Transverse Beam Dynamics

JUAS 2017 - tutorial 3 (solutions)

1 Exercise: chromaticity in a FODO cell

Consider a ring made of N, identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles
are both of length [;, but their strengths may differ.

1.1 Calculate the maximum and the minimum betatron function in the FODO cell. (Use
the thin-lens approximations)

Answer: First we calculate the transfer matrix for a FODO cell (see figure below). We start from the center of the
focusing quadrupole where the betatron function is maximum:
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This exercise considers a general case where fr is not necessarily equal to fp. Using the thin lens approximation for
the FODO cell with drifts of length L we get the following matrix:
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REMEMBER that in terms of betatron functions and phase advance the matrix of a FODO cell is given by:
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Since £ is maximum at the center of the focusing quadrupole: a = —f’/2 = 0, and we can also write:
cosy,  Bsinp
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Then, doing Eq. (1) equal to Eq. (2) we obtain:
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Here we have applied the following trigonometric relation: cos = cos(§ + §) = cos® § — sin? & £=1-2 sin? g
The maximum for the betatron function S, occurs at the focusing quadrupole. Since Eq. (1) is for a periodic cell

starting at the center of the focusing quadrupole, the mi5 component of the matrix gives us
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Rearranging things:
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On the other hand, the minimum for the betatron function occurs at the defocusing quadrupole position. Therefore,
interchanging fr with — fp for a FODO cell gives:
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1.2 Calculate the natural chromaticities for this machine.

Answer:

Let us remember the definition of natural chromaticity. The so-called “natural” chromaticity is the chromaticity that
derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only from quadrupoles. The
chromaticity is defined in the following way:

AQ
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where AQ is the tune shift due to the chromaticity effects and Ap/pg is the momentum offset of the beam or the

particle with respect to the nominal momentum pyq.
The natural chromaticity is defined as (remember from Lecture 4):
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Sometimes, especially for small accelerators, the chromaticity is normalized to the machine tune Q and defined also
as:
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For this exercise, either you decide to use Eq. (7) or Eq. (9) it is fine! From now on let us use Eq. (7):
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Here we have used the following approximation valid for thin lens:

B(s)k(s)ds ~ > Bi(kly)

cell i€{quads}

where we sum over each quadrupole ¢ in the cell. In the case of the FODO cell we have two half focusing quadrupoles
and one defocusing quadrupole. Taking into account that (kl,); = 1/f;, we have:
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Here we have used the expressions (4) and (5) for Byae and Bin.
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1.3 Show that for short quadrupoles, if fr ~ fp,

N,
Ey = — et tan £
T 2
Answer: If fpr ~ fp, we have
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where we have used sin p = sin(§ + %)2: 2sin § cos §
. . .92
and conslderlng Eq. (3): 4sin” § = fFLﬁ
we finally obtain
N,
En ~ ——tan K
T 2

Q.ED.!

1.4 Design the FODO cell such that it has: phase advance ;1 = 90 degrees, a total length
of 10 m, and a total bending angle of 5 degrees. What are (,,.., Bmins Dmazs Dmin?
Solution:

Lattice parameters: L = 10 m, # = 5 degrees= 0.087266 rad, f = %% =3.53b m
Maximum and minimum betatron functions:
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e = —— L L4 1707, Bin = —— =L - =293 m
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Maximum and minimum dispersion:
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Dpae = ——2—22 = = (4f + =)0 =0.59060 m, Dyip=——2——22=2(4f— = ]6=0.28207m
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1.5 Add two sextupoles at appropriate locations to correct horizontal and vertical chro-
maticities. (hints: use 1 sextupole for the horizontal plane and 1 for the vertical
plane; do not consider geometric aberrations).

