Transverse Beam Dynamics

$$
\text { JUAS } 2017 \text { - tutorial } 4 \text { (solutions) }
$$

1 Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-symmetry with respect to the IP:

The beam enters the quadrupole with Twiss parameters $\beta_{0}=20 \mathrm{~m}$ and $\alpha_{0}=0$. The drift space has length $L=10 \mathrm{~m}$.
(i) Determine the focal length of the quadrupole in order to locate the waist at the IP.
(ii) What is the value of β^{\star} ?
(iii) What is the phase advance between the quadrupole and the IP?

Solution.

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
1-\frac{L}{f} & L \\
-\frac{1}{f} & 1
\end{array}\right) \\
\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)_{\mathrm{IP}} & =M \cdot\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)_{0} \cdot M^{T} \\
\left(\begin{array}{cc}
\beta_{\mathrm{IP}} & 0 \\
0 & 1 / \beta_{\mathrm{IP}}
\end{array}\right) & =M \cdot\left(\begin{array}{cc}
\beta_{0} & 0 \\
0 & 1 / \beta_{0}
\end{array}\right) \cdot M^{T}
\end{aligned}
$$

We get a system of equations:

$$
\left\{\begin{array}{l}
\beta_{\mathrm{IP}}=\beta_{0}\left(1-\frac{L}{f}\right)^{2}+\frac{L^{2}}{\beta_{0}} \\
\frac{1}{\beta_{\mathrm{IP}}}=\frac{\beta_{0}}{f^{2}}+\frac{1}{\beta_{0}}
\end{array}\right.
$$

multiplying them:

$$
1=\left(\beta_{0}\left(1-\frac{L}{f}\right)^{2}+\frac{L^{2}}{\beta_{0}}\right)\left(\frac{\beta_{0}}{f^{2}}+\frac{1}{\beta_{0}}\right)
$$

and solving for f :

$$
f=\frac{\beta_{0} \sqrt{\left(\beta_{0}^{2}-4 L^{2}\right)}+\beta_{0}^{2}}{2 L}
$$

from which one finds:

$$
f=20 \mathrm{~m}
$$

and substituting back into one of the equations in the system:

$$
\beta_{\mathrm{IP}}=10 \mathrm{~m}
$$

The phase advance can be computed remembering that

$$
M_{0 \rightarrow s}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta_{s}}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

In this case, $\alpha_{0}=\alpha_{\text {IP }}=0$,

$$
\begin{gathered}
\operatorname{Trace}(M)=\frac{3}{2}=\left(\sqrt{\frac{\beta^{\star}}{\beta_{0}}}+\sqrt{\frac{\beta^{0}}{\beta^{\star}}}\right) \cos \Delta \mu \\
\Delta \mu=\arccos \left(\frac{3}{2} \cdot \frac{1}{\sqrt{\frac{\beta^{\star}}{\beta_{0}}}+\sqrt{\frac{\beta^{0}}{\beta^{\star}}}}\right)=\arccos \left(\frac{3}{2} \cdot \frac{1}{2.1213}\right)=45 \text { degrees }
\end{gathered}
$$

Alternatively, given that the system:

$$
M=Q \cdot D \cdot D \cdot Q
$$

is indeed periodic, one can say:

$$
\begin{gathered}
M=\left(\begin{array}{cc}
1-\frac{2 L}{f} & 2 L \\
\frac{2 L}{f^{2}}-\frac{2}{f} & 1-\frac{2 L}{f}
\end{array}\right) \\
\cos \Delta \mu_{\text {twice }}=\frac{1}{2} \operatorname{Trace}(M)=\frac{1}{2} \operatorname{Trace}\left(2-\frac{4 L}{f}\right)=0 \\
\Delta \mu_{\text {twice }}=90 \text { degrees } \quad \Rightarrow \Delta \mu=45 \text { degrees }
\end{gathered}
$$

2 Exercise: beam size and luminosity

An $e^{+} e^{-}$collider has an interaction Point (IP) with $\beta_{x}^{*}=0.5 \mathrm{~m}$ and $\beta_{y}^{*}=0.1 \mathrm{~cm}$. The peak luminosity available by a $e^{+} e^{-}$ collider can be written as:

$$
L=\frac{N_{\mathrm{b}} N_{e^{-}} N_{e^{+}} f_{\mathrm{rev}}}{4 \pi \sigma_{x}^{*} \sigma_{y}^{*}}\left[\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]
$$

where $N_{\mathrm{b}}=80$ is the number of bunches per beam (we assume the same number of bunches for both the e^{-}and the e^{+}beams), $N_{e^{-}}=N_{e^{+}}=5 \times 10^{11}$ is the number of particles per bunch (we assume the same number for both e^{-}and e^{+}bunches), and $f_{\text {rev }}$ is the revolution frequency. The horizontal and vertical normalised beam emittances are respectively: $\epsilon_{x, N}=2.2 \mathrm{~mm}$ and $\epsilon_{y, N}=4.7 \mu \mathrm{~m}$.

