
Transverse Beam Dynamics

JUAS 2017 - tutorial 3 (solutions)

1 Exercise: chromaticity in a FODO cell
Consider a ring made of Ncell identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles
are both of length lq, but their strengths may differ.

1.1 Calculate the maximum and the minimum betatron function in the FODO cell. (Use
the thin-lens approximations)

Answer: First we calculate the transfer matrix for a FODO cell (see figure below). We start from the center of the
focusing quadrupole where the betatron function is maximum:

This exercise considers a general case where fF is not necessarily equal to fD. Using the thin lens approximation for
the FODO cell with drifts of length L we get the following matrix:

Mcell =

(
1 0
− 1

2fF
1

)(
1 L
0 1

)(
1 0
1
fD

1

)(
1 L
0 1

)(
1 0
− 1

2fF
1

)

=

(
1− L( 1

fF
− 1

fD
+ L

2fF fD
) 2L+ L2

fD
1
fD
− 1

fF
(1− L

2fF
+ L

fD
− L2

4fF fD
) 1− L( 1

fF
− 1

fD
+ L

2fF fD
)

) (1)

REMEMBER that in terms of betatron functions and phase advance the matrix of a FODO cell is given by:

Mcell =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(2)

Since β is maximum at the center of the focusing quadrupole: α = −β′/2 = 0, and we can also write:

Mcell =

(
cosµ β sinµ

− sinµ
β cosµ

)

Then, doing Eq. (1) equal to Eq. (2) we obtain:

cosµ =
1

2
tr(Mcell) = 1 +

L

fD
− L

fF
− L2

2fDfF
= 1− 2 sin2 µ

2
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or

2 sin2 µ

2
=

L

fF
− L

fD
+

L2

2fDfF
(3)

Here we have applied the following trigonometric relation: cosµ = cos(µ2 + µ
2 ) = cos2 µ

2 − sin2 µ
2 = 1− 2 sin2 µ

2 .
The maximum for the betatron function βmax occurs at the focusing quadrupole. Since Eq. (1) is for a periodic cell

starting at the center of the focusing quadrupole, the m12 component of the matrix gives us

βmax sinµ = 2L+
L2

fD

Rearranging things:

βmax =
2L+ L2

fD

sinµ
(4)

On the other hand, the minimum for the betatron function occurs at the defocusing quadrupole position. Therefore,
interchanging fF with −fD for a FODO cell gives:

βmin =
2L− L2

fF

sinµ
(5)

1.2 Calculate the natural chromaticities for this machine.
Answer:

Let us remember the definition of natural chromaticity. The so-called “natural” chromaticity is the chromaticity that
derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only from quadrupoles. The
chromaticity is defined in the following way:

ξ =
∆Q

∆p/p0
(6)

where ∆Q is the tune shift due to the chromaticity effects and ∆p/p0 is the momentum offset of the beam or the
particle with respect to the nominal momentum p0.

The natural chromaticity is defined as (remember from Lecture 4):

ξN = − 1
4π

˛
β(s)k(s)ds (7)

Sometimes, especially for small accelerators, the chromaticity is normalized to the machine tune Q and defined also
as:

ξ′ =
∆Q/Q

∆p/p0
(8)

ξ′N = − 1
4πQ

˛
β(s)k(s)ds (9)

For this exercise, either you decide to use Eq. (7) or Eq. (9) it is fine! From now on let us use Eq. (7):

ξN = − 1

4π

˛
β(s)k(s)ds

= − 1

4π
×Ncell

ˆ
cell

β(s)k(s)ds

= −Ncell
4π

∑
i∈{quads}

βi(klq)i
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Here we have used the following approximation valid for thin lens:
ˆ
cell

β(s)k(s)ds '
∑

i∈{quads}

βi(klq)i

where we sum over each quadrupole i in the cell. In the case of the FODO cell we have two half focusing quadrupoles
and one defocusing quadrupole. Taking into account that (klq)i = 1/fi, we have:

