BEAM DYNAMICS IN CYCLOTRONS JUAS 2017
 B. Jacquot

1. An isochronous cyclotron uses a RF cavity at 60 MHz at the RF harmonic $\mathrm{h}=\mathbf{3}$
a. Compute the time needed to perform one turn for the accelerated ions.
b. Compute the average field B needed to accelerate proton in a non relativistic approximation (2)
Answer 2: a; revolution freq $=60 / 3=20 \mathrm{Mhz} \quad \Delta T=1 / 20.10-{ }^{6} s=50 \mathrm{~ns}$ b. $\omega=q B / \gamma m=\omega R F / h$ and we have γ close to 1
proton mass $\sim 1.610^{-27} \mathrm{~kg}$ // proton charge $\sim 1.610^{-19} \mathrm{C}$
$\mathrm{Frf}=60 \mathrm{MHz}=\omega R F / 2 \pi$
$B \sim m_{p} / q .2 \pi F_{R F} / h=10-{ }^{8} .10^{6} 20.2 \pi .=1.26$ Tesla
2. Recall, what kind of magnetic field can compensate the relativistic factor in a isochronous cyclotron (give $\mathrm{Bz}^{\prime}=\mathrm{Bz}\left(\mathrm{B}_{0}, \mathbf{R}, \mathrm{~h}, \omega \mathrm{rf}\right)$) (2)

Answer
The synchronous condition $\omega_{r f}=h \omega_{p}$ with h the harmonic number. As $\omega_{r f}$ is constant during the whole acceleration in the cyclotron ω_{p} has to be constant too. In the relativisitic case, we replace rhe expression of the ion mass $m=\gamma m_{0}$, in the previous expression then at a radius $r, \omega_{p}=\frac{\mathrm{f}_{\mathrm{p}}}{2 \pi}=\frac{q B(r)}{r m_{0}}$. To keep ω_{p} constant $B(r)=B 0 /(1-$ $\left.(R h \omega / c)^{2}\right)^{1 / 2}$. The magnetic field grows with respect to the radius.
3. In the case of a small compact cyclotron how can be injected the particles onto the first cyclotron orbit? (1)
a. With an axial injection using "A spiral inflector"
b. With an axial injection using " A hyperboloid inflector"
c. A radial injection beam line

Answer 5 : $a \& b$
c is not possible : no space is available in a compact magnet for an injection beam line
4. Demonstrate than in a uniform circular motion, the radial acceleration is $\mathrm{a}_{\mathrm{r}}=\left|\mathbf{V}^{2} / \mathbf{R}\right|$. Nota : You can use parametric equations :

$$
\begin{aligned}
X(t) & =R \cos (\omega t) \\
Y(t) & =R \sin (\omega t)
\end{aligned}
$$

Then compute the velocity and the acceleration. Demonstrate that the acceleration is radial (3)
Answer

$$
\begin{aligned}
& V x=-\omega R \cos (\omega t) \quad \quad \mathrm{v}=|\mathbf{v}|=\left(V x^{2}+V y^{2}\right)^{1 / 2}=\omega R \\
& V y=+\omega R \sin (\omega t) \\
& a=\left(a x^{2}+a y^{2}\right)^{1 / 2}=\omega^{2} R=\mathrm{v}^{2} / \mathrm{R} \\
& \text { Nota: v perpendicular to } \mathbf{a} \text { (since } \mathbf{v} \cdot \mathbf{a}=\mathbf{0})
\end{aligned}
$$

5. Compute the field index $n(r)$ in a isochronous cyclotron using than the isochrounous average field is $B(r)=B . \gamma(r)$ (2)

$$
\text { with } \quad n=-\frac{r}{B_{0 z}} \frac{\partial B_{z}}{\partial r}
$$

Answer:
$n=1-\gamma^{2}$
6. An given cyclotron is supposed to accelerate ions with A nucleon and a charge state \mathbf{Q}. Demonstrate than the maximal kinetic energy $\mathbf{E / A}$ of a cyclotron is

$$
E / A=K b(Q / A)^{2}
$$

Nota : Give the $K b$ factor in a non relativistic approximation using the extraction radius R, the maximal average magnetic field B. The mass of the ions is $m=A m_{0} \quad \&$ the charge of the ions is $q=Q e_{0}$
(2)

