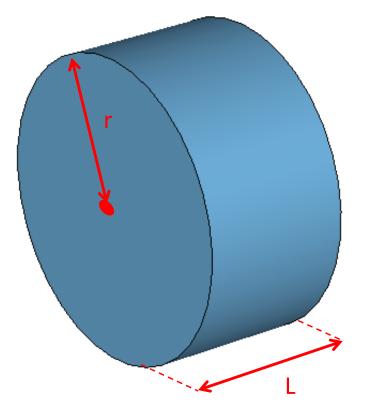


WHY CST?

CST Studio Suite is a software used for the study of electromagnetic fields. It comprises tools for the design and optimization of accelerator devices operating in a wide range of frequencies, from static to optical. Analysis may also include thermal and mechanical effects, as well as circuit simulations.

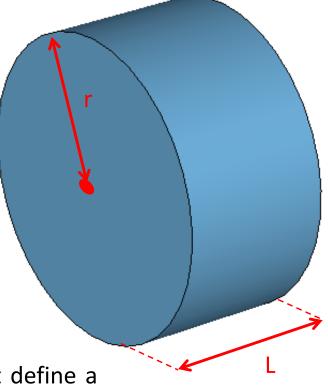

WHAT ARE WE GOING TO DO?

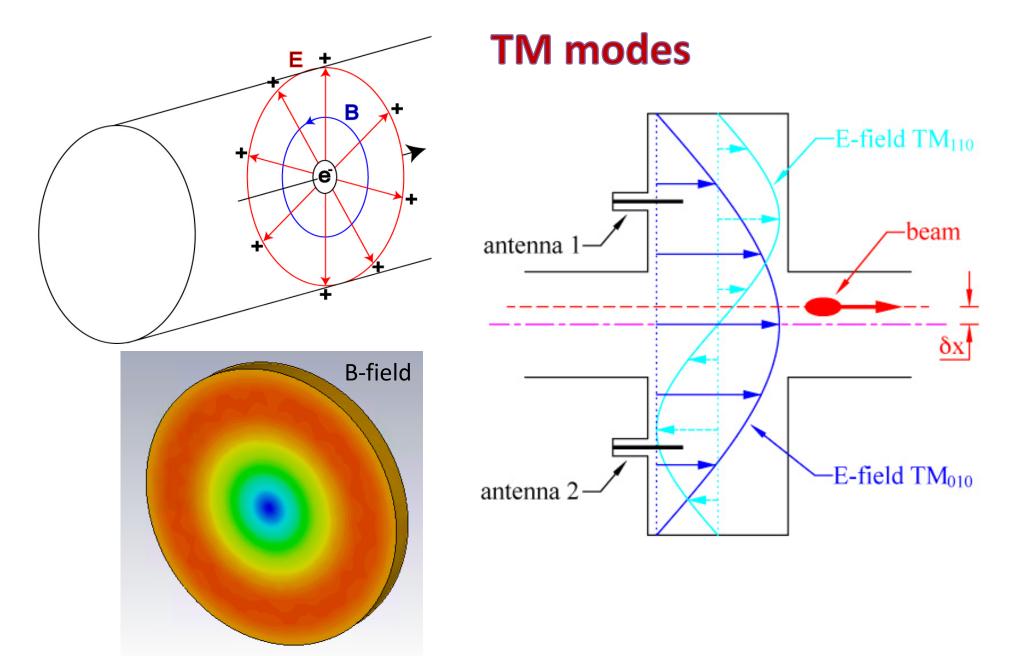
In this tutorial we are going to show, step by step, how to use CST in order to design a <u>pill-box</u> cavity and analyse its electromagnetic field. Particularly we will focus on the <u>resonant modes</u> of the cavity.

SOME REMARKS BEFORE STARTING: WHAT'S A PILL-BOX CAVITY?

A **resonant cavity** or *radio frequency (RF) cavity* is a special type of <u>resonator</u>, consisting of a closed metal structure that confines <u>electromagnetic</u> fields inside it, storing their energy. They are used to accelerate the particle beam. The structure is either hollow or filled with <u>dielectric</u> material. The electromagnetic waves bounce back and forth between the walls of the cavity. At the cavity's <u>resonant frequencies</u> they reinforce themselves forming <u>standing waves</u> fields.