ξN ' −
Ncell
4π

∑
i∈{quads}

βi(klq)i

= −Ncell
4π

[
βmax

(
1

2fF

)
+ βmin

(
− 1

fD

)
+ βmax

(
1

2fF

)]
= −Ncell

4π

[
βmax

(
1

fF

)
+ βmin

(
− 1

fD

)]
= − Ncell

4π sinµ

[(
2L+

L2

fD

)
1

fF
−
(

2L− L2

fF

)
1

fD

]
= − NcellL

2π sinµ

[
1

fF
− 1

fD
+

L

fF fD

]
Here we have used the expressions (4) and (5) for βmax and βmin.

1.3 Show that for short quadrupoles, if fF ' fD,

ξN ' −
Ncell
π

tan
µ

2

Answer: If fF ' fD, we have

ξN ' −
Ncell

2π sinµ

L2

fF fD

= − Ncell
4π sin µ

2 cos µ2
4 sin2 µ

2

where we have used sinµ = sin(µ2 + µ
2 ) = 2 sin µ

2 cos µ2
and considering Eq. (3): 4 sin2 µ

2 = L2

fF fD
we finally obtain

ξN ' −
Ncell
π

tan
µ

2

Q.E.D.!

1.4 Design the FODO cell such that it has: phase advance µ = 90 degrees, a total length
of 10 m, and a total bending angle of 5 degrees. What are βmax, βmin, Dmax, Dmin?

Solution:

Lattice parameters: L = 10 m, θ = 5 degrees= 0.087266 rad, f = 1√
2
L
2 = 3.535 m

Maximum and minimum betatron functions:

βmax =
L+ L2

4f

sinµ
= L+

L2

4f
= 17.07 m, βmin =

L− L2

4f

sinµ
= L− L2

4f
= 2.93 m

Maximum and minimum dispersion:

Dmax =
Lθ
(
1 + 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f +

L

2

)
θ = 0.59060 m, Dmin =

Lθ
(
1− 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f − L

2

)
θ = 0.28207 m
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1.5 Add two sextupoles at appropriate locations to correct horizontal and vertical chro-
maticities. (hints: use 1 sextupole for the horizontal plane and 1 for the vertical
plane; do not consider geometric aberrations).

Solution:

By locating sextupoles with strength Ks > 0 where βx is large and βy is small, we can correct the horizontal chromaticity
with relatively little impact on the vertical chromaticity. Similarly, by locating sextupoles with Ks < 0 where βy is large
and βx is small, we can correct the vertical chromaticity with relatively little impact on the horizontal chromaticity. See
figure below.

Let us assume the case of a FODO lattice where fF = fD = f . Then the natural chromaticity of this fodo cell is given
by the expression (exercise 1.3):

ξN ' −
1

π
tan

µ

2

For µ = 90 it is ξN ' −1/π in both horizontal and vertical plane. Therefore, we need to adjust the strength of the
sextupoles to cancel this chromaticity:

− 1

4π
[K2FDmaxβmax +K2DDminβmin] ' − 1

π

where K2F = k2F ls is the normalized integrated strength of the sextupole located near the focusing quadrupole, and
K2D = k2Dls the normalized integrated strength of the sextupole near the defocusing quadrupole (with ls the effective
length of the sextupole). For an effective cancellation of the chromaticity in both planes, usually K2F > 0 and K2D < 0.
Substituting the values for the maximum and minimum dispersion and betatron function in terms of the total length of
the lattice L and the focal length of the quadrupoles f , one obtains the following expression:

− 1

4π

f

L
θ

[
K2F

(
4f +

L

2

)(
L+

L2

4f

)
+K2D

(
4f − L

2

)(
L− L2

4f

)]
' − 1

π

Considering the same absolute value for the strength of the sextupoles, K2F = −K2D = Ks, we can write then:

3

4π
KsLfθ =

1

π

The strength of the sextupole is given then by:

Ks =
4

3Lfθ

Then, substituting all the numerical values for the lattice parameters:
K2F = 0.865 m−2

K2D = −0.865 m−2

1.6 If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much
is the tune-shift with and without sextupoles?

Solution:

If the gradient of the focusing quadrupole has and offset of 10%, then the corresponding quad. strength offset is also
10%. We calculate the number of cells of a ring made of these fodo cells, Ncell = 72 cells, and then we calculate the total
tune-shift in both planes:

∆Qx = Ncell
∆KF βmax

4π = 9.78
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∆Qy = Ncell
∆KF βmin

4π = 1.68
When the sextupoles correct for the chromaticity, the particles have, in principle, no tune-shift with energy.

