round

(cylindrical)...
- Can be accelerating or
decelerating - T |
- Always focusing v v
ofitas 0 volts +V volts 0 volts
\\ \:/ \\:/i/ //’Er;ectnc field lines
lonpath /4_\ />_\ o
ANV N\



Equation of motion (non relativistic)

- Example on a cylindrical lens

- Poisson V. 1 0 v
- . . AV =—ct——|r-—]|=
-+ Ay(s) = potential on axis ds? r or or
- Paraxial equation of motion e
V(r,s) = z A, (s) - T2h
- Same equation for another =0
lens 2 +00 2
_ 0.2 0
V(r,s) = Ay(s) — 27 + Z;(—anrzn
- In practise: "
- No formula for transfer matrix Ay A"y
: . r' + r+—r=20
- Tables with principal planes and 24, 44,

associated focal lengths

- Computer codes. Be careful
with the numbers (meaning of V=0 MUST be for v=0

the focal lengths, again)



Electrostatic quadrupole: useful for non relativistic particles

oo mx _ Electrodes at +AV
f= mji] 2473 [—y]

. n_ V —_ 2 .
X' = 24 — pr— x = —K*-Xx (case

of x-focusing)
R yu — Kz . y
- x =xycos(KL) +x' -%-Sin(KL)

cy=7vyy-ch(KL)+x', °%°Sh(KL)

K2 — AV [ cos(KL) sin(KL) /K 0 0
R: - Toy V- —Ksin(KL)  cos(KL) 0 0

0 0 ch(KL) sh(KL)/K

T,,: kinetic 0 0 Ksh(KL) ch(KL) |

energy in eV



Courtesy Bernard Launé

- Inside the vacuum chamber
- No power losses
- Insulators must be protected (collimators)



Magnetic quadrupoles

e

xcomons B0
[T

SOLEIL quadrupoles
Courtesy Bernard Launé




Magnetic quadrupole

- Scalar potential: ¢ = gxy

L _[9Y
- Field: B = grad¢ = Lgx]
° g = BO/RO
- Velocity: longitudinal
- F=qbAB
w___qugx _ g
YT T e T T et
- x"=—K?x ) 7 i
C Y =K%y X
- cos(KL) sin(KL) /K 0 0
K2 — ) M = —Ksin(KL)  cos(KL) 0 0
(Bp) B 0 0 ch(KL) sh(KL)/K
0 0 Ksh(KL) ch(KL) |




Optical properties of quadrupoles

- Principal planes (ex foc plane):
1-Mqq1 _ 1—cos(KL) K*L? L

e h: = h-, = = ~ — - — =
1 2 Mo, —Ksin(KL) 2K2[, 2

- A quadrupole is equivalent (up to the validity of the
approximation before) to a thin lens surrounded by two
drift spaces of half-length

- The focal length of the lens is given by:

R A sz (electrostatic, then non relativistic)
f v(Bp)R53 TR3
gL BoL
nd =— = magneti
and 55 = zo(sp) (MAGNEUC)

- A quadrupole is not stigmatic: |[M,| # |M3,]



Doublet and triplet of identical quads

- Doublet: FOD (focusing, drift, defocusing)
1-L/f L
P |
—=L/f* 1+L/f
h1 —_ _f and h2 —_ f
- A doublet is always convergent but never equivalent to a
thin lens

- Symmetric triplet with identical focal lengths: FODOF

1—£—L2/f2 L(2+£)
M = f f
(L2 =fH/f° 1-=L/f]-L*f*.

—L . .
T Lif f > L (thin lens)




FODO structure

- A quadrupole focusing in one direction is defocusing in
the other one

- The only way to have a stable system is to have an

alternate gradient structure with identical quadrupoles :
the FODO cell

- Exercise: show a FODO cell is always converging

/’\

fodol.xls


fodo1.xls

Solenoid — Glaser lenses

a

A 4

a)

RN AN
AZM.&M/A ¥
AN 1 R

~equivalent to a thin lens




Transfer matrix

2
B
r"+[ 2 ] r=20

- Equation of radial motion 2(Bp)

- Radial focusing+rotation.

