

Superconductivity Practical Days at CERN

2nd-3rd March 2017

Jerome Fleiter and Amalia Ballarino

Introduction

- Definition
- Main properties of Superconductors
- Superconductivity Applications
- Practical work
- Agenda of the days

Practical Days at CERN

What will you do?

Measure electrical, magnetic and thermal characteristics of superconducting samples with the purpose of understanding the fundamental characteristics of superconductors

Definitions

Superconductivity

"Superconductivity is a phenomenon occurring in certain materials at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect).

from Wikipedia

Superconductor

A conductor that exhibit superconducting properties. It is an assembly of low resistive metal and superconducting material.

Cryogenics

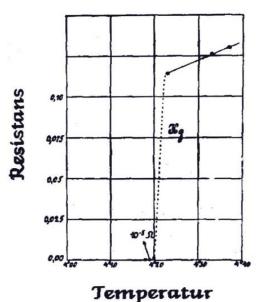
Cryogenic: for Greek "kryos", which means cold or freezing, and "genes" meaning born or produced.

"In physics, cryogenics is the study of the production and the behaviour of materials at very low temperature (<-150-180°C)"

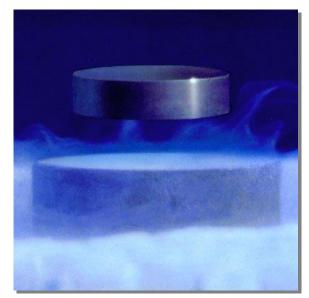
from Wikipedia

Main Properties of Superconductors

For $T < T_c$


Zero resistance

Perfect conductors


Exclusion of magnetic field

Perfect diamagnets

K. Onne's measurement on mercury (1911)

Discovered by Meissner and Oschenfeld

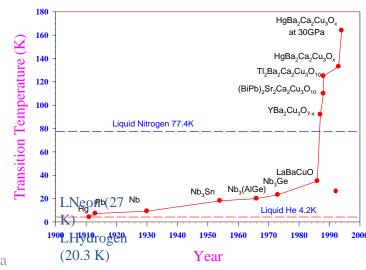
Perfect conductivity + perfect diamagnetism = superconductors

Various Superconducting Materials

Low Temperature Superconductors (LTS)T_c<39K

Pure metals

material	$T_c,$ K	$H_c,$ Oe	year
Al	1.2	105	1933
In	3.4	280	
Sn	3.7	305	
Pb	7.2	803	1913
Nb	9.2	2060	1930

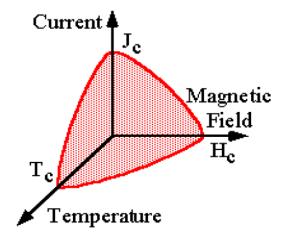

Alloys and Intermetallic compounds

	Tc (K)	Bc(T)
NbTi	10	15
V₃Ga	14.8	2.1
NbN	15.7	1.5
V ₃ Si	16.9	2.35
Nb₃Sn	18	24.3
Nb ₃ Al	18.7	32.4
Nb ₃ (AlGe)	20.7	44
Nb₃Ge	23.2	38

High Temperature Superconductors (HTS) T_c>39K

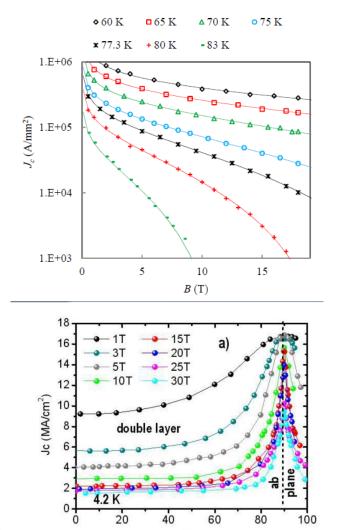
Cuprates

Compound		<i>Т</i> _с (К)
YBa ₂ Cu ₃ O ₇	Y(123)	93
Bi ₂ Sr ₂ CaCu ₂ O ₈	Bi(2212)	92
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	Bi(2223)	110
TIBa ₂ Ca ₂ Cu ₃ O ₁₀	TI(1223)	122
HgBa ₂ Ca ₂ Cu ₃ O ₁₀	Hg(1223)	133


J.Fleiter and A.Balla

Phase Diagram of Superconductors

Main parameters of superconductors for magnets applications


- Critical temperature (T_c)
- Critical field (H_c)
- Critical current density (J₂)

Superconducting state if:

 $T < T_c$ $H < H_c$

 $J < J_c$

θ (Deg)

