Joint Universities Accelerator School JUAS 2017 Archamps, France, 27th February – 3rd March 2017

Normal-conducting accelerator magnets Lecture 3: Magnet production

Thomas Zickler CERN

Lecture 3: Magnet production

Magnetic materials Manufacturing techniques QA & Acceptance tests Recurrent issues Magnetic measurements (see practical work @ CERN) Cost estimates and optimization

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

Massive vs. laminated yokes

Historically, the primary choice was whether the magnet is operated in persistent mode or cycled (eddy currents)

- + no stamping, no stacking
- + less expensive for prototypes and small series
- time consuming machining, in particular for complicated pole shapes
- difficult to reach similar magnetic performance between magnets

- + steel sheets less expensive than massive blocks (cast ingot)
- + less expensive for larger series
- + steel properties can be easily tailored
- + uniform magnetic properties over large series
- expensive tooling

Magnetic steel

Today's standard: cold rolled, non-oriented electro-steel sheets (EN 10106)

- Magnetic and mechanical properties can be adjusted by final annealing
- Reproducible steel quality even over large productions
- Magnetic properties (permeability, coercivity) within small tolerances
- Homogeneity and reproducibility among the magnets of a series can be enhanced by selecting, sorting or shuffling
- Material is usually cheaper, but laminated yokes are labour intensive and require more expensive tooling (fine blanking, stacking)

Sheet thickness: $0.3 \le t \le 1.5 \text{ mm}$

Specific weight: 7.60 $\leq \delta \leq$ 7.85 g/cm³ Electr. resistivity @20°C: 0.16 (low Si) $\leq \rho$ \leq 0.61 $\mu\Omega$ m (high Si)

6

Sheet insulation

Surface coating:

- electrical insulation of several μm thickness
- one or both sides
- oxid layer, phosphate layer, organic or inorganic coating

Insulation designation IEC 60404-1-1	Insulation type	Color ¹⁾	Coating	Coating thickness each side in μm	Insulation resistance at room temperature to ASTM A717/A717M-95 Ωm ² /Lamelle
STABOLIT 10 EC-3 by prior arrangement only	organic	yellow- green	both sides	max. 1.5	> 15
STABOLIT 20 EC-5-P	inorganic with organic components	grey- green	both sides	0.5 – 1.5	> 5
STABOLIT 30 EC-5-P	inorganic with organic components	light grey	both sides	0.5 - 1.5	> 5
STABOLIT 40 EC-6	organic pigmented	grey	one or both sides	3.0 - 5.0 4.0 - 7.0 6.0 - 9.0	> 90
STABOLIT 60 EC-5	inorganic with organic components pigmented	grey	both sides	0.3 - 1.0 1.0 - 2.0 2.0 - 3.5	> 5 > 15 > 50
STABOLIT 70	organic bonding lacquer (active)	colorless	one or both sides	5.0 - 8.0	-
Combined insulation	organic bonding lacquer with one side heat treatment (passive)	colorless	both sides	active 5.0 - 8.0	-
				passive max. 1.5 Source	ce: ThyssenKrupp

Bonding & insulation

Special coatings have been developed for the adhesive bonding of laminations:

- provide electrical insulation and mechanical bonding
- based on epoxy resins
- available in B-stage (partly cured) and C-stage (fully cured)
- Referred to as **STABOLIT 70** by *ThyssenKrupp*

Courtesy of Rembrandtin

JUAS Joint Universities Accelerator Schoo

Other magnetic materials

1. High purity irons

- Iron referred to as "high purity" when total concentration of impurities (mainly C, N, O, P, S, Si and AI) does not exceed a few hundred ppm
- Otherwise Low Carbon Steel or Non-alloyed Steel
- Very pure Fe: high electrical conductivity \rightarrow not suitable for AC applications
- For high permeability at B > 1.2 T it is advisable to anneal at max. 800 °C and cool down slowly

2. Low-Carbon Steels

- e.g. type 1010
- Disadvantage: Magnetic ageing (increase of coercivity with time)
- 3. Non-grain oriented Silicon Steels (NGO)

Advantages:

