Problem 1 solution

SNS: A proton ring with kinetic energy of $\mathbf{1 G e V}$ and a circumference of $\mathbf{2 4 8 m}$ has $\mathbf{1 8}, \mathbf{1 m}$ long focusing quads with gradient of $5 \mathbf{T} / \mathbf{m}$. In one of the quads, the horizontal and vertical beta function is of $\mathbf{1 2 m}$ and $\mathbf{2 m}$ respectively. The rms beta function in both planes on the focusing quads is $\mathbf{8 m}$. With a horizontal tune of $\mathbf{6 . 2 3}$ and a vertical of $\mathbf{6 . 2}$, compute the expected horizontal and vertical orbit distortions on the single focusing quad given by horizontal and by vertical misalignments of $1 \mathbf{m m}$ in all the quads. What happens to the horizontal and vertical orbit distortions if the horizontal tune drops to $\mathbf{6 . 1}$ and $\mathbf{6 . 0 1}$?

- The rms orbit distortion is given by

$$
u_{\mathrm{rms}}(s)=\frac{\sqrt{N \beta(s) \beta_{\mathrm{rms}}}}{2 \sqrt{2}|\sin (\pi Q)|} \theta_{\mathrm{rms}}
$$

- We need to determine the rms kick angle, which in the case of a quadrupole displacement is given by

$$
\theta_{\mathrm{rms}}=\frac{G l}{B \rho}(\delta u)_{\mathrm{rms}}
$$

- The magnetic rigidity is

$$
B \rho[\mathrm{~T} \mathrm{~m}]=\frac{1}{0.2998} \beta_{r} E[\mathrm{GeV}]
$$

- We need to compute the total energy which is $E=T+E_{0}=1.938 \mathrm{GeV}$
- Now we need to compute the relativistic beta. First we compute the relativistic gamma

$$
\gamma_{r}=\frac{E}{E_{0}}=2.07 \quad \text { and the relativistic beta is } \beta_{r}=\sqrt{1-1 / \gamma_{r}^{2}}=0.875
$$

- The magnetic rigidity is then $B \rho=5.657 \mathrm{Tm}$ and the rms angle in both planes is

$$
\theta_{\mathrm{rms}}=8.8 \times 10^{-4} \mathrm{rad}
$$

- Now we can calculate the rms orbit distortion on the single focusing quad

$$
x_{\mathrm{rms}}(s)=\frac{\sqrt{N \beta_{x}(s) \beta_{x \mathrm{rms}}}}{2 \sqrt{2}\left|\sin \left(\pi Q_{x}\right)\right|} \theta_{x \mathrm{rms}}=\frac{\sqrt{18 \times 12 \times 8}}{2 \sqrt{2}|\sin (6.23 \pi)|} 8.8 \times 10^{-4}=19.6 \mathrm{~mm}
$$

- The vertical is

$$
y_{\mathrm{rms}}(s)=\frac{\sqrt{N \beta_{y}(s) \beta_{y \mathrm{rms}}}}{2 \sqrt{2}\left|\sin \left(\pi Q_{y}\right)\right|} \theta_{y \mathrm{rms}}=\frac{\sqrt{18 \times 2 \times 8}}{2 \sqrt{2}|\sin (6.20 \pi)|} 8.8 \times 10^{-4}=9 \mathrm{~mm}
$$

- For $Q_{x}=6.1$ the horizontal orbit distortion becomes $x_{\mathrm{rms}}(s)=41.9 \mathrm{~mm}$
- For $Q_{x}=6.01$ we have $x_{\text {rms }}(s)=0.41 \mathrm{~m}$
- The vertical remains unchanged...

Problem 2 solution

Three correctors are placed at locations with phase advance of $\pi / 4$ between them and beta functions of 12,2 and 12m. How are the corrector kicks related to each other in order to achieve a closed 3-bump.

- The relations for achieving a 3-bump are

$$
\frac{\sqrt{\beta_{1}}}{\sin \psi_{23}} \theta_{1}=\frac{\sqrt{\beta_{2}}}{\sin \psi_{31}} \theta_{2}=\frac{\sqrt{\beta_{3}}}{\sin \psi_{12}} \theta_{3}
$$

- The phase advances are $\psi_{12}=\psi_{23}=\pi / 4$ and $\psi_{13}=\psi_{12}+\psi_{23}=\pi / 2$ which gives $\psi_{31}=-\pi / 2$
- So $\theta_{1}=\theta_{3}$ and $\theta_{2}=-\theta_{1} \sqrt{12}$

Problem 3 solution

SPS: Consider a 400 GeV proton synchrotron with 108 3.22m-long focusing and defocusing quads of $15 \mathrm{~T} / \mathrm{m}$, with a horizontal and vertical beta of $\mathbf{1 0 8 m}$ and $\mathbf{3 0 m}$ in the focusing quads, and horizontal and vertical beta of $\mathbf{3 0 m}$ and $\mathbf{1 0 8 m}$ for the defocusing ones. The tunes of the machine are $\mathbf{Q x}=\mathbf{2 0 . 1 3}$ and $\mathbf{Q y = 2 0 . 1 8}$. Due to a mechanical problem, one focusing quadrupole was slowly sinking down in 2016, resulting in an increasing closed orbit distortion with respect to a reference taken in the beginning of the year.

