
Transverse Beam Dynamics

JUAS 2017 - tutorial 2 (solutions)

1 Exercise: local radius, rigidity
We wish to design an electron ring with a radius of R=200 m. Let us assume that only 50% of the circumference is occupied by
bending magnets:

• What will be the local radius of bend ρ in these magnets if they all have the same strength?

2πρ = 50% · 2πR −→ ρ = 100 m

• If the momentum of the electrons is 12 GeV/c, calculate the rigidity Bρ and the field in the dipoles.

Using the rigidity definition:

Bρ = 3.3356 · p[GeV/c] = 40.03 T·m

and therefore B = 0.4 T.

2 Exercise: particle momentum, geometry of a storage ring and thin lenses
The LHC storage ring at CERN will collide proton beams with a maximum momentum of p = 7 TeV/c per beam. The main
parameters of this machine are:

Circumference C0 = 26658.9 m
Particle momentum p = 7 TeV/c

Main dipoles B = 8.392 T lB = 14.2 m
Main quadrupoles G = 235 T/m lq = 5.5 m

• Calculate the magnetic rigidity of the design beam, the bending radius of the main dipole magnets in the arc and determine
the number of dipoles that is needed in the machine.

The beam rigidity is obtained in the usual way by the golden rule:

Bρ = p
e = 1

0.299792 · p[GeV/c] = 3.3356 · p[GeV/c] = 3.3356 · 7000 Tm= 23349 T·m

and knowing the magnetic dipole field we get

ρ = 3.3356·7000Tm
8.392T = 2782 m

The bending angle for one LHC dipole magnet:

θ = lB
ρ = 14.2m

2782m = 5.104 mrad

and as we want to have a closed storage ring we require an overall bending angle of 2π:

N = 2π
θ = 1231 Magnets

• Calculate the k-strength of the quadrupole magnets and compare its focal length to the length of the magnet. Can this
magnet be treated as a thin lens?

We can use the beam rigidity (or the particle momentum) to calculate the normalized quadrupole strength:
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k = G
Bρ = G

p/e = 0.299792 · G
p[GeV/c] = 0.299792 · 235T/m

7000GeV/c = 0.01 m−2

an the focal length:

f = 1
k·lq = 18.2 m > lq

The focal length of this magnet is still quite bigger than the magnetic length lq. So it is valid to treat that quadrupole in
thin lens approximation.

• Compute and compare the matrices for the quadrupole for the thin (drift-kick-drift) and thick cases.

The matrix of a focusing quadrupole is given by

MQF =

(
cos(

√
|k|lq) 1√

|k|
sin(

√
|k|lq)

−
√
|k| sin(

√
|k|lq) cos(

√
|k|lq)

)
=

(
0.8525 5.22
−0.0522 0.8525

)
In thin lens approximation we replace the matrix above by the expression

MQF =

(
1 0
− 1
|f | 1

)
with the focal length f = 1

|klq| = 18.2 m

The thin lens description has to be completed by the matrix of a drift space of half the quadrupole length in front and after
the thin lens quadrupole. The appropriate description is therefore

So we write

Mthinlens =

(
1

lq
2

0 1

)
·
(

1 0
1
f 1

)
·
(

1
lq
2

0 1

)
Multiplying out we get

Mthinlens =

(
1 +

lq
2 klq

lq
2 (2 + klq

lq
2 )

klq 1 + klq

)
With the parameters in the example we get finally

Mthinlens =

(
0.848 5.084
−0.055 0.848

)
which is still quite close to the result of the exact calculation above.

3 Exercise: A spectrometer line in CTF3
The CTF3 (CLIC Test Facility 3) experiment at CERN consists of a linac that injects very short electron bunches into an
isochronous ring.

A spectrometer line made of one quadrupole and one bending magnet is located at the end of the linac where the particle
momentum is 350 MeV/c. The goal of the spectrometer is to measure the energy before injecting the electrons in the ring.

The spectrometer line is sketched on the figure below. It is made of a focusing quadrupole of focal length f , a drift space of
length L1, a bending magnet of deflection angle θ in the horizontal plane, and a drift space of length L2. We assume that the
spectrometer line starts at the quadrupole and ends at the end of the second drift. We neglect the focusing effect of the dipole.
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3.1 If the effective length of the dipole is lB = 0.43 m, what should be the magnetic field (in
Tesla) inside the dipole to deflect the electrons by an angle of 35 degrees?

Answer: One has θ = l
ρ and Bρ = 3.356 p: B =

3.356 p θ

l
= 1.66 T.