- Increase in permeability
- Decrease in hysteresis loss
- Eddy current loss decrease due to higher resistivity (Al and Mn added as well)
- No ageing
- 4. Grain-oriented Silicon Steels
- 5. Iron alloys
 - a. Iron-Nickel
 - b. Iron-Cobalt alloys with high magnetic saturation
- 6. Compressed powdered Iron and Iron alloys
- 7. Ferrites
- 8. Innovative materials and rare earths

Reference: S. Sgobba: Physics & Measurements of Magnetic Materials, CAS 2009, Brugges

Yoke manufacturing

Stamping laminations

Stacking laminations into yokes

Gluing and/or welding

Machining

Assembly (preliminary)

CERN

Lamination punching

- Punching or fine blanking
- Fine blanking requires more expensive tooling
- Tolerances less than +/- 8 μm achievable (depending on thickness, material and layout)
- Material can be delivered in sheets or strips (coils)

Alternatives to punching

Technique	Accuracy [mm]	Repeatability [mm]	Drawbacks	
Water jet cutting	> 0.13	>0.025	rough cutting edge, relatively slow	W
Laser cutting	>0.01	>0.005	cutting edge ,burnt', relatively slow	
CNC machining	0.01-0.001	0.01-0.001	stacks only	
Wire-cut EDM	> 0.002	>0.001	very slow, limited size	м

... or a combination of different techniques

Water Jet Cutter Head

Yoke stacking

Fixtures for stacking/baking/welding

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

Glueing vs. Welding

Welding

- + mechanically more ridgig
- + no aging
- massive end plates/tension straps needed
- continous welding introduces stress and deformation
- sophisticated welding procedure
- / requires stacking fixture

Glueing

- + no stress, no distortions
- + no tension straps, no end plates
 (→ no eddy currents)
- glue sensitive to radiation and aging
- requires clean laminations and conditions
- requires baking oven
- / requires stacking fixture

Recommendation: combine gluing, welding & bolting

CERN

Magnetic materials - Manufacturing - QA - Recurrent issues - Costs - Summary

Coil manufacturing

Define conductor type and material

Conductor insulation

Winding

Ground insulation

Epoxy impregnation

Conductor materials

	AI	Cu (OF)
Purity	99.7 %	99.95 %
Resistivity @ 20°C	2.83 μΩ cm	1.72 μΩ cm
Thermal resistivity coeff.	0.004 K ⁻¹	0.004 K ⁻¹
Specific weight	2.70 g/cm ³	8.94 g/cm ³
Thermal conductivity	2.37 W/cm K	3.91 W/cm K

Key-stoning: risk of insulation damage & decrease of cooling duct cross-section

Coil insulation

In a magnet coil, the electrical insulation ensures that current flows only along the conductors and not between individual conductors or between the conductors and other parts of the magnet

Dielectric materials can be distinguished in three main classes:

- inorganic materials: ceramics, glass, guartz, cements and minerals (e.g. mica)
- organic materials: thermoplastic: Rubber, PA (Nylon), PP, PS, PVC, PC, PTFE or
 - thermosetting: Polyethylene, PI, PEEK, Epoxy, phenolic, silicon, polyester resins
- composites: fully organic (aramidic fibres-epoxy tapes) or mixed (epoxy-mica tapes)

A weak electrical insulation may produce:

- current leaks with local heating up to melting and possible fire
- progressive damage of the leakage path up to a short circuit
- unbalanced circulating currents (\rightarrow magnetic field distortion)
- incorrect functioning of protections

The electrical insulation is stressed by several factors:

- electric
- thermal
- mechanical
- chemical (including oxidation)
- radiation

Montsinger's rule / Arrhenius equation: $L(T+10 K) \approx 0.5 t(T)$

A temperature rise of 10 K halves the expected live time of an insulation system

Archamps, 27. Feb – 3. Mar. 2017

JUAS 2017

CERN

Radiation hardness

Radiation hardness is an important criterion for insulation materials used for accelerator applications

Radiation hardness

Coil insulation

Conductors with small cross-section:

straigthening \rightarrow cleaning \rightarrow conductor insulation \rightarrow winding \rightarrow ground insulation

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

Coil insulation

Conductors with large cross-section:

straigthening \rightarrow winding \rightarrow sand blasting \rightarrow cleaning \rightarrow conductor insulation \rightarrow ground insulation

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

Coil impregnation

heating and evacuating mold and coil (auto-clave or vacuum mold) \rightarrow mixing resing \rightarrow heating and degassing resin \rightarrow injecting resin \rightarrow curing cycle \rightarrow cooling

Coil impregnation

We can distinguish between two different impregnation techniques:

Precise mold

- + very good surface finish
- + moderate resin consumption
- requires release agent
- difficult to avoid resin rich areas
- expensive tooling (mold)
- ejection more difficult

Release tape

- + no excess of resin on the finished coil
- + inexpensive mold
- + easy de-molding
- poor surface finish
- higher resin consumption

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

By hand....