Solution:

By locating sextupoles with strength K, > 0 where 3, is large and f3, is small, we can correct the horizontal chromaticity
with relatively little impact on the vertical chromaticity. Similarly, by locating sextupoles with K, < 0 where 3, is large
and f3, is small, we can correct the vertical chromaticity with relatively little impact on the horizontal chromaticity. See
figure below.

sextupole sextupole
quadrupole |, dipole quadrupoICL dipole
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Let us assume the case of a FODO lattice where fr = fp = f. Then the natural chromaticity of this fodo cell is given
by the expression (exercise 1.3):

1
En ~ ——tanﬁ
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For ;1 =90 it is {; ~ —1/7 in both horizontal and vertical plane. Therefore, we need to adjust the strength of the
sextupoles to cancel this chromaticity:
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where Kop = kopls is the normalized integrated strength of the sextupole located near the focusing quadrupole, and
Ksp = kopls the normalized integrated strength of the sextupole near the defocusing quadrupole (with I the effective
length of the sextupole). For an effective cancellation of the chromaticity in both planes, usually Kop > 0 and Kop < 0.
Substituting the values for the maximum and minimum dispersion and betatron function in terms of the total length of
the lattice L and the focal length of the quadrupoles f, one obtains the following expression:
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Considering the same absolute value for the strength of the sextupoles, Kop = —Ksp = K, we can write then:
3 1
—K,Lfo=—
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The strength of the sextupole is given then by:

4
Ks=—+
3Lf0
Then, substituting all the numerical values for the lattice parameters:
KQF = 0.865 m_2
Ksp = —0.865 m—2

1.6 If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much
is the tune-shift with and without sextupoles?

Solution:

If the gradient of the focusing quadrupole has and offset of 10%, then the corresponding quad. strength offset is also
10%. We calculate the number of cells of a ring made of these fodo cells, N..;; = 72 cells, and then we calculate the total
tune-shift in both planes:

AQy = Neay 252 = 9.78



AQy = Neen “7mee = 1.68
When the sextupoles correct for the chromaticity, the particles have, in principle, no tune-shift with energy.

2 Exercise: Double-Bend Achromat (DBA) lattice

A DBA can be made from two dipoles with a horizontally focusing quadrupole between them. The transfer matrix through
the achromat is of the form:

Mppa = Myena Maritt M1 /o7 M1 j2v Marigt Myena

Note that this magnet configuration does not produce vertical focusing, therefore will not be enough to create a stable
lattice. A full DBA typically comprises additional quadrupole doublets before and after the bending section, but for sake
of simplicity we will neglect them.

2.1 Use the thin lens approximation for quadrupoles and small angle approximation for
bends to find the dispersion in the middle of the quadrupole. Write the focal length
in terms of the drift and bend parameters.

Let us consider the 3 x 3 transfer matrices of each element of the lattice (using the thin lens approximation and small
angle approximation for the bending magnets) for the beam coordinates x, z’and Ap/p:

1 00 1 L 0 1 0 0
Myna=| 0 1 0 |, Maw=| 0 1 0 ), Mysp=| —55 1 0
0 0 1 0 0 1 0 0 1

Assuming the initial dispersion vector (10,7 1) = (0,0,1) and propagating it to the center of the quadrupole:

Ne 0
0 = M1/2FMdrifthend 0
1 1

Here we take into account that n’=0 at the center of a quadrupole. After matrix multiplication we obtain:

Ne 11 LL Lo . 0
0 |=| &% 1-£& 0(1—ﬁ) 0
1 0 0 1
Therefore, one obtains:
Tle = Lo
L
1-—=0=L=2
o /

2.2 Show that the dispersion is again zero (n =’ = 0) after the bend.

Propagating the dispersion vector from the center of the quadrupole to the end of the lattice:

Nend Ne
Mona | = MbenaMarigs Myjor | 0],
1 1
Nend 1- % L 0 Ne
1
nénd = —2f 16 0
1 0 0 1 1

and taking into account L = 2f, we obtain:
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2.3 Compute the parameters L, f for a DBA 10 meters long, bending the beam by an
angle of 1 radians. What is the dispersion in the centre? How much a particle with
1% energy deviation will be displaced at the centre of the cell?

