juas

Cyclotrons

Chapter 4 : theory versus reality

- Isochronism and Phase measurement
- Isochronism $2^{\text {nd }}$ approach \& Kf limitation
- Resonances and tune in a cyclotron
- Research applications
- Medical applications

Phase measurement: Isochronous field correction : $\Delta \mathrm{B}$

Phase measurement: Isochronism

Isochronism \&

Phase measurement

Measuring $B(R)$ or $n(R)$ is difficult, While the $\Phi(R)$ is more sensitive
 Isochronous fied $B(z)=$ good field index $n(R)$

$$
n=-\frac{R}{B_{0 z}} \frac{\partial B_{z}}{\partial R} \quad \longleftrightarrow \frac{d B}{B}=-n \frac{d R}{R}
$$

$$
B \rho=\langle B\rangle .\langle R\rangle=\frac{p}{q}
$$

Longitudinal dynamics lecture

Bz Azimutal modulations are not sufficient It is a (Focusing) limit for high energy isochronous cyclotron

Max Energy for Superconducting Cyclotrons not limited by ($B \times$ Rextraction)

Because of the focusing limitation due to the Flutter dependence on the B field, the max energy is not given by $K b \sim 48$ (B. Rextraction) $)^{2}$ but K_{f} the so-called "focusing factor":
$\left[\frac{E}{A}\right]_{\max } \neq K b \cdot\left\{\frac{Q}{A}\right\}^{2}$
vertical oscillation+isochronous field condition

$$
\begin{aligned}
& V_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F\left(1+2 \tan ^{2} \varepsilon\right)>0 \\
& \frac{N^{2}}{N^{2}-1} F\left(1+2 \tan ^{2} \varepsilon\right)>-n=\gamma^{2}-1
\end{aligned}
$$

- Focusing limitation (stronger than B limitation)

$$
\left[\frac{E}{A}\right]_{\max }=K f \cdot\left\{\frac{Q}{A}\right\}^{2}<K b \cdot\left\{\frac{Q}{A}\right\}^{2}
$$

$\mathrm{Kb} \sim 48$ (B.Rextract) ${ }^{2}$

Radial probes

usefull tool for acceleration, precession study

Current measurement: Radial probe

A Faraday cup on mobile Arm

Ganil Css1 (Fr)
Radius

$K b=380$, heavy ions
Check of the acceleration \& extraction

Current measurement with a Radial probe A full check of the dynamics

Current on small finger of the radial probe

Radial probes with
2 diagnostics :
-1 small finger
-1 large plate
(B field was not OK)

Finger current
Good resolution in r (turn separation)

Tune v_{r} measurement with radial probes

:

$$
\mathrm{r}(\mathrm{t})=\langle\mathrm{r}(\mathrm{t})\rangle+\mathrm{X}_{0} \cos \left(\mathrm{~V}_{\mathrm{r}} \omega_{0} \mathrm{t}\right)
$$

$$
v_{r}=\sqrt{1-n}
$$

$$
\begin{gathered}
\omega_{0} \mathrm{t}=\mathrm{PHASE} \\
\omega_{0} \Delta \mathrm{t}=360^{\circ}=1 \text { turn }
\end{gathered}
$$

Precession: $\delta r=\delta r a c c+X_{0} \cos \left(\nu_{r} \omega_{0} t\right)$

Back to dynamics and resonances at high energy

During the acceleration, v_{r} and v_{z} change because $v_{r, z} \propto B(r)$
The plot of V_{r} vs V_{z} is called the working point diagram.
Like any oscillatory phenomenon, the amplitude of a betatronic motion can grow uncontrolled whenever an external source excites it with its own frequency.

$$
\ddot{x}+v_{r}^{2} \omega_{0}^{2} x=0
$$

Several kind of radial resonances

$$
x(t)=x_{0} \cos \left(v_{r} \omega_{0} t\right)=X_{0} \cos \left(v_{r} 2 \pi \text { Nturn }\right)
$$

can be excited with field defect, injection angle (unwanted)
with field bump, injection angle (desired)

What happen with P field perturbations on 1 turn

$\ddot{z}+\left[v_{z} \omega_{0}\right]^{2} z=\Delta \cos \left(P \omega_{0} t\right) \quad$ Search a particular solution $\quad z(t) \propto \cos \left(P \omega_{0} t\right) ? ? ?$

$$
\Longrightarrow \frac{z(t)}{\Delta}=\frac{\cos \left(P \omega_{0} t\right)}{\left[v_{z} \omega_{0}\right]^{2}-\left[P \omega_{0}\right]^{2}}
$$

$\underline{z / \Delta}$ diverge at $\mathrm{Vz}=\mathrm{P}$ (integer)

