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Effects of synchrotron radiation on electron 

beam dynamics

The electrons radiate energy: the equations of motion have a dissipative term; 

the system is non conservative and Liouville’s theorem does not apply;

The emission of radiation leads to damping of the betatron and synchrotron 

oscillations

Radiation is not emitted continuously but in individual photons. The energy 

emitted is a random variable with a known distribution (from the theory of 

synchrotron radiation seen in previous lectures)

This randomness introduce fluctuations which tend to increase the betatron and 

synchrotron oscillations

Damping and growth reach an equilibrium in an electron synchrotron. This 

equilibrium defines the characteristics of the electron beam (e.g. emittance, 

energy spread, bunch size, etc)



Effects of synchrotron radiation on electron 

beam dynamics

We will now look at the effect of radiation damping on the three planes of motion

We will use two equivalent formalisms:

damping from the equations of motion in phase space

damping as a change in the Courant-Snyder invariant

The system is non-conservative hence the Courant-Snyder invariant – i.e. the 

area of the ellipse in phase space, is no longer a constant of motion

We will then consider the effect of radiation quantum excitation on the three 

planes of motion

We will use the formalism of the change of the Courant-Snyder invariant



From the lecture on longitudinal motion

We describe the longitudinal dynamics in terms of the variables (, ) 

energy deviation  w.r.t the synchronous particle

and  time delay w.r.t. the synchronous particle

A particle in an RF cavity changes energy 

according to the phase of the RF field found in 

the cavity
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On the other hand, a particle lose energy because of synchrotron radiation, 

interaction with the vacuum pipe, etc. Assume that for each turn the energy losses 

are U0

The synchronous particle is the particle that arrives at the RF cavity when the 

voltage is such that it compensate exactly the average energy losses U0

Negative RF slope ensure stability for  > 0 (above transition)

Veksler 1944 MacMillan 1945: the principle of phase stability



RF buckets recap.
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Equations for the RF bucket

Linearised equations for the motion in the RF bucket: the phase space 

trajectories become ellipses





s

c

E
'





d

dV

T

e

0

'





00

2

ET

Vec
s


  angular synchrotron frequency

 > 0 above transition  < 0 below transition

Aide-memoire for stable motion: above transition the head goes up in energy, 
below transition the head goes down in energy



Radiation damping: Longitudinal plane (I)
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The energy loss per turn U0 depends on energy E. The rate of change of the 

energy will be given by two terms
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In presence of synchrotron radiation losses, with energy loss per turn U0, the RF 

fields will compensate the loss per turn and the synchronous phase will be such 

that
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Assuming E << E and  << T0 we can expand

additional term responsible for 

damping



The derivative

is responsible for the damping of 

the longitudinal oscillations

Radiation damping: Longitudinal plane (II)
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Computation of dU0/dE

We have to compute the dependence of U0 on energy the E (or rather on the 
energy deviation )
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The time that an off-energy particle spends in the bending element dl is given by
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The energy loss per turn is the integral of the power radiated over the time 

spent in the bendings. Both depend on the energy of the particle.

This is an elementary geometric consideration on the 

arc length of the trajectory for different energies



Using the dispersion function
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Computing the derivative w.r.t.  at  = 0 we get [Sands]

Computation of dU0/dE

To compute dP/d we use the result obtained in the lecture on synchrotron

radiation, whereby the instantaneous power emitted in a bending magnet with

field B by a particle with energy E is given by
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Watch out! There is an implicit dependence of  or B on E. Off energy particles

have different curvatures  or can experience different B if B varies with x



we get
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and since P is proportional to E2B2 we can write [Sands]
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We have the final result

check this as an exercise !

Computation of dU0/dE



Radiation damping: Longitudinal plane (III)

The longitudinal damping time reads
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 depends only on the magnetic lattice; typically it is a small positive 

quantity

 is approximately the time it takes an electron to radiate all its energy (with 

constant energy loss U0 per turn)

For separated function magnets with constant dipole field:
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Tracking example: longitudinal plane

Consider a storage ring with a synchrotron tune of 0.0037 (273 turns); 

and a radiation damping of 6000 turns:

start ¼ of synch period ½ of synch period 1 synch period

10 synch periods 50 synch periods

After 50 synchrotron periods (2 

radiation damping time) the longitudinal 

phase space distribution has almost 

reached the equilibrium and is matched 

to the RF bucket



Tracking example: longitudinal plane

Consider a storage ring with a synchrotron tune of 0.0037 (273 turns); 

negligible radiation damping:

start ¼ of synch period ½ of synch period 1 synch period

10 synch periods 50 synch periods

After 50 synchrotron periods the 

longitudinal phase space distribution is 

completely filamented (decoherence).