- By how much the quadrupole had shifted down when the maximum vertical closed orbit distortion amplitude in defocusing quadrupoles reached 4 mm ?
- Why was there no change of the horizontal orbit measured?
- How big would have been the maximum closed orbit distortion amplitude if it would have been a defocusing quadrupole?
- The magnetic rigidity is $B \rho[\mathrm{~T} \mathrm{~m}]=\frac{1}{0.2998} \beta_{r} E[\mathrm{GeV}]$
- For 400 GeV , the relativistic beta is almost 1 and then the magnetic rigidity is

$$
B \rho=1334 \mathrm{~T} \mathrm{~m}
$$

- The focusing normalized gradient is $K_{F}=\frac{G_{F}}{B \rho}=\frac{15}{1334}=0.011 \mathrm{~m}^{-2}$
- The defocusing one is just the same with opposite sign $K_{D}=-0.011 \mathrm{~m}^{-2}$

Problem 3 solution

- The closed orbit distortion from a single dipole error is given by

$$
u(s)=\theta \frac{\sqrt{\beta(s) \beta_{0}}}{2 \sin (\pi Q)} \cos \left(\pi Q-\left|\psi(s)-\psi_{0}\right|\right)
$$

- We are interested in the peak orbit distortion

$$
\hat{y}=\theta \frac{\sqrt{\hat{\beta}_{y} \beta_{0}}}{2 \sin (\pi Q)}
$$

- From this we can calculate the required kick

$$
\theta=\frac{\hat{y} 2 \sin (\pi Q)}{\hat{\beta}_{y} \beta_{0}}=\frac{0.004 \times 2 \times \sin (\pi 20.18)}{\sqrt{108 \times 30}}=75 \mu \mathrm{rad}
$$

- And finally the required quadrupole displacement to produce this deflection

$$
\begin{aligned}
& \theta=\frac{G l \delta y}{B \rho}=K_{F} l_{F} \delta y \\
& \delta y=\frac{\theta}{K_{F} l_{F}}=\frac{75 \times 10^{-6}}{0.011 \times 3.22} \mathrm{~m}=2 \mathrm{~mm}
\end{aligned}
$$

- In fact what was found in the machine was that one of the supports of the quadrupole was broken and on that end it was shifted down by 4 mm , resulting in 2 mm average shift

Problem 3 solution

- No horizontal orbit change was observed, because the quadrupole shifted only in the vertical plane resulting in a pure vertical kick.
- If it would have been a defocusing quadrupole, the kick would have been the same but with opposite sign. However, the impact on the closed orbit would have been bigger since the vertical β-function is bigger in the defocusing quadupole, such that the peak orbit distortion would reach

$$
\hat{y}=\theta \frac{\sqrt{\hat{\beta}_{y} \beta_{0}}}{2 \sin (\pi Q)}=\theta \frac{\sqrt{\hat{\beta}_{y} \hat{\beta}_{y}}}{2 \sin (\pi Q)}=75 \times 10^{-6} * \frac{\sqrt{108 \times 108}}{2 \sin (\pi 20.18)} \mathrm{m}=7.5 \mathrm{~mm}
$$

SPS: Consider a 400 GeV proton synchrotron with 108 3.22m-long focusing and defocusing quads of $15 \mathrm{~T} / \mathbf{m}$, with a horizontal and vertical beta of $\mathbf{1 0 8 m}$ and $\mathbf{3 0 m}$ in the focusing quads, and horizontal and vertical beta of $\mathbf{3 0 m}$ and $\mathbf{1 0 8 m}$ for the defocusing ones.

