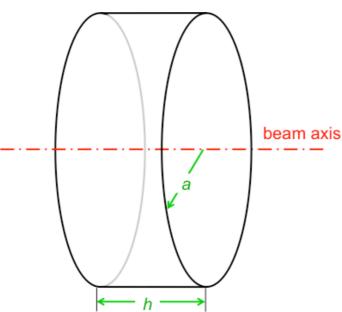
RF Tutorial 2017

A) Design of a "pillbox" cavity

Problem: Design a simple "Pillbox" cavity with the following parameters


Frequency: $f = 299.98 \text{ MHz} (\lambda = 1.00 \text{ m})$

Wall material: Copper (equivalent skin depth δ = 3.8 µm)

Axial length: h = 0.2 m

For this example, we ignore beam ports, i.e. vacuum chamber stubs required for the beam passage, so that all analytical formulas describing the pillbox cavity

apply.

Questions:

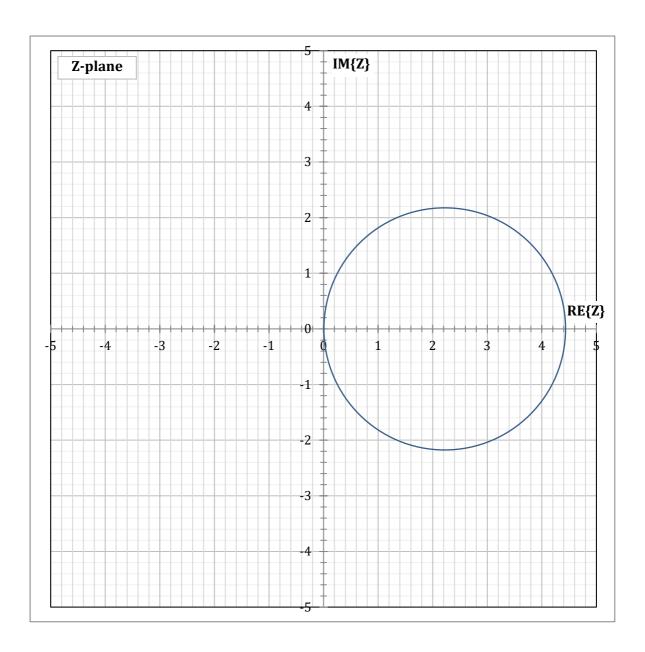
- 1. Find from the analytical formulas:
 - Cavity radius a
 - Cavity quality factor Q
 - "geometry factor", also know as "characteristic impedance" *R/Q* Is the cavity completely determined?
- 2. Find the equivalent circuit of the intrinsic cavity.
- 3. Calculate the 3-dB bandwidth of the intrinsic cavity.
- 4. Calculate the necessary RF power for a gap voltage of V = 100 kV
- 5. The cavity is fed by an amplifier, designed for a load impedance of 50 Ω . Determine:
 - The peak voltage at the cavity input.
 - The necessary transformer ratio k of the input coupler.

B) Impedances in the complex plane (1)

Questions:

1. Plot the following impedances in the *Z*-plane, use the plot axes on the next page:

$Z = (3 + 4 j) \Omega$	$ Z = 2$, $arg(Z) = \pi/4$	Z = short circuit
$Z = 2 \Omega$	$ Z = 1$, $arg(Z) = -\pi/2$	$Y = Z^{-1} = (0.16 + 0.12j) \Omega^{-1}$
$Z = (1 - 4j) \Omega$	$ Z = 5$, $arg(Z) = 53^{\circ}$	


2. Qualitatively, how would an inductor look like, plotted from DC to some arbitrary frequency, in the *Z*-plane?

Hint:
$$Z_L = j\omega L$$

- 3. How would a capacitor look like? Hint: $Z_C = 1/(j\omega C)$
- 4. The input impedance of a RLC circuit has been plotted in the *Z*-plane (blue circle).


Mark the points in the diagram describing:

- a. Impedance at the resonant frequency
- b. DC impedance
- c. 3-dB bandwidth
- d. Impedance at $f \rightarrow \infty$

D) Impedances in the complex plane (2)

The impedance of a resonant circuit is a function of frequency. For a given resonator the impedance was measured at 7 different frequencies, $f_1...f_7$. The result is shown in the complex Z-plane:

	f ₁	f_2	f 3	f ₄	f 5	f 6	f 7
f/ MHz	105.11	105.05	104.94	105.29	105.35	105.46	105.20
Z / kΩ	200 e ^{j30} °	162.6 e ^{j45} °	115 e ^{j60°}	200 e ^{-j30°}	162.6 e ^{-j45°}	115 e ^{-j60°}	230 e ^{j0°}

Questions:

- 1. Determine the resonant frequency.
- 2. Determine the 3-dB bandwidth (*BW*) of this resonator. (Hint: The bandwidth of a resonator is defined as the frequency difference between the upper and lower 3-dB frequency points.)

In order to evaluate the properties of a resonator, it is common to model it as equivalent circuit with lumped RLC elements.

- 3. Sketch the equivalent circuit for the measured resonator.
- 4. Determine *R*.
- 5. Draw the locus of admittance of this circuit in the *Y*-plane, and indicate lower and upper 3-dB points.
- 6. Determine the Q-value, as well as *L* and *C* for this circuit.

C) "Pillbox" cavity characteristics

The following data was measured on a "pillbox" cavity":

Inductance: L = 15.915 nHCapacitance: C = 1.5915 pF3-dB bandwidth: BW = 50 kHz

Questions:

Determine

- the frequency at resonance
- the characteristic impedance *R/Q*
- the quality factor *Q*
- the time constant τ
- the peak induced voltage immediately after the passage of a short particle bunch with charge q = 15.916e-9 As
- the remnant cavity voltage 10 µs after the passage of the bunch

D) An accelerator cavity heats up under high RF power load

A cavity is constructed from a material with" C_2/C_1

thermal expansion coefficient: $\Delta l/l = 20e-6/{}^{\circ}\text{C}$ (per degree Centigrade) thermal resistivity coefficient: $\Delta \rho/\rho = 4e-3/{}^{\circ}\text{C}$ (per degree Centigrade)

At room temperature the cavities resonance frequency is $f_1 = 100$ MHz, and has a 3-dB bandwidth of $BW_1 = 100$ kHz.

Under RF power the cavity temperature increases by 100 °C (subscripts 2 apply).