2 Exercise: Double-Bend Achromat (DBA) lattice
A DBA can be made from two dipoles with a horizontally focusing quadrupole between them. The transfer matrix through
the achromat is of the form:

MDBA = MbendMdriftM1/2FM1/2FMdriftMbend

Note that this magnet configuration does not produce vertical focusing, therefore will not be enough to create a stable
lattice. A full DBA typically comprises additional quadrupole doublets before and after the bending section, but for sake
of simplicity we will neglect them.

2.1 Use the thin lens approximation for quadrupoles and small angle approximation for
bends to find the dispersion in the middle of the quadrupole. Write the focal length
in terms of the drift and bend parameters.

Let us consider the 3 × 3 transfer matrices of each element of the lattice (using the thin lens approximation and small
angle approximation for the bending magnets) for the beam coordinates x, x′and ∆p/p:

Mbend =

 1 0 0
0 1 θ
0 0 1

 , Mdrift =

 1 L 0
0 1 0
0 0 1

 , M1/2F =

 1 0 0
− 1

2f 1 0

0 0 1


Assuming the initial dispersion vector (η0,η

′
0,1) = (0, 0, 1) and propagating it to the center of the quadrupole: ηc

0
1

 = M1/2FMdriftMbend

 0
0
1


Here we take into account that η′=0 at the center of a quadrupole. After matrix multiplication we obtain: ηc

0
1

 =

 1 L Lθ

− 1
2f 1− L

2f θ
(

1− L
2f

)
0 0 1


 0

0
1


Therefore, one obtains:

ηc = Lθ

1− L

2f
= 0⇒ L = 2f

2.2 Show that the dispersion is again zero (η = η′ = 0) after the bend.
Propagating the dispersion vector from the center of the quadrupole to the end of the lattice: ηend

η′end
1

 = MbendMdriftM1/2F

 ηc
0
1

 ,

 ηend
η′end

1

 =

 1− L
2f L 0

− 1
2f 1 θ

0 0 1

 ηc
0
1


and taking into account L = 2f , we obtain:
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ηend = (2f − L)θ = 0,

η′end = θ − 1

2f
ηc = θ − 1

2f
(2fθ) = 0

2.3 Compute the parameters L, f for a DBA 10 meters long, bending the beam by an
angle of 1 radians. What is the dispersion in the centre? How much a particle with
1% energy deviation will be displaced at the centre of the cell?

L = 5 m

f = 2.5 m

D = L · θ = 5 m

x = δD = 0.01 ∗ 5 m = 5 cm

3 Exercise: geometry of a storage ring, thin lens, tune, dispersion
Consider a proton synchrotron accumulator made of identical cells. The relevant ring parameters are given in the following
table:

Proton kinetic energy 2 GeV
Cell type Symmetric triplet(∗)

Ring circumference 960 m
Integrated quadrupole gradient (

´
Gdl) 1.5 T

(∗)Note: A thin lens symmetric triplet cell consists of a thin lens defocusing quadrupole of focal length −f , followed
with a drift space of length L1, a thin lens focusing quadrupole of focal length f , a drift of length L2, a thin lens dipole
of horizontal bending angle θ, a drift of length L2, a thin lens focusing quadrupole of focal length f , a drift of length L1,
and a thin lens defocusing quadrupole of focal length −f (see Figure below).