... or with the help of tooling

Auxiliary components

- **Electrical connections**
- Hydraulic connections
- **Interlock sytem** (temperature, pressure, water flow)
- Alignment tragets, adjustment tables and support jacks
- Magnetic measurement devices (pick-up coils, hall probes)

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

Hydraulic circuits

JUAS Joint Universities Accelerator School

- Water cicuits are most critical items
- 95% of all magnet failures due to water leaks:
 - Corrosion
 - Errosion
 - Poor brazing quality
 - Poor welding quality
 - Failure or aging of joints
 - Inadequate materials
 - Incorrect assembly
 - Radiation damage
 - Inadequate design

- Leaks can be detected and repaired during magnet acceptance tests and commissioning...
 - ... but, many leaks occur only after years in operation
 - Often not monitored \rightarrow magnet damage (short cicuits, corrosion of iron yoke) and collateral damages on other equipment

Interlock Sensors

Thermo-switch:

A Housing B Contact arm C Ceramic insulator D Laser weld E Bimetal disc

F Ceramic transfer pin G Cap H Gold alloy contacts I Glass header J Terminals

Flow-switch:

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

QA & Acceptance tests

QA is important at each production stage

- Constant monitoring of critical items from the raw material, to semi-finished parts, to subcomponents to the final product
- Sample testing (destructive or non-destructive) to qualify materials, manufacturing techniques and processes
- Acceptance test can include electrical, hydraulic, mechanical, thermal, and magnetic measurements
- Tests/measurements can be systematically (entire series) or on specific/random samples
- Complete recording and documentation indispensible (back-tracing in case of doubts or failures)

Sample testing

- Magnetic steel
- Laminations
- Bond strenght (lamination)
- Brazing / Welding
- Bond strength (coil)
- Impre

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- Brazing / Welding
- Bond strength (coil)

Sample testing

- Magnetic steel
- Laminations
- <u>Bond strenght (laminations)</u>

Sample testing

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- <u>Brazing / Welding</u>
- Bond strength (coil)
- Impregnation

Sample testing

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- Brazing / Welding
- <u>Bond strength (coil)</u>
- Impregnation

Sample testing

- Magnetic steel
- Laminations
- Bond strenght (laminations)
- Brazing / Welding
- Bond strength (coil)
- Impregnation

Mechanical measurements

Yoke shape and dimensional accuracy is essential for magnetic field quality in iron-dominated magnets

Mechanical errors can significantly influence the magnetic performance We distinguish between:

- Systematic errors (lamination contour) , can be relativley easy determined and corrected
- Random errors (stacking, machining, assembly), difficult to predicted, in general known only after series production, can be partly minimized by imposing low mechanical tolerances (expensive), enlarged design margins (also expensive), strict quality assurance and close follow-up of production processes

Mechanical measurements are required after each manufacturing step:

- Lamination punching
- Yoke pieces (half-yoke, quadrants) manufacture
- Yoke assembly
- Reproducability: after disassembling and re-assembling (dowel pins)
- Stability: no deformation due to handling, lifting, transport (lifting test)

CERN

Magnetic materials – Manufacturing – QA – Recurrent issues – Costs – Summary

Mechanical measurements

Various optical and mechanical techniques with different accuracy, precision and resolution are available for mechanical measurements

Insulation testing

- Insulation tests are an integral part of the electrical testing in addition to the measurements of the electrical coil resistance and inductance
- An electrical insulation shall be tested to ensure its ability to provide the required insulation levels for specified operation and fault conditions and during a specified time \rightarrow tests shall reveal manufacturing deficiencies
- In most cases, this means specifying test levels much beyond the real operational conditions
- For acceptance testing we typically perform two types of tests:
 - High voltage test of a conductor to ground
 - Capacitor discharge test for inter-turn insulation