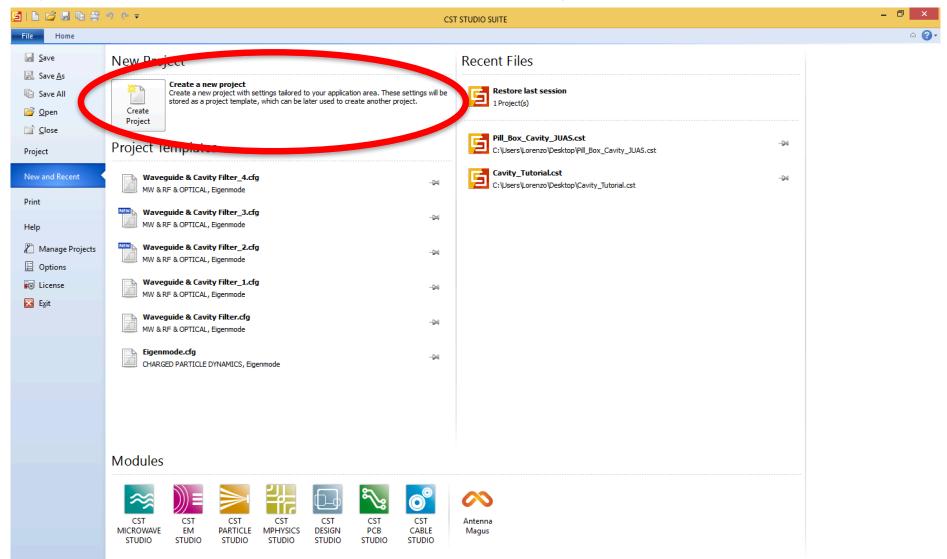
A **pill-box cavity** is a a particular kind of resonant cavity with cylindrical shape.

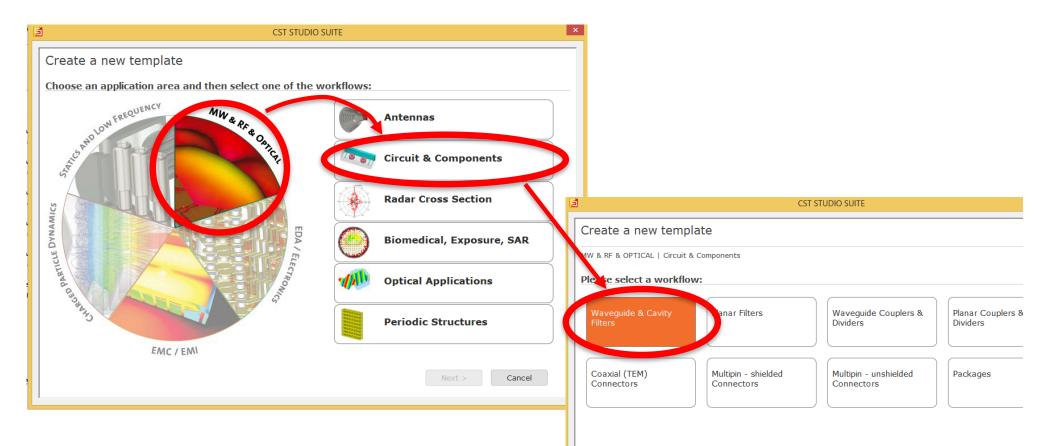



SOME REMARKS BEFORE STARTING: WHAT'S A PILL-BOX CAVITY?