Answer 8:

$$
\begin{aligned}
& E=(\gamma-1) m c^{2} \sim 1 / 2 m V^{2}=1 / 2 m(R \omega)^{2} \\
&=1 / 2 m(R q B / m)^{2}=1 / 2 A \mathrm{~m}_{0}\left(R Q \mathrm{e}_{0} B / A \mathrm{~m}_{0}\right)^{2} \\
& E / A=1 / 2 \quad\left(\mathrm{e}_{0} R B\right)^{2} / \mathrm{m}_{0}(Q / A)^{2}
\end{aligned}
$$

7. How to improve the axial stability ion beams in a isochronous cyclotron. (1)
a. With Azimuthally varying field $B z(\theta)$
b. With separated sectors magnets
c. With spiralled sectors
d. With magnetic field $B(r)$ which increase with r

Answer : abc
8. Why the ions do not oscillate in longitudinal plane (Energy, Phase) in a isochronous cyclotron like in a synchrotron. (2)

Answer : the particle in advance stay in advance because whatever the energy it get in the RF cavity, it describes one turn in fixed time interval $\Delta \mathrm{T}$ (isochronisms). So no phase oscillation is expected...

$$
\text { Frev }=\text { constant }=1 / \Delta \mathrm{T}
$$

9. The axial oscillations of ion beams in a isochronous cyclotron is described by
$\frac{d^{2} z}{d t^{2}}+v_{z}^{2} \omega_{r e v}^{2}=0$
Where the vertical tune should respect $\boldsymbol{v z}^{\mathbf{2}}>\mathbf{0}$,
a. Why ? (1)
b. Give a particular solution of the differential equation when $\boldsymbol{V z}^{2}<0$ (1)

Answer : a. Otherwise the beam is unstable (beam size increase exponentially)

$$
\text { b. } z(t)=Z 0 \exp (-\boldsymbol{v z} \omega t)
$$

10. An isochronous compact cyclotron for H - beam, uses a $R F$ cavity at $F r f=\mathbf{4 4} \mathbf{M H z}$ at the $R F$ harmonic $h=2$. The extraction radius R extraction $=0.55 \mathrm{~m}$ and the Injection radius $\mathrm{Rinj}^{\mathbf{~}}=\mathbf{5 c m}$.
a. How to extract easily such a beam ($\mathrm{H}-$) from the cyclotron .
b. What is the gain in momentum for the particle accelerated in such a cyclotron in a non relativistic approximation and using the magnetic rigidity concept
c. What is the field B required at injection to accelerate a \mathbf{H} - beam.
d. With the same magnetic field and same RF frequency, we would like two accelerate Deuton (${ }^{2} \mathrm{H}-$), two time heavier, what would the revolution frequency and RF harmonic h. (4)

Answer :
a. Stripping extraction.
b. We have
$<B(R)\rangle=B 0 /\left(1-(R h \omega r f / c)^{2}\right)^{1 / 2}$
Bextract/ B ρ inj $=\mathrm{P}$ extract $/ \mathrm{Pinj}=\left[\left\langle B\left(R_{\text {xtraction }}\right)\right\rangle /\left\langle B\left(R_{\mathrm{inj}}\right)\right\rangle\right] .\left[\mathbf{R e x t r a c t i o n ~} / \mathbf{R}_{\mathrm{inj}}\right]$
If $\gamma \sim 1$, then
Pextract/ Pinj= Vextract/Vinj=[Rextraction $/ \mathbf{R i n j}$]
b.

$$
\omega=q B / \gamma m=\omega R F / h \text { and We have } \gamma \text { injection=1 }
$$

proton mass $\sim 1.610^{-27} \mathrm{~kg}$
proton charge $\sim 1.610^{-19} \mathrm{C}$
Frf $=44 \mathrm{MHz}=2 \pi \omega R F$

$$
B=m_{p} / q .2 \pi F R F / h=10-^{8} .22 \cdot 10^{6} .2 \pi .=1.4 \text { Tes/a }
$$

c.proton mass $\sim 1.6710^{-27} \mathrm{~kg}$, deuton mass $\sim 3.3410^{-27} \mathrm{~kg}$
$\omega=q B /\left(\gamma 2 m_{p}\right)=\omega R F / h=10.5 \mathrm{Mhz}: \quad h=4$

Useful expressions

CONSTANTS

$\mathrm{c}=2,997925 \times 10^{8} \mathrm{~m} / \mathrm{s}$
1 u.m.a. $=\mathrm{m}_{0}=931,478 \mathrm{MeV}=1,67 \cdot 10^{-27} \mathrm{~kg}$
$\mathrm{e}_{0}=1,602 \times 10^{-19} \mathrm{C}$