B
K=2G
- The transfer matrix is the product (Bp)
of a rotation Rg; and a focusin _
matrix N KL J C = cos(KL) and S = sin(KL)
_ - C* SC/K  SC S?*/K]
¢ COUp|Ing H/V M = —KSC Cz _K52 SC
| =s¢  -s%/k c? SC/K
| KS? — _ 2,
C S/K 0 0 SC -KSC ¢
_|-KS ¢ 0 0 -
N=1"0 o c S/K M =N-Rg,
0 0 —-KS C




MAGNETS

Sector magnet
Field index

Edge focusing
Achromatic systems



Dipole magnet: beam bending and focusing

Ay
e (Bp)
B X
- Here: focusing in the deviation plane
- Field index : horizontal component out
of the middle plane — vertical focusing ‘&
. Tfhfe choice of the index allows any kind
of focusing
. NIO ind((ejx:ffocusing inr;[he orlleviation N R 0B, R OB,
plane, drift space in the other one - n - n
B, &x B, oy
9By 1 1A
By~B0+Ex=BO-[1—§x] o in. _14p
2 R p
_ n n
By =—By- -y Y+ ey =0




1—-n>0andn >0

= /RZ,K —\/72,9 = K,L, 6, = KL

= cos(8y), Sy = sin(6y), Cy, = cos(@ ) Sy —Sm(Hy)

(1_Cx)

Cr  Sx/Kx 0 0 RK?
—K,S, Gy 0 0 0 Sx
RK,

0 0 Gy, Sy/Ky 0 0

0 0 K,S, G, 0 0

6, —
Sy/RK, —(1—C,)/K? 0 0 1 ——5
0 0 0 0 X




X”_I_l_nx_i% 1-n<0andn>0
S RP) g, = /1;—2",Ky=\/g,9x=KxL, 0, = K,L
y”+§y =0 C, = Ch(@x) , Sy = Sh(Hx) , Cy = COS(Hy) , Sy — Sin(Qy) )
. (1 _ Cx)_
Cx  Sx/Kx 0 0 RK?
K.S, C, 0 0 . S,
RK,
0 O Cy Sy/Ky 0 0
) b, — S,
Se/RK; (1= Cy)/K? 0 0 1S
0 0 0 O 0 1 X




1-n<0andn<o0

1-n n
/?,Ky = \/;,ex = KL, 0, = K, L

ch(6y), Sy = sh(6,), C, = ch(6,), S, = sh(8,),

Cx  Sx/Ky 0 0
K.S, C, 0 0
0 0 Cy  Sy/Ky
0 0 K,S, G
Sx/RK; (1 - Cx)/KJ? 0 0
0 0 0 O




Edge focusing

CENTRAL
TRAJECTORY

/

More - A Second order
deviated | o

Less horizontal focussing => vertical focussing

Edge focusing provides more focusing
in one plane and the opposite (less ‘ ‘ —tan,B
focusing) in the other plane flop



S
—\:

Focussing in x
No focussing in y
No edge focussing

ﬁ

AN

y
) s
4 Y
(%)

Can add/substract
focussing in x/y

Opposite effect x/y

Extra focussing in x
Defocussing iny

Edge /fringing field effect

‘f‘ Nt“"( )

A little bit more
complicated iny vs
fringing field extent




remark

Y4 angle sur chaque face: ~méme focalisation x/v

= If the edge angle is defocusing in the {f‘)e *
deviation plane and equal to ¥4 rotation - “"‘B[T) e 2) -3 0 0
angle, the global focusing is ~identical oo 7)o
in each plane 0 0 (3o o0

= [f the edge angle is defocusing in the anf 3 )2+ {7 )]
deviation plane and equal to 2 rotation | ° ’ = Ik

angle, there no longer focusing in the
deviation plane (drift) : use of

re Ctang u |ar mag nets Angle Y2 on chaque face : espace deglissement dans le plan de
déviation
1 rosin(8) 0 0 T
0 1 0 0
0 0 1- tan[g) 0 ro 6
2




Dispersion, achromats

x”+£'x’+k(s)x =£&
- Let the system to be p P Py

dispersive
- D = Dispersion function X(S) = C(s)X, + S(s)X. + D(s) 2P
- Separation versus < .