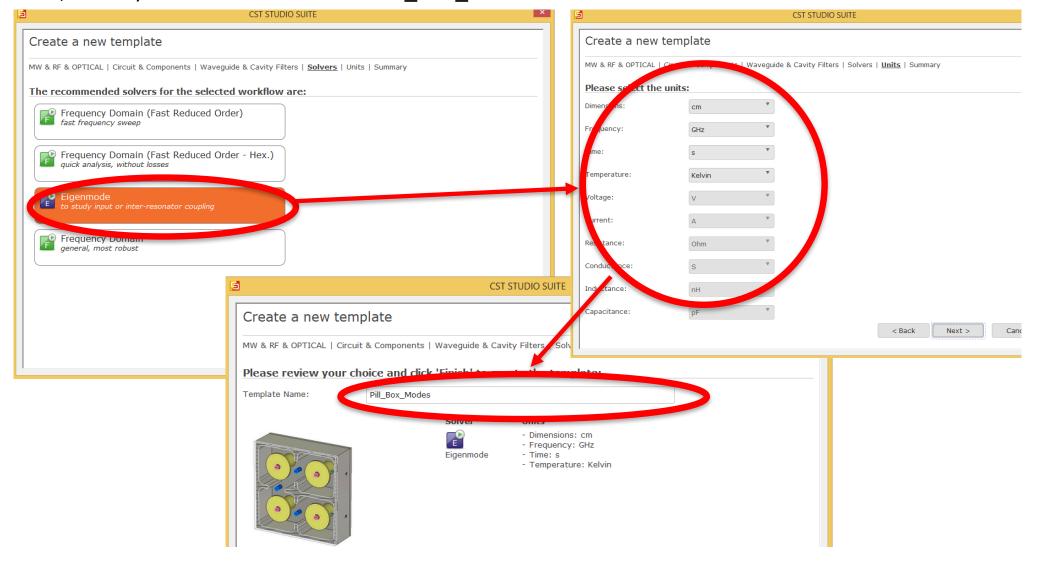
In order to accelerate the particles that pass throughout the cavity, particular kind of resonant modes are used: the so-called transverse magnetic (TM). They have the electric field component directed along the axis of the cylinder, and take place when the cavity is excited with particular frequencies:

$$f_{nml} = \frac{c}{2\pi} \sqrt{\left(\frac{p_{nm}}{r}\right)^2 + \left(\frac{l\pi}{L}\right)^2}$$


- *c* is the speed of light
- *n,m,l* are the mode numbers. They are integers that define a given TM mode (the most used is n=0, m=1, l=0)
- p_{nm} is the m-th zero of the Bessel's function of n-th order
- *r*,*L* are the geometrical dimensions of the cavity


READY TO GO!

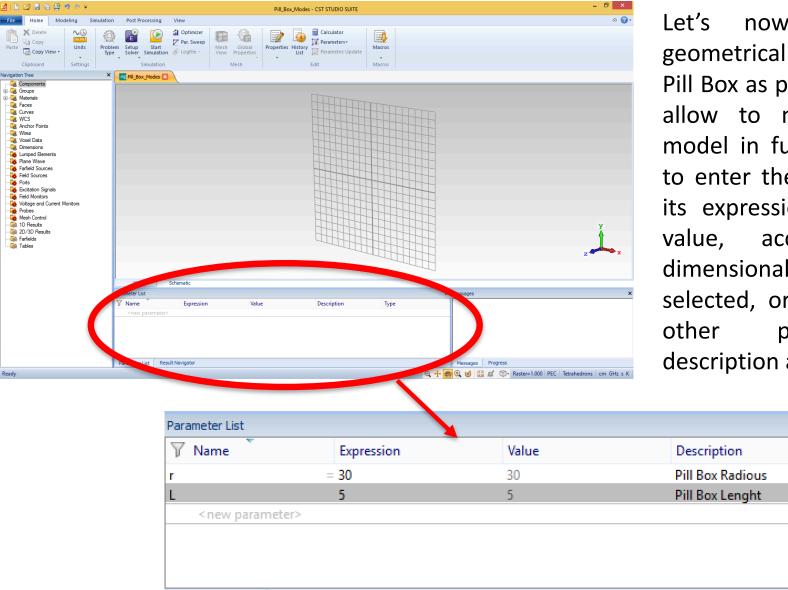
Open CST studio suite and select "Create a new Project"


READY TO GO!

Thus let's select MW & RF & Optical -> Circuit & Components -> Waveguides & Cavity Filters

READY TO GO!

Then we select "Eigenmode". After that we chose the working dimensional units (cm, GHz, s, Kelvin) and name the file as: Pill_Box_Modes



READY TO GO!