Any injection mismatch will blow up 

the beam



Transverse plane: vertical oscillations (I)

We now want to investigate the radiation damping in the vertical plane. 

Because of radiation emission the motion in phase space is no longer conservative

and symplectic, i.e. the area of the ellipse defining the Courant-Snyder invariant is 

changing along one turn. We want to investigate this change.
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The ellipse in the vertical phase space is upright. The Courant-Snyder invariant 

reads

We assume to simplify the calculations that we are in a section of the ring where
(z = 0), then



Transverse plane: vertical oscillations (II)
Effect of the emission of a photon:

The photon is emitted in the direction of the 
momentum of the electron (remember the cone 
aperture is 1/)

The momentum p is changed in modulus by dp

but it is not changed in direction

neither z nor z’ change

and

the oscillation pattern is not affected since 
Dz = 0 

(see later case where Dx  0 as for the horizontal 
plane)

… however the RF cavity must replenish the energy lost by the electron

Therefore the Courant-Snyder invariant does not change as result of the emission 
of a photon



Transverse plane: vertical oscillations (III)

The momentum variation is no longer

parallel to the momentum 

this leads to a reduction of the betatron

oscillations amplitude

The angle
||

'
p

P
z  changes because












 

p

p
z

pp

p
zz




 1'''

||

0E
'z'z


 

In the RF cavity the particle sees a longitudinal accelerating field therefore

only the longitudinal component is increased to restore the energy

 acquired in the RF cavity



Transverse plane: vertical oscillations (IV)
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The change in the Courant-Snyder invariant depends on the angle z’ for this 

particular electron. Let us consider now all the electrons in the phase space 

travelling on the ellipse, and therefore having all the same invariant A

For each different z’ the change in the invariant will be different. However

averaging over the electron phases, assuming a uniform distribution  along 

the ellipse, we have
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After the passage in the RF cavity the expression for the vertical invariant 
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and therefore

The average invariant decreases.



The synchrotron radiation emission combined with the compensation 
of the energy loss with the RF cavity causes the damping.

Transverse plane: vertical oscillations (V)
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Let us consider now all the photons emitted in one turn. The total energy lost is

The RF will replenish all the energy lost in one turn.

Summing the contributions , we find that in one turn:
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The average invariant decreases exponentially with a damping time z

z  half of longitudinal damping time always dependent on 1/3.

This derivation remains true for more general distribution of electron in phase 

space with invariant A (e.g Gaussian)
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Transverse plane: vertical oscillations (VI)

The betatron oscillations are damped in presence of synchrotron radiation
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Transverse plane: horizontal oscillations (I)

The damping of the horizontal oscillation can be treated with the same formalism 

used for the vertical plane, e.g.

• consider the electron travelling on an ellipse in phase space with invariant A 

• compute the change in coordinates due to the emission of one photon 

• compute the change of coordinates due to the passage in the RF

• averaging over all electron with the same invariant

• compute the change in the average invariant for all photons emitted in one turn

The new and fundamental difference is that in the horizontal plane we do not 

neglect the dispersion, i.e. Dx  0

The reference orbit changes when a quantum is emitted because of Dx in the 

bendings. The electron will oscillate around its new off-energy orbit. In details:



Transverse plane: horizontal oscillations (II)

After the emission of a photon, the physical  position and the angle of the 
electron do not change. However they must be referenced to a new orbit: 

This is the off-energy orbit corresponding to the new energy of the electron 

With respect to the off-energy orbit, the emission  of a photon appears as an 
offset (and an angle)

x = 0, x’ = 0 but x + x = 0 (and likewise x’ + x’ = 0)



Transverse plane: horizontal oscillations (III)

We follow the same line as done for the vertical plane. The equations of motion 
in the horizontal plane (x = 0) are
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Invariant in the horizontal plane

After the photon emission position and angle do not change but with respect 
to the new (off energy) orbit
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The new invariant in the horizontal plane (with respect to the new orbit) reads



Transverse plane: horizontal oscillations (IV)
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The change in the Courant-Snyder invariant due to x and x’ to first order in 
 reads

As before the change in the Courant Snyder invariant depends on the specific

betatron coordinates x and x’ of the electron .

