JUAS 2004 RF-Technology Solutions

1 Pillbox cavity

1. $\lambda=\frac{c}{f}=2.61 a=0.6 m \Rightarrow 2 a=\frac{2 \lambda}{2.61}=0.46 \mathrm{~m}$
2. $\frac{r}{Q}=370 \frac{h}{a} \Rightarrow 2 h=2 a \frac{r}{Q} \frac{1}{370}=0.124 \mathrm{~m}$
3. The skin depth $\delta=\sqrt{\frac{2}{\omega \sigma \mu}}=2.96 \mu \mathrm{~m}$ with $\omega=2 \pi f, \sigma=58 \mathrm{MS} / \mathrm{m}$ for copper and $\mu=\mu_{0}=4 \pi \cdot 10^{-7}$. $Q=\frac{0.383 \lambda}{\delta}\left(1+\frac{0.192 \lambda}{h}\right)^{-1}=27200$
4. $r=\frac{r}{Q} Q=2.72 M \Omega$
$L=\frac{1}{\omega} \frac{r}{Q}=32 \mathrm{nH}$
$C=\frac{1}{\omega} \frac{1}{\frac{r}{Q}}=3.2 \mathrm{pF}$
5. $\Delta U=\frac{q}{C}=\frac{1.1 \cdot 10^{11} e}{C}=5.54 \mathrm{kV}$
$U_{\text {end }}=2 r I_{0}=3.05 \mathrm{MV}(!!)$

3 S-matrices

$\left[S_{1}\right]: S_{21}=S_{12}=-3 \mathrm{~dB} \Rightarrow 3 \mathrm{~dB}$ attenuator, matched, reciprocal, lossy (not lossless) $\left[S_{2}\right]:\left|S_{21}\right|>1 \Rightarrow$ amplifier, not matched, nonreciprocal, active component (not lossless)
[S_{3}] : special component, not matched, reciprocal, lossless
$\left[S_{4}\right]: S_{21}=1$, all the other matrix elements zero \Rightarrow isolator, matched, nonreciprocal, lossy

Bonus question: $\left[S_{3}\right]$ is lossless and reciprocal. The transmission coefficient is much higher than the reflection coefficient. This indicates that it could be an abrupt change in characteristic impedance in a transmission line. An example would be a cross-section change in a waveguide or a transition between coaxial lines with different dielectrics.

4 Scattering 2-port

1. Z_{P} and Z_{L} are in parallel $\Rightarrow \frac{1}{Z_{X}}=\frac{1}{Z_{P}}+\frac{1}{Z_{L}}$, giving $Z_{X}=16.7 \Omega$.
2. $S_{11}=\Gamma$ is the reflection coefficient at port 1 . $\Gamma=\frac{Z_{X}-Z_{G}}{Z_{X}+Z_{G}}=-0.5$. Since the 2-port Z_{P} is symmetric, we have $S_{22}=S_{11}$ and $S_{12}=S_{21}$. The complete S-matrix is then

$$
[S]=\left(\begin{array}{cc}
-0.5 & 0.5 \tag{1}\\
0.5 & -0.5
\end{array}\right)
$$

3. See Smith Chart!

4. Bonus question:

From the Smith Chart we find for the normalized impedance of the inductor $W=0.47$. After denormalization, we get $Z=W * Z_{0}=0.47 * 50 \Omega=23.5 \Omega$. The value of the series inductance is given by $Z=\omega L \Rightarrow L=\frac{Z}{\omega}=37 \mathrm{nH}$.
The normalized admittance y was found to be 1.4. Denormalization yields $Y=$ $y / Z_{0}=1.4 / 50 \Omega=0.028 S$. We have to divide by the system impedance Z_{0} since we are working with an admittance. Finally, with $Y=\omega C$ we find $C=\frac{Y}{\omega}=45 \mathrm{pF}$.

2 Multiple Choice

1. Which mode is the fundamental mode (lowest cut-off frequency) in a cylindrical waveguide of circular cross-section without inner conductor? (check 1)
※ TE

- TEM
- TM

2. Which mode is the fundamental mode in a cylindrical waveguide with inner conductor (coaxial line)? (check 1)

- TE
* TEM
- TM

3. Adding capacitive loading to a cavity (check 1)
$\not x$ lowers the resonance frequency

- does not affect the resonance frequency
- increases the resonance frequency

4. Advantages of a nose cone cavity compared to an ordinary pill box cavity of same dimension (check 1)

- Smaller skin depth
* Higher r/Q
- Higher Q

5. Superconducting cavities usually do not have nose cones because (check 2)

- Superconductors are expensive, so don't waste them for nose cones
$\not \approx$ Nose cones are sensitive to multipactoring, which causes excessive heating and must therefore be avoided
- The shunt impedance is so high that it can't be increased any more by changing the geometry
$\not \subset$ Superconductors can't stand the high electric field around the nose cones

6. When doing numerical simulations, geometrical symmetries are exploited in order to (check 2)

- ensure convergence of the simulation algorithms for resonant structures
* reduce calculation time
- account for the transit time factor
\otimes rule out certain higher order modes

7. The GSM standard specifies a minimum sensitivity requirement of about -100 dBm , while the maximum output power is in the order of 1 W . This corresponds to how many orders of magnitude in power? (check 1)

- 5
- 8
× 13
(Exact values: - 102 dBm minimum sensitivity, 1 to 5 W maximum output power)

8. When you cover then antennna of your mobile with your hand while using it, the attenuation caused is in the order of 20 dB . Human tissue is a rather good absorber, so you can neglect reflections for this calculation. How many percent of the mobile's output power stay in the head and hand? (check 1)

- 9
$\times 99$
- 99.99