- Find the tune change for systematic gradient errors of $\mathbf{1 \%}$ in the focusing and $\mathbf{0 . 5 \%}$ in the defocusing quads.
- What is the chromaticity of the machine?
- The magnetic rigidity is $B \rho[\mathrm{~T} \mathrm{~m}]=\frac{1}{0.2998} \beta_{r} E \quad[\mathrm{GeV}]$
- For 400 GeV , the relativistic beta is almost 1 and then the magnetic rigidity is

$$
B \rho=1334 \mathrm{~T} \mathrm{~m}
$$

- The focusing normalized gradient is $K_{F}=\frac{G_{F}}{B \rho}=\frac{15}{1334}=0.011 \mathrm{~m}^{-2}$
- The defocusing one is just the same with opposite sign $K_{D}=-0.011 \mathrm{~m}^{-2}$
- Now, the tune change is given by

$$
\delta Q_{u}=\frac{1}{4 \pi} \sum_{i} \beta_{u} K_{i}\left(\frac{\delta K}{K}\right)_{i} l_{i}
$$

Problem 4 solution

- By splitting the focusing and defocusing quads, we have

$$
\delta Q_{u}=\frac{1}{4 \pi}\left(N_{F} \beta_{u}^{F} K_{F}\left(\frac{\delta K}{K}\right)_{F} l_{F}+N_{D} \beta_{u}^{D} K_{D}\left(\frac{\delta K}{K}\right)_{D} l_{D}\right)
$$

- As $N_{F}=N_{D}=N, \quad l_{F}=l_{D}=l$ and $K_{F}=-K_{D}=K$ the tune shift can be rewritten as

$$
\delta Q_{x, y}=\frac{1}{4 \pi} N l K\left(\pm \beta_{x, y}^{F}\left(\frac{\delta K}{K}\right)_{F} \mp N_{D} \beta_{x, y}^{D}\left(\frac{\delta K}{K}\right)_{D}\right)
$$

- This gives a horizontal and vertical tune shift of

$$
\begin{aligned}
& \delta Q_{x}=\frac{108 \times 3.22 \times 0.011}{4 \pi}(+108 \times 0.01-30 \times 0.005)=0.3 \\
& \delta Q_{y}=\frac{108 \times 3.22 \times 0.011}{4 \pi}(-30 \times 0.01+108 \times 0.005)=0.07
\end{aligned}
$$

- The chromaticity of the machine is

$$
\xi_{x, y}=-\frac{1}{4 \pi} \sum_{i} \beta_{x, y}^{i} K_{x, y}^{i}
$$

Problem 4 solution

- By splitting again the focusing and defocusing quads' contribution, we have

$$
\xi_{x, y}=-\frac{1}{4 \pi} N l K\left(\pm \beta_{x, y}^{F} \mp \beta_{x, y}^{D}\right)
$$

- This gives in both planes

$$
\xi_{x, y}=-\frac{108 \times 3.22 \times 0.011}{4 \pi}(108-30)=-24
$$

Problem 5 solution

CLIC pre-damping rings: Consider a 2.86 GeV electron storage ring with a racetrack shape of 389 m circumference. Each arc is composed of $\mathbf{1 7}$ regular "TME" cells, each consisting of 2 dipoles, 2 focusing and 2 defocusing quadrupoles. The beta functions are around $\boldsymbol{\beta}_{\mathrm{x}}=\mathbf{4 m}$ ($\mathbf{2 m}$) and $\boldsymbol{\beta}_{\mathrm{y}}=4.2 \mathrm{~m}(9 \mathrm{~m})$ in the focusing (defocusing) quadrupoles and the normalized quadrupole gradients are $\mathbf{2 . 4 9} / \mathbf{m}^{\mathbf{2}}\left(\mathbf{2 . 0 7} / \mathbf{m}^{\mathbf{2}}\right)$. The quadrupoles have a length of $\mathbf{0 . 2 8 m}$. The natural chromaticity of the machine is about $\mathbf{- 1 9}$ and $\mathbf{- 2 3}$ in the horizontal and vertical plane, respectively.

- How big is the chromaticity contribution from the arcs?
- Where would you install sextupole magnets for correcting chromaticity?
- Can you give an estimation for the required sextupole gradient assuming the sextupoles have the same length as the quadrupoles?
- The chromaticity from quadrupoles is given by

$$
\xi_{x, y}=-\frac{1}{4 \pi} \oint \beta_{x, y} k(s) d s
$$

- For one TME cell we get

$$
\begin{aligned}
& \xi_{x, \text { cell }}=-\frac{1}{4 \pi}\left(2 \beta_{x, q f} k_{q f} l_{q f}-2 \beta_{x, q d} k_{q d} l_{q d}\right)=-\frac{1}{4 \pi}(2 \cdot 5 \cdot 2.49 \cdot 0.28-2 \cdot 2 \cdot 2.07 \cdot 0.28)=-0.26 \\
& \xi_{y, \text { cell }}=-\frac{1}{4 \pi}\left(2 \beta_{y, q f} k_{q f} l_{q f}-2 \beta_{y, q d} k_{q d} l_{q d}\right)=-\frac{1}{4 \pi}(2 \cdot 4.2 \cdot 2.49 \cdot 0.28-2 \cdot 9 \cdot 2.07 \cdot 0.28)=-0.36
\end{aligned}
$$