/home/dario/cernbox_shares/JUAS2017/Bulletins_Korea/Figures_bulletins/Simmetric_triplet_cell.png

Hint:
The 3× 3 horizontal transfer matrix for one symmetric triplet cell is (in the thin lens approximation):

Mtriplet =


f3+2L2

1L2−2L1f(L1+L2)
f3

2(f−L1)(L1f+L2f−L1L2)
f2 (L1 + L2 − L1L2

f )θ
2L1(L1L2−L1f−f2)

f4

f3+2L2
1L2−2L1f(L1+L2)

f3

(f2+L1f−L1L2)
f2 θ

0 0 1



for the transport of a vector

 x
x′

∆p/p0

, where ∆p/p0 is the momentum offset with respect to the design momentum p0.
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3.1 Compute the focal length f of the quadrupoles. The proton rest mass is 938 MeV.
Assuming a longitudinally constant gradient for the quadrupole

´
Gdl = G · l, where l is the length of the quadrupole

The quadrupole strength:

k =
G

Bρ
=

1.5T
(Bρ)l

Knowing f = 1
kl , we obtain

f =
Bρ

1.5T
,

so we calculate the particle momentum in order to calculate the rigidity Bρ = p
e .

We have the information of the kinetic energy, therefore we can use the relativistic formula to obtain the momentum
pc [GeV]

The total energy is given by

E =
√
m2

0c
4 + p2c2,

where m0 = 938 MeV is the rest mass of the particle (in this case protons)
Knowing that the kinetic energy Ek = E −m0c

2 =
√
m2

0c
4 + p2c2 −m0c

2, and after some trivial algebra we obtain:

p = 2.78GeV/c

Bρ ≈ 1

0.3
p[GeV/c]=9.27Tm

and with this information we can finally obtain the focal length:

f =
Bρ

1.5T
= 6.18m

3.2 Given the numerical values L1 = 1.5 m and L2 = 6 m:
• Compute the horizontal and vertical transfer matrices of a triplet cell (take into account that the sign of the focal

length changes when going from horizontal to vertical plane).

Let’s calculate first the bending angle of the dipole:
The length of the cell is Lcell = 2L1 + 2L2 = 15 m
Knowing that the circumference of the machine is 960 m and that we have a thin dipole per cell:

Number of cells:N = 960
15 = 64

and therefore:
θ = 2π

64 = 0.098 rad.
Having the information L1, L2, f and θ we can calculate the elements of the matrix of the triplet cell (Use the

expression from the Hint):

Mtriplet =


f3+2L2

1L2−2L1f(L1+L2)
f3

2(f−L1)(L1f+L2f−L1L2)
f2 (L1 + L2 − L1L2

f )θ
2L1(L1L2−L1f−f2)

f4

f3+2L2
1L2−2L1f(L1+L2)

f3

(f2+L1f−L1L2)
f2 θ

0 0 1


For the horizontal plane:

Mtriplet(H) =

 0.525 9.153 0.592
−0.079 0.525 0.099

0 0 1


For the vertical plane:
Here we have to take into account that in our example we consider only horizontal bending magnets, and no bend in

vertical (θ = 0 in vertical). In addition we have to consider f → −f ,
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Mtriplet(V ) =

 0.296 22.26 0
−0.04 0.296 0

0 0 1


• Compute the horizontal and vertical machine tunes.

In this example we are considering the propagation of 3D vectors (x, x′,∆p/p0): x
x′

∆p/p0


s

= M

 x
x′

∆p/p0


0

=

 m11 m12 m13

m21 m22 m23

0 0 1

 x
x′

∆p/p0


0

REMEMBER: In terms of the betatron functions these elements of the matrix M between two points can be defined
as follows:

M =


√

βx

βx0
(cosφx + αx0 sinφx)

√
βxβx0 sinφx Dx

(αx0−αx) cosφx−(1+αx0αx) sinφx√
βxβx0

√
βx0

βx
(cosφx − αx sinφx) D′x

0 0 1


The terms m13 = Dx and m23 = D′x, are the horizontal dispersion and the derivative of the horizontal dispersion over

s, respectively.
We are dealing with a symmetric cell, so:
βx(s0 + Lcell) = βx(s0) = βx0