You should now see a screen like this one.

5 b 🗳 🖬 🤅	1 😫 🤊 (° =					Pill_Box_Modes - CST STUDI	O SUITE	- 🗆 🗙
File Home	Modeling	Simulation	Post Processing	View				۵ 🚱 -
Paste Copy	*	Problem Type	Setup Solver Solver	 Optimizer Par. Sweep Optimizer 	Mesh View Properties	Properties History List Parameter	ers*	
Clipboard	Setting		Simulation	_	Mesh	Edit	Macros	
lavigation Tree Components Groups Groups Curves WCS Curves WCS Curves WCS Curves WCS Curves C	ents es vals urrent Monitors	X	Ril_Box_Modes 🛛					v v v v v v v v v v v v v v v v v v v
		Ĺ	3D	Schematic				
			arameter List 7 Name	F		D 111	× Message	s X
			Name <new p="" parameter?<=""></new>	Expression	Value	e Descriptio	on Type	
			Parameter List \int Res	ult Navigator			Messag	Jes Progress

Simulation of a Pill-Box Cavity with CST MODELLING

Result Navigator

Parameter List

introduce now the geometrical dimension of the Pill Box as parameters. This will allow to modify the entire model in future. It is possible to enter the parameter name, its expression (it could be a value, according to the dimensional units previously selected, or a combination of other parameters), its description and its type.

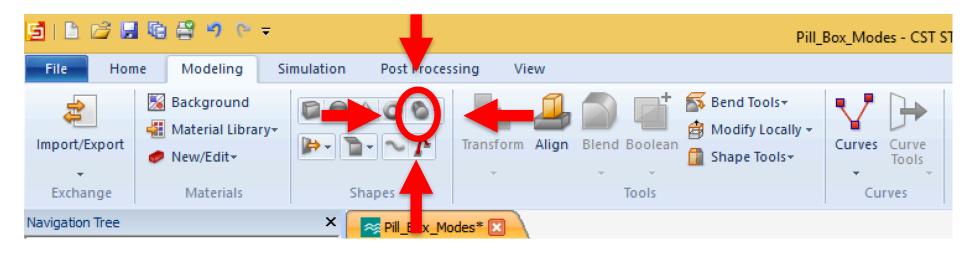
Type

Length

Length

X

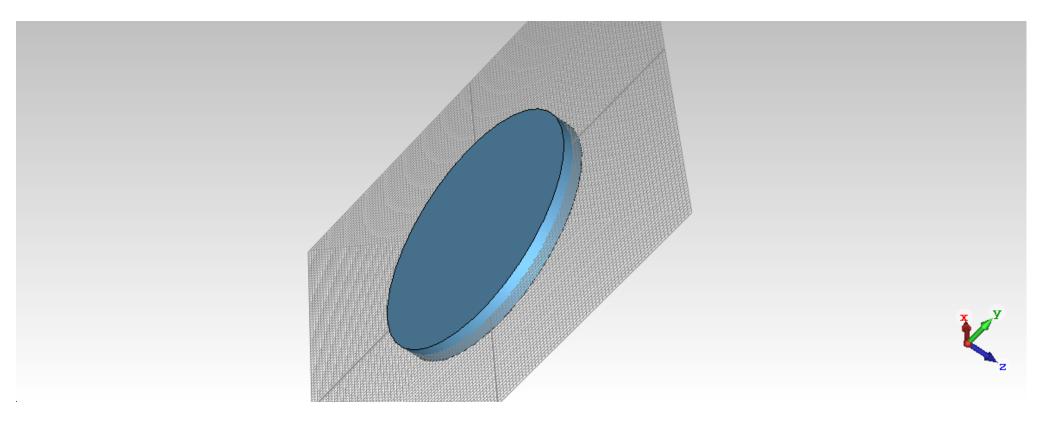
v


v

Simulation of a Pill-Box Cavity with CST MODELLING

Now let's click on Modelling item on the top menu

Then let's select the Cylinder



MODELLING

Press esc. You should see the following window.