Problem 5 solution

- The chromaticity contribution from the arcs is then

$$
\begin{aligned}
& \xi_{x, \text { arc }}=\xi_{x, \text { cell }} \cdot N_{\text {cells }} \cdot N_{\text {arcs }}=-0.26 \cdot 17 \cdot 2=-8.8 \\
& \xi_{y, \text { arc }}=\xi_{y, \text { cell }} \cdot N_{\text {cells }} \cdot N_{\text {arcs }}=-0.36 \cdot 17 \cdot 2=-12.4
\end{aligned}
$$

- The optimal location of the sextupoles is at locations with high β and high dispersion to minimize their strength

- The total chromaticity is given by

$$
\xi_{x, y}^{\mathrm{tot}}=-\frac{1}{4 \pi} \oint \beta_{x, y}(s)\left(k(s) \mp S(s) D_{x}(s)\right) d s
$$

- The sextupole gradients required to correct the total chromaticity can be estimated using the dispersion values from the figure

$$
\begin{gathered}
\xi_{x}^{t o t}=\xi_{x}^{n a t}-\frac{N c e l l s}{4 \pi}\left(-\beta_{x 1} D_{1} S 1 l_{S 1}-\beta_{x 2} D_{2} S 2 l_{S 2}-\beta_{x 1} D_{1} S 1 l_{S 1}\right)=0 \longrightarrow \\
S 1=\frac{-4 \pi \xi_{x}^{n a t}-D_{2} l_{S 2} N c e l l s S 2 \beta_{x 2}}{2 D_{1} l_{S 1} N c e l l s \beta_{x 1}} \\
\xi_{y}^{t o t}=\xi_{y}^{n a t}-\frac{N c e l l s}{4 \pi}\left(\beta_{y 1} D_{1} S 1 l_{S 1}+\beta_{y 2} D_{2} S 2 l_{S 2}+\beta_{y 1} D_{1} S 1 l_{S 1}\right)=0 \longrightarrow \\
S 1=\frac{4 \pi \xi_{y}^{n a t}-D_{2} l_{S 2} N c e l l s S 2 \beta_{y 2}}{2 D_{1} l_{S 1} N c e l l s \beta_{y 1}}
\end{gathered}
$$

Problem 5 solution

- Equalizing the two expressions for S1 we can derive S2:

$$
S 2=-\frac{4 \pi\left(\beta_{y 1} \xi_{x}^{n a t}+\beta_{x 1} \xi_{y}^{n a t}\right)}{D 2 l_{s 2} N \operatorname{cells}\left(\beta_{x 2} \beta_{y 1}-\beta_{x 1} \beta_{y 2}\right)}=-32.8 m^{-3}
$$

Substituting this into one of the two expressions for S 1 we get:

$$
S 1=14.8 m^{-3}
$$

Problem 6 solution

Derive an expression for the resulting magnetic field when a normal sextupole with field $\mathbf{B}_{\mathbf{y}}=$ $\mathbf{S} / \mathbf{2} \mathbf{x}^{\mathbf{2}}$ is displaced by $\boldsymbol{\delta x}$ from its center position. At what type of fields correspond the resulting components? Do the same for an octupole with field $\mathbf{B}_{\mathbf{y}}=\mathbf{O} / \mathbf{3} \mathbf{x}^{\mathbf{3}}$. What is the leading order multi-pole field error when displacing a general $2 n$-pole magnet?

- The vertical field of a sextupole is $B_{y}=\frac{S}{2} x^{2}$
- Considering a displacement $x \mapsto x+\delta x$ the field is written as

$$
B_{y}=\frac{S}{2}(x+\delta x)^{2}=\frac{S}{2} \underbrace{x^{2}}_{\text {sextupole }}+\underbrace{2(\delta x) x}_{\text {quadrupole }}+\underbrace{(\delta x)^{2}}_{\text {dipole }})
$$

- For an octupole

$$
B_{y}=\frac{0}{3}(x+\delta x)^{3}=\frac{O}{3}(\underbrace{x^{3}}_{\text {octupole }}+3 \underbrace{(\delta x) x^{2}}_{\text {sextupole }}+3 \underbrace{(\delta x)^{2} x}_{\text {quadrupole }}+\underbrace{\delta x)^{3}}_{\text {dipole }})
$$

- The vertical field for a $2 n$-pole is

$$
B_{y}=\frac{b_{n}}{n-1} x^{n-1}
$$

Problem 6 solution

- By displacing it $x \mapsto x+\delta x$, the vertical field is

$$
B_{y}=\frac{b_{n}}{n-1}(x+\delta x)^{n-1}=\frac{b_{n}}{n-1}\left[x^{n-1}+(n-1)(\delta x) x^{n-2}+\cdots+(\delta x)^{n-1}\right]
$$

- So the leading order feed-down is a $\mathbf{2}(\mathbf{n} \mathbf{- 1})$-pole