3.2 Starting from the general horizontal 3 × 3 transfer matrix of a sector dipole of deflection
angle θ, show that the transfer matrix of a dipole in the thin lens approximation is

Mdipole =

 1 0 0
0 1 θ
0 0 1


Which approximations are done?
Hint: A sector dipole has the following 3× 3 transfer matrix:

Mdipole =

 cos θ ρ sin θ ρ(1− cos θ)
− sin θ

ρ cos θ sin θ

0 0 1


Answer: We need to compute the limit for l → 0 while keeping θ = l

ρ = const. Remember that, if θ is a small angle,
cos θ ≈ 1, sin θ ≈ θ. Besides the trivial elements, such as m11, m22, and m23, the others read:

m12 : lim
l→0

ρ sin θ = lim
l→0

sin θ
1
ρ

= lim
l→0

l ·
sin l

ρ

l
ρ︸ ︷︷ ︸

const

= 0

m13 : lim
l→0

ρ (1− cos θ) = lim
l→0

ρ

(
1− cos

l

ρ

)
= lim
l→0

l ·
1− cos l

ρ

l
ρ︸ ︷︷ ︸

const

= 0

m21 : lim
l→0
− sin θ

ρ
= lim
ρ→∞

− sin θ

ρ
= 0

therefore, in thin-lens approximation the matrix of a dipole magnet, is

Mdipole =

 1 0 0
0 1 θ
0 0 1

 .

3.3 In the thin lens approximation, derive the horizontal extended 3× 3 transfer matrix of the
spectrometer line. Show that it is:

Mspectro =

 f−L1−L2

f L1 + L2 L2θ

− 1
f 1 θ

0 0 1


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Answer: For the spectrometer line, one has

Mspectro = MDrift2 ·MDipole ·MDrift1 ·MQuad

therefore:

Mspectro =

 1 L2 L2θ
0 1 θ
0 0 1

×
 1− L1

f L1 0

− 1
f 1 0

0 0 1

 .

3.4 Assuming D = D′ = 0 at the entrance of the quadrupole, what is the dispersion and its
derivative at the end of the spectrometer line? Give the numerical value of D′ at the end
of the spectrometer line for the angle of 35 degrees.

Answer: At the entrance of the line, D = 0 and D′ = 0. If M is the transfer matrix of a system the dispersion D at exit is the
element m13 of M , whereas D′ is the element m23:

D = L2θ,

D′ = θ = 35 degrees = 0.61.

3.5 What is the difference between a periodic lattice and a beam transport lattice (or transfer
line) as concerns the betatron function ?

Answer: In a periodic lattice the β-functions are periodic and contained in the (periodic) transfer matrix of the lattice. In
transfer line one needs to know the initial conditions in order to calculate the β-functions at any point (using the transfer matrix).

3.6 The Courant-Snyder invariant allows to trace the Twiss parameters α, β, and γ through a
transfer line.

Remember from the lecture:  β
α
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + S′C −SS′
C ′2 −2S′C ′ S′2

 β
α
γ


0

An alternative way to transport the Twiss parameters is through the σ matrix:

σi =

(
βi −αi
−αi γi

)
This matrix multiplied by the emittance ε gives the so-called beam matrix (which has already been introduced during the

lecture):

Σi =

(
βiε −αiε
−αiε γiε

)
If σ1 is the matrix at the entrance of the transfer line, the matrix σ2 at the exit of the transfer line is given by

σ2 = Mσ1M
T

where M is the 2 × 2 transfer matrix of the line extracted from the extended 3 × 3 transfer matrix (see question 1.3), and
MT the transpose matrix of M .

Assuming α1 = 0, derive the betatron function β2 at the end of the spectrometer line in terms of L1, L2, f and β1.

Hint: For the calculations, write M as M =

(
m11 m12

m21 m22

)
and replace the values of the matrix elements only at the end.

Answer: One has σ2 = Mσ1M
T . If α1 = 0, then σ1 =

(
β1 0
0 1/β1

)

σ2 =

(
m11 m12

m21 m22

)(
β1 0
0 1/β1

)(
m11 m21

m12 m22

)
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σ2 =

(
β1m

2
11 +m2

12/β1 β1m11m21 +m12m22/β1

β1m11m21 +m12m22/β1 β1m
2
21 +m2

22/β1

)
Therefore:

β2 = β1m
2
11 +m2

12/β1

Since m11 = f−L1−L2

f and m12 = L1 + L2, one has:

β2 = β1

(
1− L1 + L2

f

)2

+
(L1 + L2)

2

β1
.

3.7 Given the numerical values L1 = 1 m, L2 = 2 m, β1 = 10 m, α1 = 0, compute the betatron
function β2 at the end of the spectrometer line as a function of the focal length f of the
quadrupole.

Answer: If L1 = 1 m, L2 = 2 m, and β1 = 10 m, then β2 = 0.9 + 10
(

1− 3
f

)2

.

3.8 Find the value of the focal length f such that the betatron function β2 at the end of the
spectrometer line is minimum. Give the minimum value of β2.

Answer: To have β2 minimum one needs
(

1− 3
f = 0

)
.Therefore, f = 3 m.

3.9 In the presence of dispersion, what is the particle deviation from the design orbit due to
the different particle momentum p 6= p0 (p0 is the design momentum)? Why is it important
to minimize the β function in the spectrometer?

Answer: With dispersion, the deviation from the design orbit is ∆s = D∆p
p0

.
Measuring ∆s allows to determine ∆p and therefore p, if one has calibrated the spectrometer at p0. It is important to minimize

β2 in order to have the best possible resolution for ∆s: on the spectrometer screen, we want a spot with small transverse size
for an accurate measurement.
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