J.Fleiter and A.Ballarino

Phase Diagram of HTS versus LTS

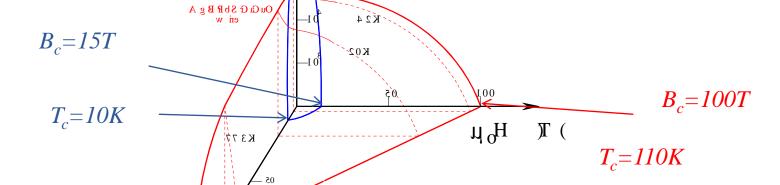
7×106 (A/cm²)

 $n^2 A O^1 X45$

) K

i Tb N

LTS


B_c up to 30 T

T_c up to 39 K

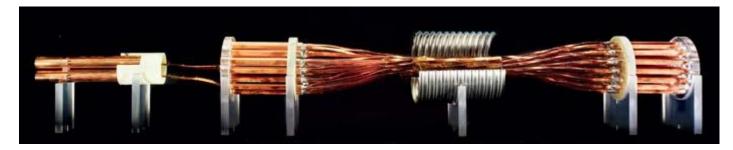
HTS

B_c up to 200 T

T_c up to 120 K

) $n^{2}A$

JUAS 2017 13/02/2017

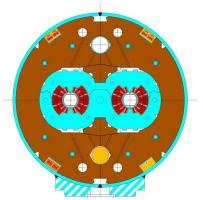

J.Fleiter and A.Ballarino

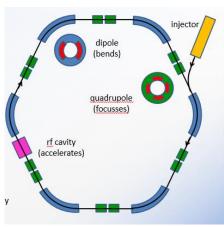
Superconductivity Applications

- Generate high DC field: (MRI, NMR, particle Physics)
- Current limiters
- Electronics, detectors (SQUIDS)
- Power transmission
- Magnetic levitation (Maglev)
- Current leads
- RF cavities

Superconducting devices in LHC

Magnets


More details in next slides


- LHC ring magnets (Nb-Ti): Rutherford cables
 - 1232 main dipoles: 8.3 T x 15 m
 - 392 Main quadrupoles 223 T/m (7 T) x 4 m
 - Zoo of **7600 others (cable or wire)**
- LHC detector magnets (Nb-Ti): Rutherford cables
 - ATLAS: Toroid **4 T**, **25 m x20 m**
 - CMS solenoid: 4 T, 12 mx15 m

Other devices

- LHC current leads (HTS BSCCO): stack of tapes
 - ~1000, rated for I \in [0.6,13 kA]
- RF cavities (N_b coating)
- > Superconductivity is a key technology of LHC

Scheme from M.N. Wilson

Superconducting strands (for magnets)

- Large overall current density ~400–500 A/mm²
- Cu fraction of about 50% with RRR >100
- Small filaments to reduce magnetization and flux jumps
- Twist of the filaments
- Sufficient mechanical properties (axial and transverse)
- Long piece length (~1 km)
- Good uniformity of electrical performances

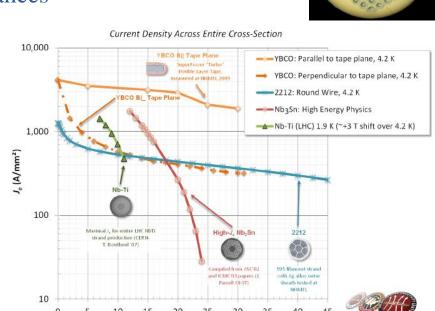
_ ...

Practical superconductors

• Nb-Ti

 $B_{0max} = 9 T$

• Nb_3Sn


 $B_{0max}=16 T$

• REBCO

 $B_{0max} > 30T$

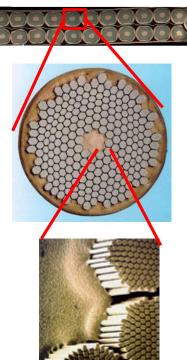
BSCCO

 $B_{0max} > 30T$

Applied Field (T)

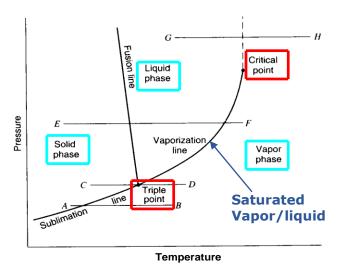
Beam energy: E [TeV]~0.3 B[Tesla] R[km]

Rutherford cables



- Why cables:
 - Needs for High current
 - Reduce piece length of conductor (~1 km)
 - Improve stability
 - Make easier the winding