L=5m
f=25m
D=L-0=5m
x=0D=001l*x5m=>5cm

3 Exercise: geometry of a storage ring, thin lens, tune, dispersion

Consider a proton synchrotron accumulator made of identical cells. The relevant ring parameters are given in the following
table:

Proton kinetic energy 2 GeV

Cell type Symmetric triplet™)
Ring circumference 960 m
Integrated quadrupole gradient ([ Gdl) 15T

(*)Note: A thin lens symmetric triplet cell consists of a thin lens defocusing quadrupole of focal length — f, followed
with a drift space of length L, a thin lens focusing quadrupole of focal length f, a drift of length Lo, a thin lens dipole
of horizontal bending angle 6, a drift of length Lo, a thin lens focusing quadrupole of focal length f, a drift of length L,
and a thin lens defocusing quadrupole of focal length —f (see Figure below).
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Hint:
The 3 x 3 horizontal transfer matrix for one symmetric triplet cell is (in the thin lens approximation):

f3+2L§L2—23Llf(L1+L2) 2(f7L1)(L1f;szfL1Lz) (Ly + Ly — L1fL2)9

Miripler = 2L1(L1L2f;131f*f2) f3+2L%L2*;3Llf(L1+L2) (f2+L1;”27L1L2)0
0 0 1
x
for the transport of a vector i , where Ap/pg is the momentum offset with respect to the design momentum py.
Ap/po



3.1 Compute the focal length f of the quadrupoles. The proton rest mass is 938 MeV.

Assuming a longitudinally constant gradient for the quadrupole [ Gdl = G - [, where [ is the length of the quadrupole

The quadrupole strength:

Lo G _ 15T
Bp  (Bp)l

Knowing f = ﬁ, we obtain

so we calculate the particle momentum in order to calculate the rigidity Bp =

P

We have the information of the kinetic energy, therefore we can use the relativistic formula to obtain the momentum

pe [GeV]
E = \/mic* + p2c2,

The total energy is given by
where mo = 938 MeV is the rest mass of the particle (in this case protons)
Knowing that the kinetic energy Ey = E — moc®> = y/m3ct + p2c2 — moc?, and after some trivial algebra we obtain:

p=2.78GeV/c

1
Bp =~ ﬁp[GeV/c]:Q??Tm
and with this information we can finally obtain the focal length:

Bp
= 2P _618
I =157 m

3.2 Given the numerical values L; = 1.5 m and L, = 6 m:

e Compute the horizontal and vertical transfer matrices of a triplet cell (take into account that the sign of the focal
length changes when going from horizontal to vertical plane).

Let’s calculate first the bending angle of the dipole:
The length of the cell is Leey; =217 + 2Ly =15 m
Knowing that the circumference of the machine is 960 m and that we have a thin dipole per cell:

Number of cells:N = 22 = 64

and therefore:

= 2% = 0.098 rad.

Having the information Lq, Lo, f and 6 we can calculate the elements of the matrix of the triplet cell (Use the

expression from the Hint):

P42l =2l f(atls) 2 —L)(aftlaf~InLa) (1, 4 [, LiLz)g

th’plet = 2L1(L1L2sz1f*f2) f3+2L§L2*J?3L1f(L1+L2) (f2+L1ff27L1L2)0
0 0 1

For the horizontal plane:

0.525 9.153 0.592
Mipipter(ery = | —0.079 0.525 0.099
0 0 1

For the vertical plane:
Here we have to take into account that in our example we consider only horizontal bending magnets, and no bend in
vertical (§ = 0 in vertical). In addition we have to consider f — —f,



0.296 22.26 0
Mtriplet(V) = —0.04 0.296 0
0 0 1

e Compute the horizontal and vertical machine tunes.