- Compute the revolution frequency $f_{\text {rev }}$, knowing that the circumference is 80 km and that the beam moves nearly at the speed of light

Solution. The revolution period is given by $T_{\text {rev }}=$ circumference $/ c=80 \mathrm{~km} / \mathrm{c}$, and therefore the revolution frequency is:

$$
f_{\text {rev }}=1 / T_{\text {rev }}=c / 80 \mathrm{~km} \simeq 3.75 \mathrm{kHz}
$$

- Calculate the beam transverse beam sizes σ_{x}^{*} and σ_{y}^{*} at the IP, and the luminosity L for two different beam energies: 45 GeV and 120 GeV

Solution. For 45 GeV beam energy: in this case the Lorentz factor is $\gamma=88062.622$, and $\sigma_{x}^{*}=\sqrt{\beta_{x}^{*} \epsilon_{x, N} / \gamma} \simeq 111.76 \mu \mathrm{~m}$ and $\sigma_{y}^{*}=\sqrt{\beta_{y}^{*} \epsilon_{y, N} / \gamma} \simeq 0.23 \mu \mathrm{~m}$, and the luminosity is $L \simeq 2.32 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

For 120 GeV beam energy: in this case the Lorentz factor is $\gamma=234833.66$, and $\sigma_{x}^{*}=\sqrt{\beta_{x}^{*} \epsilon_{x, N} / \gamma} \simeq 68.56 \mu \mathrm{~m}$ and $\sigma_{y}^{*}=\sqrt{\beta_{y}^{*} \epsilon_{y, N} / \gamma} \simeq 0.14 \mu \mathrm{~m}$, and the luminosity is $L \simeq 6.22 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- What are the beam divergences (horizontal and vertical) at the IP for the 45 GeV case?

Solution. Where $\alpha=0$ we have

$$
\sigma_{x^{\prime}}^{*}=\sqrt{\frac{\epsilon_{x, N}}{\gamma \beta_{x}^{*}}}=\ldots
$$

- What is the value of the betatron function at position $s=0.5 \mathrm{~m}$ from the IP?

Solution. We know that the betatron function in the drift space of a low beta region (where we have the interaction point) depends on the longitudinal coordinate as follows:

$$
\beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}}
$$

Therefore, $\beta_{x}(0.5 \mathrm{~m})=1 \mathrm{~m}$, and $\beta_{y}(0.5 \mathrm{~m})=250 \mathrm{~m}$

3 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at $L_{\text {cell }}$ distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at $\left(x_{i}, x_{i}^{\prime}\right)=(0,0)$, an arbitrary offset at the end of the cell while preserving its angle, $\left(x_{f}, x_{f}^{\prime}\right)=\left(x_{\text {arbitrary }}, 0\right)$.

Solution

The transfer matrix of a periodic cell is:

$$
M=\left(\begin{array}{cc}
\cos \varphi+\alpha \sin \psi & \beta \sin \varphi \\
-\gamma \sin \varphi & \cos \varphi-\alpha \sin \varphi
\end{array}\right)
$$

Substituting the value for the phase advance we get the matrix to apply to the beam right after the first kick k_{1} :

$$
\binom{x_{f}}{x_{f}^{\prime}}=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1+\alpha & \beta \\
-\gamma & 1-\alpha
\end{array}\right)\binom{0}{k_{1}}=\frac{\sqrt{2}}{2}\binom{\beta k_{1}}{(1-\alpha) k_{1}}
$$

From this we see that to achieve an arbitrary x_{f} we need:

$$
k_{1}=\frac{\sqrt{2} x_{f}}{\beta}
$$

The second kick, k_{2}, has only to remove the final tilt:

$$
k_{2}=-x_{f}^{\prime}=-\frac{(1-\alpha)}{\sqrt{2}} k_{1}
$$

Notice that one can reduce the strength of the kickers by placing them close to a focusing quadrupoles, where β is maximum.

4 Exercise: measurement of Twiss parameters

One of the possible ways to determine experimentally the Twiss parameters at a given point makes use of a so-called quadrupole scan. One can measure the transverse size of the beam in a profile monitor, called Wire Beam Scanner (WBS), located at a distance L downstream a focusing quadrupole, as a function of the normalized gradient in this quadrupole. This allows to compute the emittance of the beam, as well as the β and the α functions at the entrance of the quadrupole.