Pil_Box_Modes* 🗵		
Cylinder		
Name: OK Concel Cancel Orientation X Y Z Preview Outer radius: Inner radius: O O.0 Xcenter: Yenter: O O Zmin: Zmax: O O Segments: Component1 Vacuum Help	Cylinder Name: Pill_Box Orientation O X O Y O Z Outer radius: Outer radius: Inner radius: r 0.0 Xcenter: Ycenter:	OK Cancel Preview
3D Schematic	0 0 Zmin: Zmax:	
Fill the Windows as shown and press OK	-L/2 L/2 Segments: 0 0 O Component: V component1 V Material: V	
	Vacuum 🗸	Help

This is our Pill Box!

Geometry is done!

ANALYSIS

Let's move to the electromagnetic field simulations.

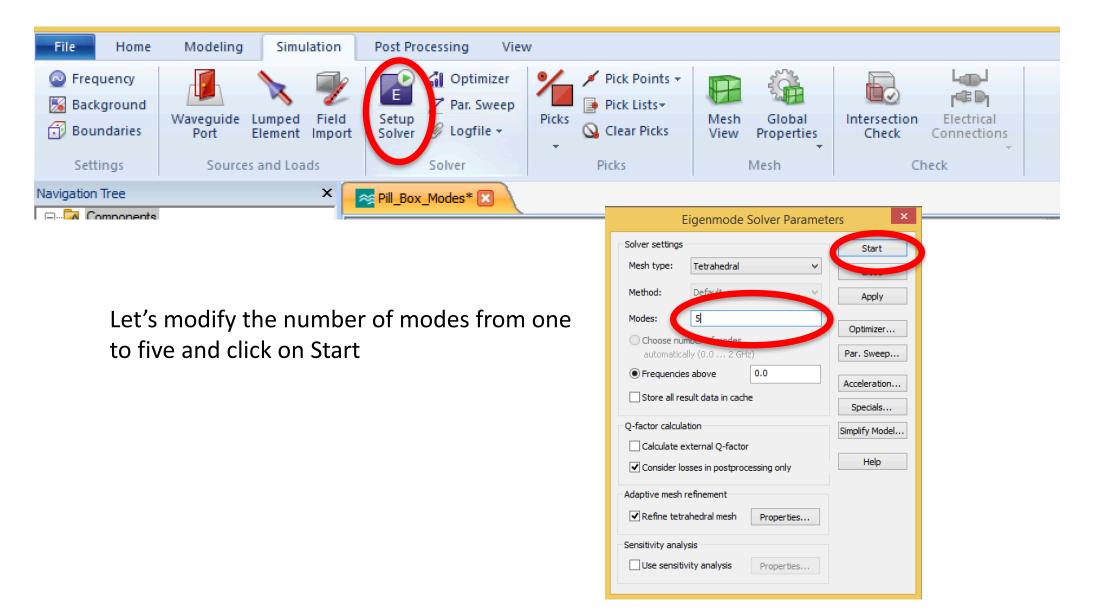
Click on "Simulations" on the top menu

Then select "Frequency". It will appear a window to set the frequency range where you would like to study the field. We consider frequencies it between 0 and 2 GHz

