
Transverse Beam Dynamics

JUAS 2017 - tutorial 3

1 Exercise: chromaticity in a FODO cell
Consider a ring made of Ncell identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles
are both of length lq, but their strengths may differ.

1.1 Calculate the maximum and the minimum betatron function in the FODO cell. (Use
the thin-lens approximations)

1.2 Calculate the natural chromaticities for this machine.

1.3 [Optional] Show that for short quadrupoles, if fF ' fD,

ξN ' −
Ncell
π

tan
µ

2

1.4 Design the FODO cell such that it has: phase advance µ = 90 degrees, a total length
of 10 m, and a total bending angle of 5 degrees. What are βmax, βmin, Dmax, Dmin?

1.5 Add two sextupoles at appropriate locations and compute their strengths to cor-
rect the horizontal and the vertical chromaticities. (hints: use 1 sextupole for the
horizontal plane and 1 for the vertical plane; do not consider geometric aberrations).

1.6 If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much
is the tune-shift with and without sextupoles?

2 Exercise: Double-Bend Achromat (DBA) lattice
A DBA can be made from two dipoles with a horizontally focusing quadrupole between them. The transfer matrix through
the achromat is of the form:

MDBA = MbendMdriftM1/2FM1/2FMdriftMbend

Note that this magnet configuration does not produce vertical focusing, therefore will not be enough to create a stable
lattice. A full DBA typically comprises additional quadrupole doublets before and after the bending section, but for sake
of simplicity we will neglect them.
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2.1 Use the thin lens approximation for quadrupoles and small angle approximation for
bends to find the dispersion in the middle of the quadrupole. Write the focal length
in terms of the drift and bend parameters.

2.2 Show that the dispersion is again zero (η = η′ = 0) after the bend.

2.3 Compute the parameters L, f for a DBA 10 meters long, bending the beam by an
angle of 1 radians. What is the dispersion in the centre? How much a particle with
1% energy deviation will be displaced at the centre of the cell?

3 Exercise: review of geometry, tune, optics and dispersion
Consider a proton synchrotron accumulator made of identical cells. The relevant ring parameters are given in the following
table:

Proton kinetic energy 2 GeV
Cell type Symmetric triplet(∗)

Ring circumference 960 m
Integrated quadrupole gradient (

´
Gdl) 1.5 T

(∗)Note: A thin lens symmetric triplet cell consists of a thin lens defocusing quadrupole of focal length −f , followed
with a drift space of length L1, a thin lens focusing quadrupole of focal length f , a drift of length L2, a thin lens dipole
of horizontal bending angle θ, a drift of length L2, a thin lens focusing quadrupole of focal length f , a drift of length L1,
and a thin lens defocusing quadrupole of focal length −f (see Figure below).

Hint:
The 3× 3 horizontal transfer matrix for one symmetric triplet cell is (in the thin lens approximation):

Mtriplet =


f3+2L2

1L2−2L1f(L1+L2)
f3

2(f−L1)(L1f+L2f−L1L2)
f2 (L1 + L2 − L1L2

f )θ
2L1(L1L2−L1f−f2)

f4

f3+2L2
1L2−2L1f(L1+L2)

f3

(f2+L1f−L1L2)
f2 θ

0 0 1



for the transport of a vector

 x
x′

∆p/p0

, where ∆p/p0 is the momentum offset with respect to the design momentum p0.

3.1 Compute the focal length f of the quadrupoles, consider that the proton rest mass is
938 MeV.

3.2 Given the numerical values L1 = 1.5 m and L2 = 6 m:
• Compute the horizontal and vertical transfer matrices of a triplet cell (take into account that the sign of the focal

length changes when going from horizontal to vertical plane).

• Compute the horizontal and vertical machine tunes.

• Compute the horizontal and vertical betatron functions at the entrance of a triplet cell.

• Compute the horizontal and vertical dispersion functions at the entrance of a triplet cell.
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4 Exercise: normalized phase space
Let us consider the following phase space vector: (x, x′). The transformation to a normalized phase space (X,X ′) is given
by: (

X
X ′

)
=

(
1/
√
βx 0

αx/
√
βx

√
βx

)(
x
x′

)
The normalization process of the phase space is illustrated in the figure below:

If we know that the transfer matrix between two points 1 and 2 (with phase advance φx between them) in the phase
space (x, x′) is given by:

M12 =


√

βx2

βx1
(cosφx + αx1 sinφx)

√
βx1βx2 sinφx

(αx1−αx2) cosφx−(1+αx1αx2) sinφx√
βx2βx1

√
βx1

βx2
(cosφx − αx2 sinφx)


Obtain the transfer matrix between two points 1 and 2 in the normalized phase space.
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