We want to average of all possible electron in an ellipse with the same Courant-
Snyder invariant and get

If for each photon emission the quantity  is independent on x and x’, then 
averaging the previous expression over the phases of the betatron oscillations 
would give zero.

However, in the horizontal plane  depends on x in two ways [Sands]
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Transverse plane: horizontal oscillations (V)

Let us compute the dependence of the energy  of the photon emitted in the 
horizontal plane on x [Sands].

Assuming that the emission of photon is described as a continuous loss of 
energy (no random fluctuations in the energy of the photon emitted), we have
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Transverse plane: horizontal oscillations (V)
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We get

The change in the Courant-Snyder invariant depends on the position and  angle 

x and x’’for this particular electron. Let us consider now all the electrons in the 

phase space  travelling on the ellipse, and therefore having all the same invariant A



Transverse plane: horizontal oscillations (VI)
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For each different x and x’ the change in the invariant will be different. 

However averaging over the electron phases, assuming a uniform distribution  

along  the ellipse, we have

Let us consider all the photons emitted in one turn. The total energy lost is

Summing the contributions  in one turn, we find that in one turn:
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The average invariant can now increase or decrease depending on the sign of 

the previous term, i.e. depending on the lattice.



Transverse plane: horizontal oscillations (VII)

Adding the RF contribution (as before assuming Dx = 0 at the RF cavities)

>0 gives an anti-damping term
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As in the vertical plane we must add the contribution due to the RF that will 

replenish all the energy lost.

The change in the horizontal average invariant due to the emission of a photon

The average horizontal invariant decreases (or increases) exponentially with a 

damping time z .z  half of longitudinal damping time always dependent on 1/3.

This remains true for more general distribution of electron in phase space  

with invariant A (e.g Gaussian)



Transverse plane: horizontal oscillations (VIII)

As in the vertical plane, the horizontal betatron oscillations are damped in 
presence of synchrotron radiation
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Damping partition numbers (I)

The results on the radiation damping times can be summarized as
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Jx = 1 - ; Jz = 1; J = 2 + ;

The Ji are called damping partition numbers, because the sum of the 

damping rates is constant for any  (any lattice)

Jx + Jz + J = 4

Damping in all planes requires –2 <  < 1

(Robinson theorem)

Fixed U0 and E0 one can only trasfer damping from one plane to another



Adjustment of damping rates

Modification of all damping rates: 

Increase losses U0

Adding damping wigglers to increase U0 is done in damping 
rings to decrease the emittance

Repartition of damping rates on different planes:

Robinson wigglers: increase longitudinal damping time by 
decreasing the horizontal damping (reducing dU/dE)

Change RF: change the orbit in quadrupoles which changes 
and reduces x



Robinson wiggler at CERN



Example: damping rings

Damping rings are used in linear colliders to reduce the emittance of the 

colliding electron and positron beams: 

The emittance produced by the injectors is too high (especially for positrons 
beams).

In presence of synchrotron radiation losses the emittance is damped  

according to

The time it takes to reach an acceptable emittance will depend on the transverse 
damping time

The emittance needs to be reduced by large factors in a short store time T. If the 
natural damping time is too long, it must be decreased.

This can be achieved by introducing damping wigglers. Note that damping wigglers 
also generate a smaller equilibrium emittance eq.
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Example: damping rings
Using ILC parameters

i = 0.01 m f = 10 nm f / i = 10–6

The natural damping time is T ~ 400 ms while it is required that T/x ~ 15, i.e. a 
damping time x ~ 30 ms (dictated by the repetition rate of the following chain of 
accelerators – i.e. a collider usually)

Damping wigglers reduce the damping time by increasing the energy loss per turn
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i TE2

UJ1
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

With the ILC damping ring data

E = 5 GeV,  = 106 m, C = 6700 m,

we have

U0 = 520 keV/turnx = 2ET0/U0 = 430 ms



Example: damping rings

The damping time x has to be reduced by a factor 17 to achieve e.g. 25 ms.

Damping wigglers provide the extra synchrotron radiation energy losses 

without changing the circumference of the ring.