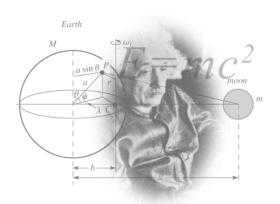
- The use of large current cables implies also
 - to deal with dynamic effects
 - Less freedom for magnetic optimization
- Advantages of Rutherford cables
 - Good packing factor
 - Transposition of strands
 - Good control of dimensions (+/- 6 µm on thickness)
 - Good windability



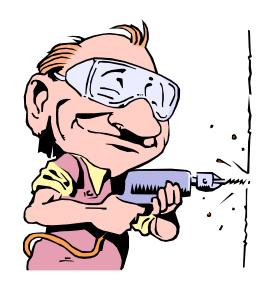
Superconductors needs Cryogens

LTS => Liquid Helium HTS => Liquid Helium or Liquid Nitrogen

	Triple point (K)	Boiling point (1 atm)	Critical Point
		(K)	(K)
Methane	90.7	111.6	190.5
Oxygen	54.4	90.2	154.6
Argon	83.8	87.3	150.9
Nitrogen	63.1	77.3	126.2
Neon	24.6	27.1	44.4
Hydrogen	13.8	20.4	33.2
Helium	λ-point	4.2	5.2



In accelerator LTS are operated in liquid Helium bath


Superconductivity Practical Days at CERN (CERN

We will work with **cryogenics and superconductivity** to understand and verify the unique properties of superconductors

YBCO 123 bulk
BSCCO 2223 tape
SmCo, NeFeB magnets
Liquid nitrogen

Levitation
Flux pinning
Zero resistance
Jc,Tc,Hc

Experiments

Experiments will be performed with HTS superconductors

- 1.Levitation experiment
- 2. Critical temperature experiment
- 3.Zero resistance experiment
- 4. Critical current experiment

• • • •

. . .

Liquid nitrogen

Superconductivity

Cryogenics

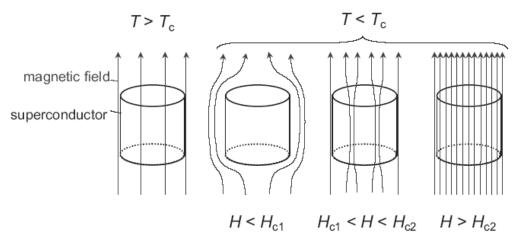
Superconductors you will use for the experiments at CERN:

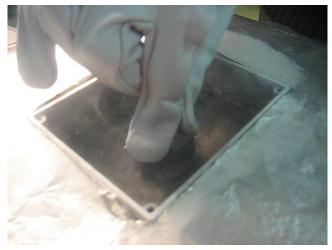
- **YBCO** 123 Melt Textured Bulk .Tc= 93 K
- **BSCCO** 2223 Tape Tc= 110 K

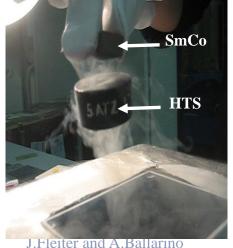
You will use Nitrogen

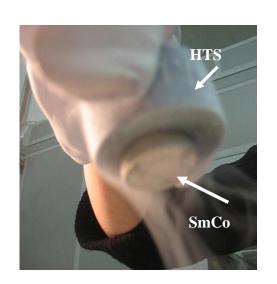
- 78% of atmosphere
- Boiling point (1 atm): 77 K (-196 °C)
- Colorless, odorless, non-toxic

4 mm

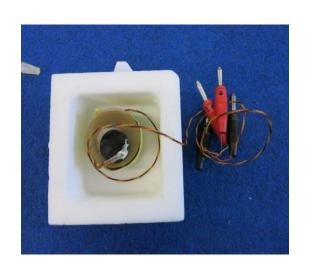

• Dealing with LN2: safety first (skin burn, splashing..)

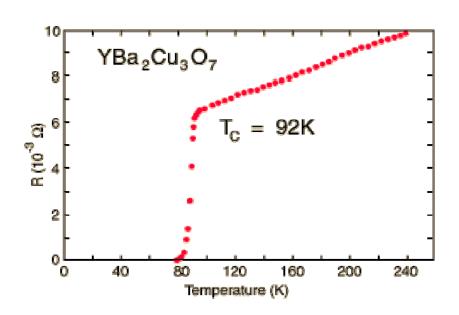

JUAS 2017 13/02/2017 J.Fleiter and A.Ballarino


Levitation experiment



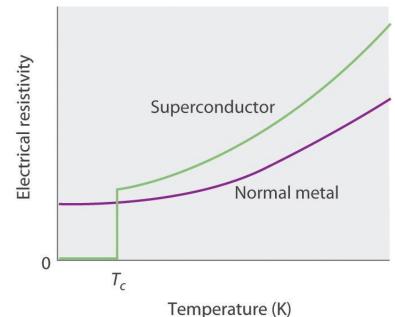
- Understand the Meissner effect and flux pinning
- Appreciate the intensity of the max levitation force!