’ N aY ' ' ’ &
momentum \x(s)_C (s)X, +S'(s)X; + D'(s) 0.

- Spot size Is increased

- Make D=D"=0
o, = \/0'5 + Dzazp,po — Achromatic system




Achromats

- Dispersive system // \ [

- One example /\

And for counterwise rotation?




Example

Dyip, = p(1—c0s 0) y

gip =SNG /\

DI
D, = p(1—-cos@)+Lsind
— _
D/ =sing

Dout = Din !

— ' ' Din ' .
Dy, =D, — f =-D, - One lens is needed
- In fact: one triplet

. f_DPn _p-cosd)+Lsing| . Achromat+foc

2D/ 2sin@




The achromatic chicane

R

%
T

=



examples

The lens & converging for median-plane motson And diverging for vertical, 42 NG NAGELS

. 10. Nondispersive stigmatic right-angle magnet.

FONT YV IVEVH

Fra. 13. Achromatic magnet system after H. A, Enge (1961).

Courtesy Bernard Launé



BEAM TRANSPORT

Beam description: emittance, RMS emittance
Emittance transport, Liouville theorem
Courant-Snyder invariant — Twiss matrix
Emittance matching

Emittance measurements(examples)
Collimators



Global description of a beam (2D case)

- EX: trajectories of individual
particles in a drift space

- Need of a global description

- Need to describe convergence,
divergence, beam enveloppe

- Need to describe extrema beam
enveloppe (“waist”)

- RMS description of the beam




Beam matrix

- Beam matrix
- Covariance matrix in phase space |x :{X} S5 X = [x x]
- Here (x, X’) only)

- RMS beam extension in phase
space (nD variance)

2

2 ' 2 r
~ X° XX ~ <X°> <xx'>
XX = ) S XX >= )
X <xXxX'> <x">

- Linear transport easy

- Transformation is a tensorial Y =MX =YY = MAXM
transform =<YY >=M < XX > M

—Not a matrix but a tensor

—Matrix: tranformation

Tensor: property (here: RMS _ 1
_>extent) Property =2, = M2,M




Emittance (Twiss) parameters

- From the beam matrix <x'> <xX'> Be — e
- L Xx'> < X" >} B {— as..  VE.. }

- Defines the ellipses including

n% of the beam in an RMS 2

(intuitive) sense. Pr—a =1
- The ellipse corresponding to

erms 1S the concentration e = JUet(Z) = /< X' >< X" > —(< x>}

ellipse PV

= < p=
8RMS

- Warning; RMS emittance < xx' >

definition changes upon @=- c

authors, by a factor %2, 2 or )

4. ..

Not to be confused with Lorentz factors



Ellipses

N omax - RMS ellipses
— A = e| * Include more or less (ex : 95%)
oo |, particles.
:- Lo . - 4 paraméters (a,B,y.¢) — in fact 3.
\ °° o - Ex: if the beam is gaussian in two
dimensions, the number of particles

in the ellipse is N - [1 — exp(—¢/

o>0 (convergent)  o=0 (waist) a<0 (divergent)



Emittance transport

. Explicit formula | #| | M —2MuM,, Mz | f
o :Z -M M, MM, + MMy, —M,,My, | &
YL Mé21 —2M,,M M222 L7 1o

- Beam RMS enveloppe V< x2 >= /B - &rms

(s +ds) = x(s) + /(s - Mys = [ ]

- o versus f3 B(s + ds) = B(s) — 2a - ds
__F
“=72

- Enveloppe extremum if
o=0 (waist)



