JUAS 2003 RF-Technology – EXAMINATION

Name:

(1P)

(1P)

(1P)

(2P)

1 For a given pillbox cavity with a radius R = 1.15 meter and a height H=0.5 meter determine (7P)

1.1 the resonance frequency for the fundamental mode (TM_{010} type) (1P)

$$f = c_0/(2.61a) = 100 MHz$$

1.2 Indicate qualitatively below the electric field strength E(r) as a function of radius. It is proportional to which function? *To* I_0 (*Bessel function of* 0^{th} *order*).

1.3 Indicate qualitatively below the magnetic field strength H(r) as a function of radius. It is proportional to which function? To I_1 (Bessel function of first order).

1.4 Which are the ONLY present E- and H- field components in the cavity for the mode mentioned above? (r, ϕ and z coordinates)

$$H_r$$
, H_f , E_r , E_ϕ , E_z

1.5 Calculate (general expression and numerical solution) the R/Q and the Q value assuming that the cavity is made from normal copper at room temperature. Neglect the transit time factor!

$$R/Q = 370*(H/2)/R = 80.4, Q = 0.383/\sigma*(1+0.192\lambda/(H/2))^{-1} = 52700$$

1.6 What is the decay time τ of cavity version 1. (1P) (general expression using the Q value and numerical result) $t = Q/(\pi^*f) = 168 \ \mu s$

$JUAS\ 2003\ RF\text{-}Technology-EXAMINATION$

Name:

2 Fill in all the missing fields in the tables below

(**7P**)

2.1 (2P)

Voltage ratio	Power ratio	dB	
3.1623	10	10	
10	100	20	
100	10000	40	

$$2.2 (2P)$$

dBm (50 Ohm)	RMS Voltage	milli Watt	
0	0.224 V	1	
+30	7.1 V	1000	
-60	$0.224 \ mV$	1e-6	
20	2.4 V	100	

We have got part of the S-matrix of an ideal attenuator. Fill in the missing elements. How many dB are written on this attenuator for its nominal attenuation?

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & 0.1 \\ 0.1 & 0 \end{bmatrix}$$

$$2.4 (2P)$$

Now we have an ideal amplifier with perfect input and output match (i.e. input and output impedance are both 50 Ohm) a gain of 40 dB and no reverse transmission. (import: port 1, output: port 2)

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 100 & 0 \end{bmatrix}$$

JUAS 2003 RF-Technology - EXAMINATION □ Name:

- 3. The locus of inpedance of a parallel RLC resonant circuit (without additional transformers) \square (6P) is given in the complex w-plane (left) [w-plane = normalized z-plane, normalization to 50 Ohm].
 - 3.1 Tranform this locus of impedance into the Smith Chart. \square (1P)
 - 3.2 Mark the resonance frequency both in the w-plane and in the Smith Chart \Box (1P) (select between f1, f2, f3). \Box *Point C* (f2)
 - 3.3 Show (with a mark) the -3dB points (for unloaded Q) both in the w-plane and \Box (1P) in the Smith Chart (select between f1, f2, f3). *Points B and C (f1 and f3)*
 - 3.4 Determine R and Q and subsequently L and C for this resonator. \Box \Box (2P)
 - 3.5 What is R/Q for this resonator? \Box \Box \Box \Box \Box \Box (1P)

 $\Box Q = 10$, R = 100 Ohms, R/Q = 10, L = 79.6 microH, C = 796 pF

Smith Chart