αx(s0 + Lcell) = αx(s0) = αx0

Dx(s0 + Lcell) = Dx(s0)
These periodicity conditions are valid for the case of our triplet, FODO cells, and other symmetric cells. The Twiss

parameters and the dispersion at the entrance of the cell are equal to those at the exit of the cell. Considering this we
can rewrite the transport matrix of our triplet cell as:

M =

 m11 m12 m13

m21 m22 m23

0 0 1

 =

 cosµx + αx0 sinµx βx0 sinµx Dx

− (1+α2
x0) sinµx

βx0
cosµx − αx0 sinµx D′x

0 0 1


where µx is the horizontal phase advance of the cell (Remember that we are calculating first the transport in the horizontal
phase, and we have to proceed in a similar way with the vertical case).

Since we have calculated the matrix elements corresponding to our triplet cell, then we can calculate the phase advance
comparing the elements Mtriplet(H) = M :

cosµx =
1

2
(m11 +m22) = 0.525 −→ µx = 1.018rad

In order not to get confused with the concepts, it is necessary to remember that in circular machines the transfer
matrix for a complete turn can also be written as:

 cos µ̃x + αx0 sin µ̃x βx0 sin µ̃x Dx

− (1+α2
x0) sin µ̃x

βx0
cos µ̃x − αx0 sin µ̃x D′x

0 0 1


But in this case µ̃x is the phase advance after one turn.

The tune is defined as the number of betatron oscillations per turn:

Qx,y ≡
µ̃x,y
2π

=
Nµx,y

2π

where N = 64 is the number of periodic cells in the total machine.
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The horizontal tune is

Qx =
Nµx
2π

=
64 · 1.018

2π
= 10.37

If we proceed in a similar way for the vertical plane with the transport matrix Mtriplet(V ), we obtain:

Qy =
Nµy
2π

=
64 · 1.27

2π
= 12.94

• Compute the horizontal and vertical betatron functions at the entrance of a triplet cell.

βx0 sinµx = m12 = 9.153 −→ βx0 = 10.75

βy0 sinµy = m12 = 22.26 −→ βy0 = 23.31

• Compute the horizontal and vertical dispersion functions at the entrance of a triplet cell.

Dx = m13 = 0.592

Dy = 0

4 Exercise: normalized phase space
Let us consider the following phase space vector: (x, x′). The transformation to a normalized phase space (X,X ′) is given
by: (

X
X ′

)
=

(
1/
√
βx 0

αx/
√
βx

√
βx

)(
x
x′

)
The normalization process of the phase space is illustrated in the figure below:

/home/dario/cernbox_shares/JUAS2017/Bulletins_Korea/Figures_bulletins/normalized_phase_space.png

If we know that the transfer matrix between two points 1 and 2 (with phase advance φx between them) in the phase
space (x, x′) is given by:

M12 =

 √
βx2

βx1
(cosφx + αx1 sinφx)

√
βx1βx2 sinφx

(αx1−αx2) cosφx−(1+αx1αx2) sinφx√
βx2βx1

√
βx1

βx2
(cosφx − αx2 sinφx)


Obtain the transfer matrix between two points 1 and 2 in the normalized phase space.

• Solution: if one writes
M12 = U−1

2 ·R · U1

with U1 the transformation into normalized coordinates for the Twiss parameters at 1, and U2 its inverse for the
Twiss parameters at 2: i.e.,

U1 =

(
1√
β1

0
α1√
β1

√
β1

)
; U−1

2 =

( √
β2 0

− α2√
β2

1√
β2

)
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It can be shown that the matrix M12 can be written as:

M12 =

( √
β2 0

− α2√
β2

1√
β2

)(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

)( 1√
β1

0
α1√
β1

√
β1

)
with

R =

(
cos ∆φ sin ∆φ
− sin ∆φ cos ∆φ

)
.
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