The energy loss of a wiggler Ew with peak field B and length L and

are given by 
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A total wiggler length of 220 m will provide the required damping time.
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or in practical units the energy loss per electron reads



Radiation integrals
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Many important properties of the stored beam in an electron synchrotron are 

determined by integrals taken along the whole ring:
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Summary

Synchrotron radiation losses and RF energy replacement generate a 

damping of the oscillation in the three planes of motion

The damping times can be modified, but at a fixed energy losses, the sum 

of the damping partition number is conserved regardless of the lattice type

Radiation damping combined with radiation excitation determine the 

equilibrium beam distribution and therefore emittance, beam size, energy 

spread and bunch length.

The damping times depend on the energy as 1/3 and on the magnetic lattice 

parameters (stronger for light particles)



Quantum nature of synchrotron emission

The radiated energy is emitted in quanta: each quantum carries an energy  u = ħ;

The emission process is instantaneous and the time of emission of individual 

quanta are statistically independent;

The distribution of the energy of the emitted photons can be computed from 

the spectral distribution of the synchrotron radiation;

The emission of a photon changes suddenly the energy of the emitting  

electron and perturbs the orbit inducing synchrotron and betatron 

oscillations. 

These oscillations grow until reaching an equilibrium when balanced by 

radiation damping

Quantum excitation prevents reaching zero emittance in both planes with pure 
damping.



From the lecture on synchrotron radiation

Total radiated power
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Energy distribution of photons emitted by 

synchrotron radiation (I)

Energy is emitted in quanta: each quantum carries an energy u = ħ
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We can get the energy distribution of the photons emitted per second:

n(u) number of photons emitted per unit time with energy in u, u+du

un(u) energy of photons emitted per unit time with energy in u, u+du

un(u) must be equal to the power radiated in the frequency range du/ħ at u/ ħ
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Using the energy distribution of the rate of emitted photons one can compute:
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Introducing the function F()

we have



Let us consider again the change in the invariant for linearized synchrotron 
oscillations

Quantum fluctuations in energy oscillations (IV)
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After the emission of a photon of energy u we have

u

22 2 uudA  

The time position  w.r.t. the synchronous particle does not change

We do not discard the u2 term since it is a random variable and its average 

over the emission of n(u)du photons per second is not negligible anymore.

Notice that now also the Courant Snyder invariant becomes a random variable! 

 



Quantum fluctuations in energy oscillations (II)

We want to compute the  average of the random variable A over the distribution of 

the energy of the photon emitted

ppp uNuNdA  22 2  Quantum excitation

Radiation damping

We have to compute the averages of u and u2 over the distribution n(u)du of 
number of photons emitted per second.

As observed the term with the square of the photon energy (wrt to the electron 
energy)  is not negligible anymore



Quantum fluctuations in energy oscillations (VI)

Using these expressions…
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and depends on the location in the ring. We must average over the position in the 

ring, by taking the integral over the circumference.

Following [Sands] the excitation term can be written as
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The contribution from the term linear in u, after the average over the energy 

distribution of the photon emitted, and the average around the ring reads
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Quantum fluctuations in energy oscillations (VII)

The change in the invariant averaged over the photon emission and averaged 

around one turn in the ring  now reads

ppp uNuNdA  22 2 

The change in the invariant still depends on the energy deviation of the initial 

particle. We can average in phase space over a distribution of particle with the 

same invariant A. A will become the averaged invariant
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The linear term in u generates a term similar to the expression obtained with the 

radiative damping. We have the differential equation for the average of the 

longitudinal invariant  



Quantum fluctuations in energy oscillations (VIII)
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The average longitudinal invariant decreases exponentially with a damping time 
and reaches an equilibrium at

This remains true for more general distribution of electron in phase space  

with invariant A (e.g Gaussian)
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The variance of the energy oscillations is for a Gaussian beam is 

related to the Courant-Snyder invariant by



Quantum fluctuations in energy oscillations (IX)

For a synchrotron with separated function magnets
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The relative energy spread depends only on energy and the lattice (namely the 

curvature radius of the dipoles)
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The equilibrium value for the energy spread reads



A tracking example

Diffusion effect off 

synchrotron period 200 turns; damping time 6000 turns;

Diffusion effect on 



Quantum fluctuations in horizontal oscillations (I)

Invariant for linearized horizontal betatron oscillations

after the emission of a photon of energy u we have

Neglecting for the moment the linear part in u, that gives the horizontal 

damping, the modification of the horizontal invariant reads

Defining the function
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As before we have to compute the effect on the invariant due to the 

emission of a photon, averaging over the photon distribution, over the 

betatron phases and over the location in the ring [see Sands]:

Dispersion invariant



Quantum fluctuations in horizontal oscillations (II)
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The linear term in u averaged over the betatron phases gives the horizontal 

damping
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Combining the two contributions we have the following differential equation for 

the average of the invariant in the longitudinal plane

We obtain
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At equilibrium

Quantum fluctuations in horizontal oscillations (III)
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The emittance depends on the dispersion function at bendings, where radiation 

emission occurs
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The variance of the horizontal oscillations is

Therefore we get the emittance
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Low emittance lattices strive to minimise 

<H/3> and maximise Jx



Low emittance with multiple bend achromats

1/2 Insertion Straight 1/2 Insertion Straight

Achromat

Dispersion Function

DBA 7BA

Simplified explanation

– Emittance is driven by randomness of photon emission in presence of dispersive 

(energy-dependent) orbits – electron recoils randomly

– Breaking up dipoles and putting focusing (quadrupoles) between the parts allows 

reducing the amplitude of dispersive orbits – smaller electron recoils



Quantum fluctuations in vertical oscillations (I)
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Invariant for linearized vertical betatron oscillations

after the emission of a photon of energy u the electron angle is changed by
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With zero dispersion the previous computation will predict no quantum 

fluctuations i.e. zero vertical emittance.

However a small effect arises due to the 

fact that photons are not exactly 

emitted in the direction of the 

momentum of the electrons

The electron must recoil to preserve the 

total momentum



At equilibrium

Quantum fluctuations in vertical oscillations (II)
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In practice this effect is very small: the vertical emittance is given by vertical 

dispersion errors and linear coupling between the two planes of motion.
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the modification of the vertical invariant after the emission of a photon 

reads

Averaging over the photon emission, the betatron phases and the location 

around the ring:



Related beam quantities: beam size
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The horizontal beam size has contributions from the variance of betatron 

oscillations and from the energy oscillations via the dispersion function: Combining 

the two contributions we have the bunch size:

The vertical beam size has contributions from the variance of betatron 

oscillations but generally not from the energy oscillations (Dz = 0). However the 

contribution from coupling is usually dominant
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In 3rd generation light sources the horizontal emittance is few nm and the 

coupling k is easily controlled to 1% or less, e.g. for Diamond

x = 2.7 nm; k = 1%  y = 27 pm;

x = 120 m y = 6 m



Quantum lifetime (I)

Electrons are continuously stirred by the emission of synchrotron radiation photons

It may happen that the induced oscillations hit the vacuum chamber or get outside 

the RF aperture:

The number of electron per second whose amplitudes exceed a given aperture 

and is lost at the wall or outside the RF bucket can be estimated from the 

equilibrium beam distribution [see Sands]



Quantum lifetime (II)
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large for modern synchrotron light sources, 

e.g. Diamond
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Related beam quantities: bunch length

Bunch length from energy spread

The bunch length also depends on RF parameters: voltage and phase seen by 

the synchronous particle
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 = 1.710–4; V = 3.3 MV;  = 9.6 10–4 z = 2.8 mm (9.4 ps) 

z depends on 

the magnetic lattice (quadrupole magnets) via 

the RF slope

Shorten/Lengthen bunches increasing the RF slope at the 

bunch (Harmonic cavities)

Shorten bunches decreasing 
(low-alpha optics)

610
1   ds

D

L

x






dzVdf

c

RFs

z
/2

3





  

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

phase (rad)

V
 (

a
.u

.)

Main RF Voltage

3rd Harmonic

Total Voltage

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

phase (rad)

V
 (

a
.u

.)

Main RF Voltage

3rd Harmonic

Total Voltage

Bunch lengthening

Bunch shorthening

bunch length manipulation: harmonic cavities

RF cavities with frequency equal to an harmonic of the main RF frequency (e.g. 

3rd harmonic) are used to lengthen or shorten the bunch



Summary

The emission of synchrotron radiation occurs in quanta of discrete energy

The fluctuation in the energy of the emitted photons introduce a noise 

in the various oscillation modes causing the amplitude to grow

Radiation excitation combined with radiation damping determine the equilibrium 

beam distribution and therefore emittance, beam size, energy spread and 

bunch length.

The excitation process is responsible for a loss mechanism described by the 

quantum lifetime

The emittance is a crucial parameter in the operation of synchrotron light 

source. The minimum theoretical emittance depends on the square of the 

energy and the inverse cube of the number of dipoles

60/60R. Bartolini, JUAS, Week 4 - 2017