Frequency Range Se	ettings ×
Fmin: 0.0 Fmax: 2	OK Cancel Help

ANALYSIS

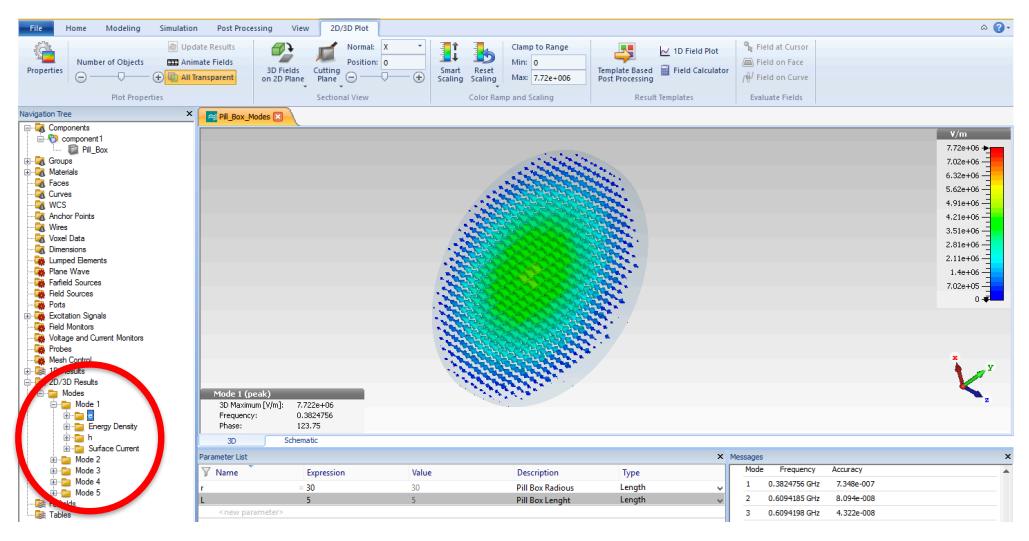
Still from the "Simulation" bar click on Settings -> Boundaries in order to set the boundary conditions



Particularly, in order to find the TM modes let's impose the condition of zero tangential electric field at the wall, as shown below:

Boundary Conditions	Boundary Conditions
Boundaries Symmetry Planes	Boundaries Symmetry Planes
Apply in all directions	Apply in all directions
Xmin: electric (Et = 0) V Xmax: electric (Et = 0) V	Type: electric (Et = 0) V Xmax: electric (Et = 0) V
Ymin: electric (Et = 0) Vmax: electric (Et = 0)	Ymin: electric (Et = 0) Vmax: electric (Et = 0) V
Zmin: electric (Et = 0) V Zmax: electric (Et = 0) V	Zmin: electric (Et = 0) V Zmax: electric (Et = 0) V
Cond.: 1000 S/m Open Boundary	Cond.: 1000 S/m Open Boundary
OK Cancel Help	OK Cancel Help

ANALYSIS


Now we are ready, from the "Simulation" bar click on "Setup Solver"

ANALYSIS

The results are on the navigation tree.

Clicking on the "2D/3D Results" folder we can see the E-field (e), the B-field(h) and some other features for every computed mode. Below the E-field of the mode 1 is reported.

ANALYSIS

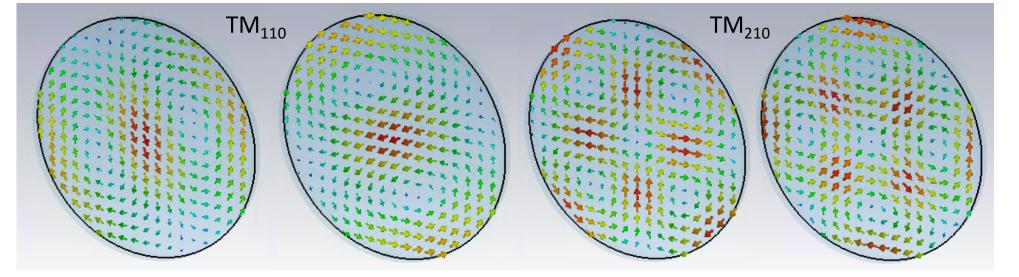
Let's note that CST gives also the mode frequencies