JUAS Joint Universities Accelerator School

Power and heating tests

Power test are performed to verify:

- correct interlock functioning
- no accidental over-heating
- correct cooling performance
- absence of poor electrical contacts
- absence of moving or loose parts (pulse test)

28/11/2011 10:43:18

DC_0244.jpg

Recurrent quality issues

- Despite a severe quality control by the manufacturer, we often find quality deficiencies during the acceptance tests and certification at CERN
- Amongst several other recurrent issues, the following are the most frequent and most serious:
 - Poor brazing quality
 - Poor bonding stength
 - Poor coil insulation/impregantion
 - Insufficient rust protection
 - Loose or moving parts
 - Covers not respecting IP2X
 - Insufficient cable cross-section
 - Obstructed cooling circuits
 - Transport damages due to inadequate packaging

Recurrent quality issues

Lack/excess of brazing filler

Recurrent quality issues

Lack of resin: bubbles, voids, fissures, cracks, poor penetration, poor wetting Excess of resin: volumes of pure resin

Recurrent quality issues

Poor lamination bonding stength

Cost estimate

Production specific tooling:

5 to 15 k€/tooling

Material:

- Steel sheets: 1.0 1.5 € /kg
- Copper conductor: 10 to 20 € /kg

Yoke manufacturing:

Dipoles: 6 to 10 € /kg (> 1000 kg) Quads/Sextupoles: 50 to 80 € /kg (> 200 kg) Small magnets: up to 300 € /kg

Coil manufacturing:

Dipoles: 30 to 50 € /kg (> 200 kg) Quads/Sextupoles: 65 to 80 € /kg (> 30 kg) Small magnets: up to 300 € /kg

Contingency:

10 to 20 %

et	Magnet type	Dipole	
agn	Number of magnets (incl. spares)	18	
Σ	Total mass/magnet	8330	kg
its	Design	14	kEuros
Ő	Punching die	12	kEuros
xed	Stacking tool	15	kEuros
Ë	Winding/molding tool	30	kEuros
	Yoke mass/magnet	7600	kg
ke	Used steel (incl. blends)/magnet	10000	kg
۷٥	Yoke manufacturing costs	8	Euros/kg
	Steel costs	1.5	Euros/kg
_	Coil mass/magnet	730	kg
Coil	Coil manufacturing costs	50	Euros/kg
	Cooper costs (incl. insulation)	12	Euros/kg
	Total order mass	150	Tonnes
	Total fixed costs	71	kEuros
osts	Total Material costs	428	kEuros
Total co	Total manufacturing costs	1751	kEuros
	Total magnet costs	2250	kEuros
	Contingency	20	%
	Total overall costs	2700	kEuros

NOT included: magnetic design, supports, cables, water connections, alignment equipment, magnetic measurements, transport, installation Prices for 2011

Cost optimization

Focus on economic design!

Design goal: Minimum total costs over projected magnet life time by optimization of capital (investment) costs against running costs (power consumption)

Cost optimization

Cost optimization

Consider alternatives!

So far we have discussed only normal-conducting, iron-dominated magnets operated in dc... but this might not always be the best choice!

- Permanent magnets (Sm2Co17)
- Hybrid magnets
- Use of high-saturation materials
- Superconducting / super-ferric magnets
- Pulsed operation

EAST AREA ANNUAL POWER CONSUMPTION AFTER CONSOLIDATION

Iotal magnet electrical consumption	557	28.3	9 128	464
Water cooling electrical consumption	79	4.0	1 294	66
Air cooling electrical consumption	26	1.3	431	22
Total electricity consumption	662	33.7	10 853	551.8
Total cooling fluid		6.2		101.5
TOTAL energy cost		40 kCHF		653 kCHF

Summary

- Magnet design has a direct impact on manufactruing (and vice versa)
- The yoke shape and dimensional accuracy is essential for magnetic field quality in iron-dominated magnets
- The manufacturing techniques shall be adapted to meet the specified requirements of the finial product in all respects
- Tight QA is the key for success and important at each production stage
 - Sample testing to qualify materials, manufacturing techniques and processes
 - Acceptance tests to verify the correct performance of the final product
 - Magnetic measurements are an essential part of the qualification process
- Cost optimization is an important design aspect, in particular in view of future energy costs