$z(t)$ is very sensitive to any perturbation Δ (not good : instabilities = beam losses)

With P field perturbations on L turns

$$
\mathrm{z} / \Delta \text { diverge at } \mathrm{L} . \mathrm{V}=P \text { (integer) }
$$

Cyclotron try to avoid resonance crossing

Resonances

Systematic resonances: This resonance occurs as the betatronic frequency is a multiple of the "geometrical frequency" of the cyclotron. In this case, any kick given to the particle because of its particular position will be experienced again and again.

$$
\left(\mathbb{K} \cdot v_{\mathrm{r}}=\mathrm{P}\right) \quad / / \quad\left(\mathrm{L} \cdot v_{\mathrm{z}}=\mathrm{P}\right)
$$

Coupling resonances

Under proper circumstances and frequency ratios, the 2 oscillators can be coupled and the energy stored in one motion, transferred to the other. These are coupling resonances $\left(\mathbb{K} \cdot v_{r}+\mathbb{L} \cdot v_{z}=\mathbf{P}\right)$.

$$
\mathbf{K} \cdot \mathbf{v}_{\mathbf{r}}+\mathbf{L} \cdot \mathbf{v}_{\mathbf{z}}=\mathbf{P} \quad \mathrm{K}, \mathrm{~L} \text { and } P \text { integer }
$$

The particle's working point curve should avoid or cross as fast as possible those lines.

Tunes and resonances at Triumf (Canada) (H^{-}cyclo, $\mathrm{Kb}=520 \mathrm{MeV}$, 6 sectors)

$$
\mathrm{K} \cdot \mathrm{v}_{\mathrm{r}}+\mathrm{L} \cdot \mathbf{v}_{\mathrm{z}}=\mathrm{P}
$$

$|\mathrm{K}|+|\mathrm{L}|$ is called the resonance order $(1,2,3 \ldots)$

Effect on the crossing of the resonance $2 . v_{r}=3$ (order 2)

Cyclotrons in the world

Reseach laboratories with Cyclotron(s)

Some of the Research Facility in the world using cyclotrons

GANIL Facility (Caen, Fr) 5 cyclotrons +a new Linac

Nuclear physics Atomic physic Solid state Radiobiology

For radioactive ion

2 Separated Sectors cyclotrons $\mathrm{Kb}=380 \mathrm{MeV}$

RIBF (Tokyo, Japan) :

Uranium beam ${ }^{238} \mathrm{U}^{88+}$ @ $345 \mathrm{MeV} / \mathrm{A}$ cw
Mode (1): RILAC + RRC + (stripper2) + fRC + (stripper3) + IRC + SRC

RIBF (Japan) : SRC (K=2600 MeV)

the largest cyclotron in the world Superconducting Ring Cyclo

Completed November 2005 - the 140 -ton cold mass cooled to 4.5 K .

TREND in Nuclear physics : Physics at RIBF (Tokyo)
Create Unknown "exotic" nuclei by nuclear fragmentation or by fission

```
Exotic Nuclei (Very large proton-neutron
asymmetries)
- half life measurement
- Mass measurement
```


PSI :K= 590 MeV ring cyclotron

Injection centering:

Watch the resonance 2. $v_{z}+v_{r}=2$

Extraction : Watch the beam losses !
A Flat top RF cavity has been added to reduces losses: $V R F=\operatorname{Cos}(\omega t)-\alpha \cdot \cos (3 \omega t)$

Standard cavity :
$V_{\text {RF }}=\cos \left(\omega_{\text {RF }}\right.$)

Flat top cavity
$\cos \left(\omega_{\text {RF }} \mathrm{t}\right)-\cos (3 \omega \mathrm{t}) 22$