JUAS 2017 13/02/2017

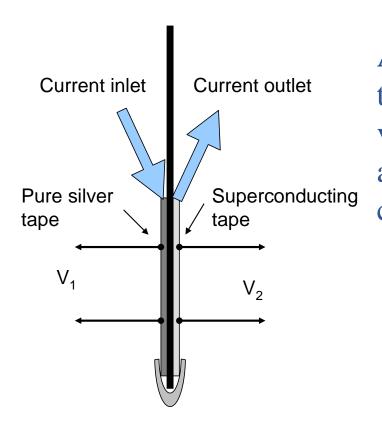
Critical temperature experiment

Measurement of critical temperature by using the Meissner effect.


The critical temperature is defined as the temperature measured on the superconductor when the permanent magnet levitating on it comes to complete rest on the superconductor's surface.

Zero resistance measurements

Experiments were performed on the current decaying in a superconducting loop $(\rho < 10^{-26} \,\Omega \cdot m)$.

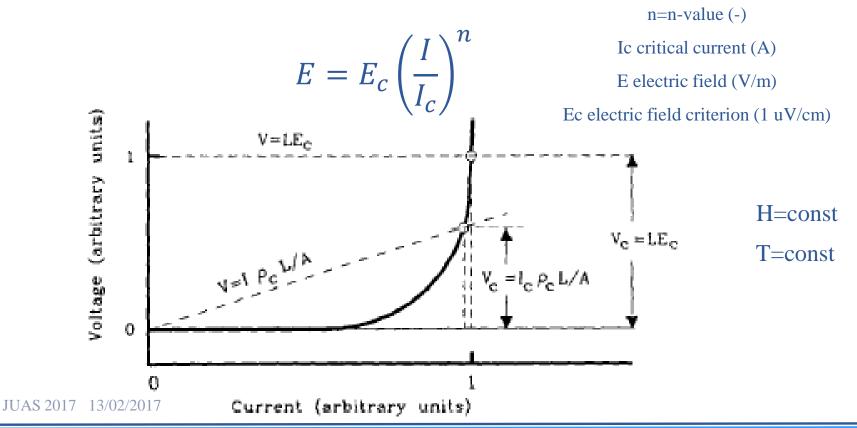

	ρ (Ω·m)
Insulators	10 ²⁰ -10 ¹⁰
Semiconductors	10 ⁵ -10 ⁻³
Metals	10-5-10-10
Superconductors	~ 0

True only in the superconducting state

Zero DC resistance experiment

A superconducting tape and a pure silver tape are connected in series, Measure the voltages (resistances) as the specimens are inserted into liquid nitrogen and cooled to 77 K.

 $\begin{array}{l} \rho_{Ag}(293 \ K) {\sim} 1.46 {\cdot} 10^{\text{-}6} \ \Omega {\cdot} m \\ \rho_{Ag}(77 \ K) \ {\sim} 0.2 {\cdot} \ \rho_{Ag}(293 \ K) \end{array}$


A see-through glass walled dewar is used for the LN₂.

HTS:BSCCO 2223 multi-filamentary tape in silver alloy matrix.

DC Critical current experiment

Critical current (I_c): current at which a specified electric field criterion E_c , or resistivity criterion ρ_c is achieved in the specimen. Losses through a Type II superconductors ($H_{c1} < H < H_{c2}$) depend on the sample geometry and on the vortex pinning.

Program and Organization (1/2)

- Up to 12 participants per day
- Hands-on practical work in CERN laboratories
- Guided by experts
- When? On the 2nd and 3rd of March
- Where? In the Superconductor Laboratory, Building 163

Program and Organization (2/2)

Practical work in building 163

Visit of Superconductor Laboratory, Building 163

Test stations for the measurement of:

- Critical current of superconductors (strands and cables) at liquid He temperature (1.9 K and 4.2 K, up to 15 T and up to 32-70 kA);
- Magnetic properties of superconductors (magnetization curves) at variable temperatures and fields (VSM);
- Electrical Resistivity as function of temperature;

Cabling machine for accelerator Rutherford cables;

Visit of Laboratory, SM 18: Test stations for magnets

We are looking forward to

working with you at CERN!