In this example we are considering the propagation of 3D vectors (z,z’, Ap/py):

T T mi1 M2 Mi3 €z
CL‘I =M x’ = mo1 Moo 1Mo3 .’1?/
Ap/po ] Ap/po / 0o 0 1 Ap/po ]

REMEMBER: In terms of the betatron functions these elements of the matrix M between two points can be defined
as follows:

ﬁﬂ:o (COS ¢m + Q0 sin ¢m) \Y ﬁxﬁzo sin ¢z Dm

= 20— Oy z—(1tazoas)sin ¢u | B 3
M (azo—a )cosd)ﬁmémoa 0z ) sin ¢ ﬁBTO(COS ¢x —a, blnd)g;) D/I
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The terms my3 = D, and ma3 = D, are the horizontal dispersion and the derivative of the horizontal dispersion over
s, respectively.

We are dealing with a symmetric cell, so:

51’(50 + Lcell) = /BI(SO) = /8930

am(SO + Lcell) = aa:(80> = Q0

Dw(so + Lcell) = Dw(SO)

These periodicity conditions are valid for the case of our triplet, FODO cells, and other symmetric cells. The Twiss
parameters and the dispersion at the entrance of the cell are equal to those at the exit of the cell. Considering this we
can rewrite the transport matrix of our triplet cell as:

mi1 M1z M13 COS g -‘rzamo sin M 6900 sin L D,
1+« si 4 .
M = mo1 Moo Mo3 = _% COS [ly — Clz0 SN fUy D;/p
0 0 1 0 0 ’

where p,. is the horizontal phase advance of the cell (Remember that we are calculating first the transport in the horizontal
phase, and we have to proceed in a similar way with the vertical case).

Since we have calculated the matrix elements corresponding to our triplet cell, then we can calculate the phase advance
comparing the elements My.ipe¢ () = M:

1
COS by = —(mMm11 + moy) = 0. — Uy = 1. ra
7] 2( ) 0.525 7’ 1.018rad

In order not to get confused with the concepts, it is necessary to remember that in circular machines the transfer
matrix for a complete turn can also be written as:

oS iy + 2am0 sin fiy Bo Sin piy D,
—7(1+a“5;):m Be COS fiy — Qpo Sin iy DY,
0 0 1

But in this case i, is the phase advance after one turn.

The tune is defined as the number of betatron oscillations per turn:

27 27
where N = 64 is the number of periodic cells in the total machine.

_ [la, Ny,
Qm,y = Y - 2



The horizontal tune is

Q. = Ny, 64-1.018
oo 27
If we proceed in a similar way for the vertical plane with the transport matrix My,;pies(v), We obtain:

=10.37

Np, 64-1.27

=12.94
2w 2w J

Qy =
e Compute the horizontal and vertical betatron functions at the entrance of a triplet cell.

Brosin piy = myg = 9.153 — f,0 = 10.75

ByO sin Hy = M2 = 22.26 — ﬁyO =23.31
e Compute the horizontal and vertical dispersion functions at the entrance of a triplet cell.

Dm =MmMi3 = 0592
D, =0

4 Exercise: normalized phase space

Let us consider the following phase space vector: (z,z’). The transformation to a normalized phase space (X, X”) is given

by:
(F)-(% &)(5)

The normalization process of the phase space is illustrated in the figure below:
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If we know that the transfer matrix between two points 1 and 2 (with phase advance ¢, between them) in the phase
space (x,z’') is given by:

\/ %(COS ¢z + Qg1 sin ¢w) V ﬁwlﬁwQ sin ¢m
e ¢2:2(,81Za1104m2) oin ¢ \/ % (COS ¢x — Qg2 sin ¢x>

Obtain the transfer matrix between two points 1 and 2 in the normalized phase space.

MlQ =

e Solution: if one writes
My=U;'-R-U;

with U; the transformation into normalized coordinates for the Twiss parameters at 1, and U, its inverse for the
Twiss parameters at 2: i.e.,

L 0
P ; U;l:(@ ?)
VB V5 VE

$



It can be shown that the matrix M2 can be written as:

( VB2 0 >( cos A¢
Mip=| "o 1
VB2 VB2

with

_ cos A¢p
R= ( —sin A¢

10

sin A¢
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