Liouville Theorem (2D)

- Let X, and X, be to vectors in phase space
Yl =M‘X1 ande =M‘X2

Pe
Ps

det|V; Y] =det(M)-det[X; X;]=—-det[X; X;]

- The area in phase space varies accordingly to momentum
- —the area is constant if there is no acceleration
* >Brorentz * Yiorentz * € 1S constant (normalized emittance)

- Warning: if the motion is not linear, the “apparent” RMS emittance
varies, even the surface in phase space is constant



54

Spectrometer (magnetic separation only)

Résolution

Object R P D

\ } A—p ) 2GX,
\/ dp/p
Ax=Rqgdp/p

Slit




Spectrometer design

- Point to point imaging —system
Size

- Waist to Waist imaging

- Beam size: Rg = |My4]| - Rg

- Analysis if D A?P = 2Rg

2 D
Ap  2|Mq4| - Rg

- Resolution is directly depending
on the magnetic area covered
by the beam, not by optics

- Optics has operational aspects
(ex: achievable slit size) and
low effect on resolution




SPEG spectrometer (GANIL)




Courant/Snyder invariant — Emittance matching

- Consider a periodic system made of identical cells (no
acceleration). Let M be the matrix of each cell. M has 2
eigenvalues A and 1/A (determinant is 1)

- Suppose the motion to be stable, then A"and 1/ A" must be
bounded for any value of n (integer)

- Theonlywayis [A| =1 = |1/1] > 1 = et
c>Tr(M) =21+ % = 2 cos(u)
* The motion is stable if and only if =1 < ~Tr(M) < 1
- Ex: stability for FODO cell (L between lenses):

L2

L
cos,u=1—2—f2>—1 —>f>§



Courant/Snyder invariant — Emittance matching

- Suppose the motion to be stable

- The following formulas are straighforward, with the transfer matrix
TWISS parameters

y _[COS,U+0£*Sin,u B sin u }

7" sin u COS 1 — o Sin u
1 0 - * * -
M =cos u- +sin u- a* ’B* =cosu- | +sinu-J
0 1 y -«

Emittance matching: if the injected emittance Twiss
parameters are equal to the system Twiss parameters, the
oscillations of the beam enveloppe are minimized, and the
beam occupies less space in phase space.



Beam matching (envelope)

Harmonic oscillator

FODO (pseudo-harmonic motion)

| L] L}
1 2 3
S



A few words about emittance measurements

= The RMS enveloppe varies with
focusing

_ 2 _
= ltis related to the initial emittance <X >= GO — IBO‘C"RMS
parameters

2
= A known lens (system) is used with O = (A,B +Ba + C]/)gRMS
differents tunings

= N profile (RMS) measurements are
made

= N equation with 4 unknown are
obtained

= Warning: numerically unstable with
solenoids (even if a theoretical

solution exists) /}




Moving slit (real phase picture)

Hardware Analysis
novehie movahle lh °
: .. 32 € space
ngsvore UL opeaing duy SE.‘vl:gnd .

: !

profde Saatins
beamlel’ age '/ri
seiileiaatasitasts, dmduton Q "/
X .| T .

beam “dit} . X | 7
 — J L o
. | / /,"‘ X

. . ® J e

o iz d u J 'L/ ds

-‘-"\u_%:f duz capx

Elliptic shape might be far
from reality at low energy

Courtesy Bernard Launeé



he reality (SILHI source, Saclay)

4% [nmradl]

120

protons
"

-40

=

-4 -20 o 20 ag 68 ¥ [nnl

Saclay source SILHI Courtesy Bernard Launé



Collimators on some examples

- Collimator: [‘;ﬂ (A=aperture,
A €R)

- M: transfer matrix from
collimator to target

- Case 1:M,, = 0. A "vertical
line is transformed to an
horizontal one. No effect on
beam size

- Case 2:M,, = 0. Avertical line
IS transformed to an vertical
one. Effect is maximum. In
this case Rigrger = [M14] - A




Thank you!



