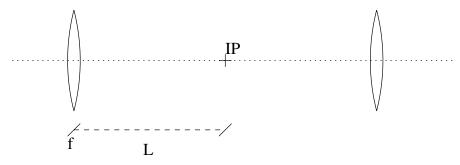
Transverse Beam Dynamics

JUAS 2017 - tutorial 4

1 Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-symmetry with respect to the IP:



The beam enters the quadrupole with Twiss parameters $\beta_0 = 20$ m and $\alpha_0 = 0$. The drift space has length L = 10 m.

(i) Determine the focal length of the quadrupole in order to locate the waist at the IP.

- (ii) What is the value of β^* ?
- (iii) What is the phase advance between the quadrupole and the IP?

2 Exercise: beam size and luminosity

An e^+e^- collider has an interaction Point (IP) with $\beta_x^* = 0.5$ m and $\beta_y^* = 0.1$ cm. The peak luminosity available by a e^+e^- collider can be written as:

$$L = \frac{N_{\rm b} N_{e^-} N_{e^+} f_{\rm rev}}{4\pi \sigma_x^* \sigma_y^*} \ [\rm cm^{-2} s^{-1}]$$

where $N_{\rm b} = 80$ is the number of bunches per beam (we assume the same number of bunches for both the e^- and the e^+ beams), $N_{e^-} = N_{e^+} = 5 \times 10^{11}$ is the number of particles per bunch (we assume the same number for both e^- and e^+ bunches), and $f_{\rm rev}$ is the revolution frequency. The horizontal and vertical normalised beam emittances are respectively: $\epsilon_{x,N} = 2.2$ mm and $\epsilon_{y,N} = 4.7 \ \mu$ m.

- Compute the revolution frequency f_{rev} , knowing that the circumference is 80 km and that the beam moves nearly at the speed of light
- Calculate the beam transverse beam sizes σ_x^* and σ_y^* at the IP, and the luminosity L for two different beam energies: 45 GeV and 120 GeV
- What are the beam divergences (horizontal and vertical) at the IP for the 45 GeV case?
- What is the value of the betatron function at position s = 0.5 m from the IP?

3 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at L_{cell} distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at $(x_i, x'_i) = (0, 0)$, an arbitrary offset at the end of the cell while preserving its angle, $(x_f, x'_f) = (x_{\text{arbitrary}}, 0)$.

4 Exercise: measurement of Twiss parameters

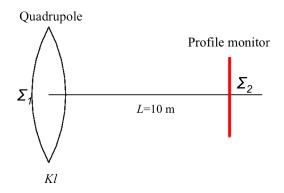
One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole scan. One can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner (WBS), located at a distance L downstream a focusing quadrupole, as a function of the normalized gradient in this quadrupole. This allows to compute the emittance of the beam, as well as the β and the α functions at the entrance of the quadrupole.

Let's consider a quadrupole Q with a length of l = 20 cm. This quadrupole is installed in an electron transport line where the particle momentum is 300 MeV/c. At a distance L = 10 m from the quadrupole the transverse beam size is measured with a WBS, for various values of the current I_Q . The maximum value of the quadrupole gradient G is obtained for a current of 100 A, and is G = 1 T/m. G is proportional to the current.

Advice: use thin-lens approximation.

4.1 How does the normalized focusing strength K vary with I_Q ?

4.2 Let Σ_1 and Σ_2 be the 2 × 2 matrices with the Twiss parameters, $\Sigma = \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$, at the quadrupole entrance and at the wire scanner, respectively.



It is worth explaining that the matrix Σ multiplied by the emittance ϵ is the covariance matrix of the beam distribution:

$$\Sigma \epsilon = \begin{pmatrix} \beta \epsilon & -\alpha \epsilon \\ -\alpha \epsilon & \gamma \epsilon \end{pmatrix} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle x'x \rangle & \langle x'^2 \rangle \end{pmatrix}$$

The transverse beam size of the beam is given by $\sigma_x = \sqrt{\langle x^2 \rangle} = \sqrt{\beta_x \epsilon_x}$ (horizontal beam size), and $\sigma_y = \sqrt{\langle y^2 \rangle} = \sqrt{\beta_y \epsilon_y}$ (vertical beam size). Here we will simply use the following notation: $\sigma_1 = \sqrt{\beta_1 \epsilon}$ for the beam size (horizontal or vertical) at position 1, and $\sigma_2 = \sqrt{\beta_2 \epsilon}$ for the beam size (horizontal or vertical) at position 2.

- Give the expression Σ_2 as function of α_1 , β_1 , and γ_1
- Show that β_2 can be written in the form: $\beta_2 = A_2 (Kl)^2 + A_1 (Kl) + A_0$
- Express A_0 , A_1 , and A_2 as a function of L, α_1 , β_1 , and γ_1

Hint for the next questions: show that if you express β_2 as

$$\beta_2 = B_0 + B_1 \left(Kl - B_2 \right)^2$$

you have:

 $B_0 = A_0 - A_1^2 / 4A_2^2 = L^2 / \beta_1$ $B_1 = A_2 = L^2 \beta_1$ $B_2 = -A_1 / A_2 = 1/L - \alpha_1 / \beta_1$

- 4.3 The transverse beam r.m.s. beam size is $\sigma = \sqrt{\epsilon \beta}$, where ϵ is the transverse emittance. Express σ_2 as a function of Kl and find its minimum, $(Kl)_{\min}$. Give the expression for $\frac{d\sigma_2}{d(Kl)}$.
- 4.4 How does σ_2 vary with Kl when $|Kl (Kl)_{\min}| \gg 1/\beta_1$?
- 4.5 Deduce the values of α_1 , β_1 , and γ_1 from the measurement σ_2 , as a function of the quadrupole current I_Q .