Some Commercial Cyclotrons : manufacturers

```
IBA (Belgium)
Cyclone 5/10 proton/D
Cyclone 9/18 H-/D-
Cyclone 30 H-/D-
ProteusOne 250 MeV p synchro-cyclo superconducting
C70 p/D or H-/D-
Sumitomo HI (Japan)
HM-12 p
HM-18 p
>300 commercial cyclotrons in the World
    - (10-20MeV) protons
    - (230MeV) protons :develloping market
EBCO (Canada)
H-/D-
TR 15/ 30 H-/D-
GE-Scanditronix (USA-Sweden)
MINI TRACE 9/18
Accel // VARIAN
    250 MeV proton cyclo superconducting

\section*{Commercial Cyclotron}

Radioisotope production ( \(5-20 \mathrm{MeV}\) )
Radiotracer \({ }^{18}\) F*: «Beta+ » emitter Fluorine 18
\[
\mathrm{T}_{1 / 2} \quad=109.7 \mathrm{~min}
\]
\({ }^{18} \mathrm{~F}^{*} \Rightarrow{ }^{18} \mathrm{O}+\) positon + neutrino


Production With cyclotrons
Proton \(10-20 \mathrm{MeV}+{ }^{18} \mathrm{O} \Rightarrow{ }^{18} \mathrm{~F}^{*}+\mathrm{n}\)

Injection of \({ }^{18} \mathrm{~F}^{*}\) TEP camera

Ring of Photon
Detectors

Detectors

Reconstruction



\section*{Cyclone 10/5 Mev}
cyclone 3D


\section*{CYCLONE 18/9 (IBA) : \(\mathbf{H}^{-} 18 \mathrm{MeV}\)}

Designed for medical applications (radiotracers production)


Internal PIG source, \(\mathbf{H}^{-}\)stripping extraction
\(\mathrm{Kb}=10 \mathrm{MeV}\)
Fixed energy ;
4 straight sector \(50^{\circ}\)
\(<B>=1.35\) Tesla
Hill //valley gap \(3 \mathrm{~cm} / / 67 \mathrm{~cm}\) fixed Frf =42Mhz

2 Dee \(=30^{\circ}, 32 \mathrm{kV}\)
Harmonic \(\quad h=2(p), 4(D)\)
Internal source
Rextraction= 0.46 m
Bpmax=0.46x 1.35=0.62 T.m


\section*{Commercial Cyclotron : proton therapy ( 230 MeV )}

Photon:
(Radiotherapy) A Dose in the whole body


Proton :
Better than
Radiotherapy (photon)
Dose inside the tumor

\author{
Bragg Peak
}

Brain tumor treatment with protons


Eyes tumor treatment


\section*{Proton therapy ( 230 MeV )}
-Energy variation with degrader

\section*{Scanning the tumors :}

With energy variations induce by a degrader


\section*{Proton therapy ( 230 MeV ) Energy variation with degrader + Rotating gantry}

Optimal dose delivery
Scan the tumors :


Depth variation :
Tumor scanning


\section*{END}

\section*{References \& Acknowledgements :}
F. Chautard, Juas 2015
M. Craddock lecture on Cyclo//FFAG
W.Joho lecture on PSI facility
S. Brandenburg lecture on beam optics
P. Heikinnen, CAS Jyväskylä 1992, CERN 94-01 (1994) "Cyclotrons" and "Injection and Extraction"
T. Stammbach, CAS La Hulpe, 1994, CERN 96-02 (1996)"Introduction to Cyclotrons"

\section*{The Cyclotron Family}
isochronous
cyclotron
(Azimuthally
Varying Field)

Isochronous
\[
\omega_{r e v} h=\omega_{R F}
\]

Compact cyclotron (with Hills //Valleys) Straight or Spiralled sectors


Ring cyclotron :
Straight or Spiralled


Synchrocyclotron
\(\omega_{r e v}(R) / h=\omega_{R F}(t)\)

Frev = NOT Constant
FRF = NOT Constant = beam pulsed

Not
Isochronous

\section*{Cyclotron vs other RFaccelerators}
\begin{tabular}{l|c:c|c} 
Cyclotrons & \begin{tabular}{c} 
Radius \\
not constant
\end{tabular} & \begin{tabular}{c} 
Frf \\
(isochronous)
\end{tabular} & \begin{tabular}{c} 
lons \\
co
\end{tabular} \\
\hline Synchro-cyclotrons & not constant & \begin{tabular}{l} 
not constant \\
pulsed
\end{tabular} & lons \\
\hline Synchrotrons & constant & \begin{tabular}{c} 
not constant \\
pulsed
\end{tabular} & lons, electron \\
\hline Linacs & constant & constant & lons, electron \\
\hline
\end{tabular}

\section*{Cyclotron Summary}

Isochronous cyclotron = constant revolution frequency
from injection to extraction
\[
\omega_{\text {rev }}=\frac{q B_{z}(R)}{\gamma(R) m}=\text { const }
\]
field index \(\mathrm{n}<0\)
\[
n=-\frac{R}{B_{0 z}} \frac{\partial B_{z}}{\partial x}
\]

Vertical stability in isochronous cyclotron

> requires Azimuthal field Modulation (N sectors)
\[
v_{z}^{2}=\mathrm{n}+\frac{N^{2}}{N^{2}-1} F_{l}\left(1+2 \tan ^{2} \varepsilon\right)>0
\]

\[
z(t) \sim z_{0} \exp \left(-i \quad V z \omega_{0} t\right)
\]
: Vz real for stability```