Let's consider a quadrupole Q with a length of $l=20 \mathrm{~cm}$. This quadrupole is installed in an electron transport line where the particle momentum is $300 \mathrm{MeV} / c$. At a distance $L=10 \mathrm{~m}$ from the quadrupole the transverse beam size is measured with a WBS, for various values of the current I_{Q}. The maximum value of the quadrupole gradient G is obtained for a current of 100 A, and is $G=1 \mathrm{~T} / \mathrm{m} . G$ is proportional to the current.

Advice: use thin-lens approximation.

4.1 How does the normalized focusing strength K vary with I_{Q} ?

Answer:

If G proportional to $I_{Q}: G=C \cdot I_{Q}$ where C is the proportionality coefficient. We know that $G=1 \mathrm{~T} / \mathrm{m}$ when $I_{Q}=100 \mathrm{~A}$, therefore $C=0.01 \mathrm{~T} /(\mathrm{A} \cdot \mathrm{m})$.
4.2 Let Σ_{1} and Σ_{2} be the 2×2 matrices with the Twiss parameters, $\Sigma=\left(\begin{array}{cc}\beta & -\alpha \\ -\alpha & \gamma\end{array}\right)$, at the quadrupole entrance and at the wire scanner, respectively.

It is worth explaining that the matrix Σ multiplied by the emittance ϵ is the covariance matrix of the beam distribution:

$$
\Sigma \epsilon=\left(\begin{array}{cc}
\beta \epsilon & -\alpha \epsilon \\
-\alpha \epsilon & \gamma \epsilon
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x^{\prime} x\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)
$$

The transverse beam size of the beam is given by $\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle}=\sqrt{\beta_{x} \epsilon_{x}}$ (horizontal beam size), and $\sigma_{y}=\sqrt{\left\langle y^{2}\right\rangle}=\sqrt{\beta_{y} \epsilon_{y}}$ (vertical beam size). Here we will simply use the following notation: $\sigma_{1}=\sqrt{\beta_{1} \epsilon}$ for the beam size (horizontal or vertical) at position 1, and $\sigma_{2}=\sqrt{\beta_{2} \epsilon}$ for the beam size (horizontal or vertical) at position 2.

- Give the expression Σ_{2} as function of α_{1}, β_{1}, and γ_{1}

Answer:

The matrix Σ propagates from position 1 to position 2 as follows:

$$
\Sigma_{2}=M \Sigma_{1} M^{T}
$$

where M is the transfer matrix of the system and M^{T} its transpose. We have:

$$
\begin{align*}
\Sigma_{2} & =\left(\begin{array}{cc}
\beta_{2} & -\alpha_{2} \\
-\alpha_{2} & \gamma_{2}
\end{array}\right)=\left(\begin{array}{cc}
1-K l L & L \\
-K l & 1
\end{array}\right)\left(\begin{array}{cc}
\beta_{1} & -\alpha_{1} \\
-\alpha_{1} & \gamma_{1}
\end{array}\right)\left(\begin{array}{cc}
1-K l L & -K l \\
L & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\beta_{1} L^{2}(K l)^{2}+2 L\left(\alpha_{1} L-\beta_{1}\right) K l+\beta_{1}-2 \alpha_{1} L+\gamma_{1} L^{2} & \beta_{1} L(K l)^{2}+\left(2 \alpha_{1} L-\beta_{1}\right) K l+\gamma_{1} L-\alpha_{1} \\
\beta_{1} L(K l)^{2}+\left(2 \alpha_{1} L-\beta_{1}\right) K l+\gamma_{1} L-\alpha_{1} & \beta_{1}(K l)^{2}+2 \alpha_{1} K l+\gamma_{1}
\end{array}\right) \tag{1}
\end{align*}
$$

- Show that β_{2} can be written in the form: $\beta_{2}=A_{2}(K l)^{2}+A_{1}(K l)+A_{0}$
- Express A_{0}, A_{1}, and A_{2} as a function of L, α_{1}, β_{1}, and γ_{1}

Answer:
We can see from Eq. (1) that:

$$
\beta_{2}=\beta_{1} L^{2}(K l)^{2}+2 L\left(\alpha_{1} L-\beta_{1}\right) K l+\beta_{1}-2 \alpha_{1} L+\gamma_{1} L^{2}
$$

and therefore:

$$
\begin{aligned}
& A_{2}=\beta_{1} L^{2} \\
& A_{1}=2 L\left(\alpha_{1} L-\beta_{1}\right) \\
& A_{0}=\beta_{1}-2 \alpha_{1} L+\gamma_{1} L^{2}
\end{aligned}
$$

Hint for the next questions: show that if you express β_{2} as

$$
\beta_{2}=B_{0}+B_{1}\left(K l-B_{2}\right)^{2}
$$

you have:

$$
\begin{aligned}
& B_{0}=A_{0}-A_{1}^{2} / 4 A_{2}^{2}=L^{2} / \beta_{1} \\
& B_{1}=A_{2}=L^{2} \beta_{1} \\
& B_{2}=-A_{1} / A_{2}=1 / L-\alpha_{1} / \beta_{1}
\end{aligned}
$$

4.3 The transverse beam r.m.s. beam size is $\sigma=\sqrt{\epsilon \beta}$, where ϵ is the transverse emittance. Express σ_{2} as a function of $K l$ and find its minimum, $(K l)_{\text {min }}$. Give the expression for $\frac{\mathbf{d} \sigma_{2}}{\mathbf{d}(K l)}$.
As we have seen in the previous questions β_{2} depends quadratically on $K l$: $\beta_{2}=B_{0}+B_{1}\left(K l-B_{2}\right)^{2}$. Since ϵ is constant, if we want to minimize σ_{2}, we have to minimize β_{2} :

$$
\begin{equation*}
\frac{\mathrm{d} \beta_{2}}{\mathrm{~d}(K l)}=0 \longrightarrow 2 B_{1}\left(K l-B_{2}\right)=0 \longrightarrow(K l)_{\min }=B_{2}=\frac{1}{L}-\frac{\alpha_{1}}{\beta_{1}} \tag{2}
\end{equation*}
$$

We can write:

$$
\sigma_{2}^{2}=\beta_{2} \epsilon=\frac{L^{2}}{\beta_{1}}\left(1+\beta_{1}^{2}\left(K l-(K l)_{\min }\right)^{2}\right) \epsilon
$$

Why is this useful? By means of a quadrupole scan (changing the strength of the quadrupole) we look for the strength Kl which minimizes the value σ_{2}^{2}. We fit a parabola to the measurements σ_{2}^{2} vs. $K l$, and select then $\sigma_{2}^{2}\left((K l)_{\min }\right)$. The minimum beam size is given by:

$$
\begin{equation*}
\operatorname{Min}\left(\sigma_{2}\right)=L \sqrt{\frac{\epsilon}{\beta_{1}}}=\sqrt{B_{0} \epsilon} \tag{3}
\end{equation*}
$$

The derivative of σ_{2} is: $\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d}(\mathrm{Kl})}=\frac{L^{2} \beta_{1}}{\sigma_{2}}\left(K l-(k l)_{\text {min }}\right) \epsilon$

4.4 How does σ_{2} vary with $K l$ when $\left|K l-(K l)_{\text {min }}\right| \gg 1 / \beta_{1}$?

Under this condition:

$$
\sigma_{2}^{2}=\frac{L^{2}}{\beta_{1}}\left(1+\beta_{1}^{2}\left(K l-(K l)_{\min }\right)^{2}\right) \epsilon \longrightarrow \sigma_{2} \simeq L \sqrt{\beta_{1} \epsilon}\left(K l-(K l)_{\min }\right)
$$

For $\left|K l-(K l)_{\text {min }}\right| \gg 1 / \beta_{1}, \sigma_{2}$ depends linearly on $K l$, with slope $\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d}(\mathrm{Kl})}=L \sqrt{\beta_{1} \epsilon}=L \sigma_{1}$.

4.5 Deduce the values of α_{1}, β_{1}, and γ_{1} from the measurement σ_{2}, as a function of the quadrupole current I_{Q}.

We know that

$$
K l=\frac{G \cdot l}{p / e}=\frac{C \cdot l \cdot I_{Q}}{p / e}=\frac{0.01[\mathrm{~T} /(\mathrm{Am})] \cdot 0.2[\mathrm{~m}]}{(0.3[\mathrm{GeV}] / 0.3)[\mathrm{Tm}]} \cdot I_{Q}=2 \times 10^{-3} \cdot I_{Q}
$$

If we measure σ_{2} as a function of the quadrupole current I_{Q}, from the minimum value we can get β_{1} (Eq. (3)), and since from the measurement we obtain $(K l)_{\min }=2 \times 10^{-3}\left(I_{Q}\right)_{\min }$, using Eq. (2) we can calculate α_{1}. Once we know β_{1} and α_{1}, it is then straightforward to calculate $\gamma_{1}=\left(1+\alpha_{1}^{2}\right) / \beta_{1}$.