Home Modeling	Simulation Post Proce	essing View 2D/3D Plot					۵
Number of Objects	Dpdate Results	3D Fields	Smart R	Clamp to Range Min: 0	Template Based 🖩 Fie	Field Plot Reid at Cursor	
Θ	🕂 🔲 All Transparent	on 2D Plane Plane 🤤 🦳		aling Max: 7.72e+006	Post Processing	/ Field on Curve	
Plot Proper	ties	Sectional View	Co	lor Ramp and Scaling	Result Templa	tes Evaluate Fields	
tion Tree	× Pill_Box_M	lodes 🗵					
Components Components Component1 Component1 Component1 Component1 Faces Faces Curves WCS Anchor Points Wires Voxel Data Dimensions Lumped Elements Plane Wave Fafield Sources Field Sources Field Sources Field Sources Field Sources Field Sources Pots Excitation Signals Field Monitors Voltage and Current Monitors Probes Mesh Control 1D Results 2D/3D Results Components Mode 1 Components Compone	Mode 1 (p 3D Maximu Frequency Phase: 3D	um [V/m]: 7.722e+06					V/m 7.72e+06 + 7.02e+06 - 6.32e+06 - 5.62e+06 - 4.91e+06 - 4.21e+06 - 3.51e+06 - 2.81e+06 - 2.81e+06 - 1.4e+06 - 7.02e+05 - 0.4 2.11e+06 - 1.4e+06 - 1.4e+06 - 7.02e+05 - 0.4 2.11e+06 - 1.4e+06 - 1.4e+06 - 1.4e+06 - 2.4e+06 - 1.4e+06 - 1.4e+
	Parameter List					× M sages	
🗄 🗝 Mode 3	V Name	Expression	Value	Description	Туре	Mode Frequency	Accuracy
⊞ <mark>©</mark> Mode 4	r	= 30	30	Pill Box Radious	Length	v 1 0.3824756 GHz	7.348e-007
⊞ <mark>≌a</mark> Mode 5 § Farfields	L	5	5	Pill Box Lenght	Length	2 0.6094185 GHz	8.094e-008
Tables	<new par<="" td=""><td>ameter></td><td></td><td></td><td></td><td>3 0.6094198 GHz</td><td>4.322e-008</td></new>	ameter>				3 0.6094198 GHz	4.322e-008
						4 0.8167935 GHz	3.173e-007
						5 0.8167976 GHz	4.486e-007
	Parameter List	Result Navigator				Messag Progress	hed mech adaptation stopped

ANALYSIS

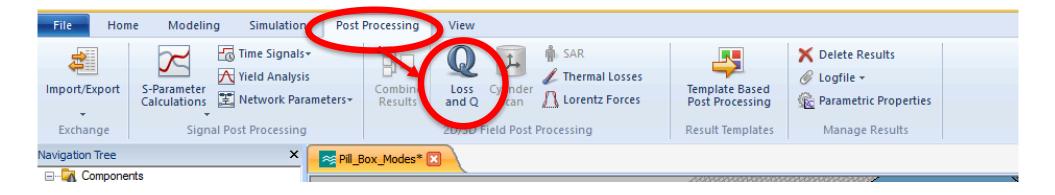
In this simple case we can compare some analytical results with the numerical ones. Let's start with the frequencies. Recalling their expression:

$$f_{nml} = \frac{c}{2\pi} \sqrt{\left(\frac{p_{nm}}{r}\right)^2 + \left(\frac{l\pi}{L}\right)^2}$$


Using the values

					n		
	p_{nm}	0	1	2	3	4	5
	1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
	2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
т	3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
	4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
	5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

ANALYSIS


Mode	CST Frequency (GHz)	CST Frequency Accuracy (GHz)	Analytical Frequency (GHz)
TM ₀₁₀ (n=0,m=1,l=0)	0.3824756	7.348e-007	0.3824751
TM ₁₁₀ (n=1,m=1,l=0)	0.6094185	8.094e-008	0.6094131
TM ₂₁₀ (n=2,m=1,l=0)	0.8167935	3.173e-007	0.8167942

NB: the modes TM_{110} and TM_{210} are not azimuthally symmetric and have two states of polarization:

ANALYSIS

CST is also capable of computing the Q-factor of a cavity given the material conductivity. In order to do this let's click on Post Processing (top menu) -> Loss and Q

-Field data: Mode 1						 Calculate	
Material/Solid	Conductivity	Mue	Loss/W	Loss/%	Q		
Cond. Enclosure	5.8000e+007	1	0.0000e+000	0			
Sum			0.000e+000			Specials	
						Export	
						Help	

Then, from the appearing window:

- select the mode you want to analyse
- Set the conductivity of the cavity material (according to the dimensional units previously selected), copper is by default.
 Finally click on "Calculate"

ANALYSIS

Then, on the Q column, you have the quality factor of the mode.

		(Q-Fa	ctor Calculatio	on			×
H-Field data:	Mode 1						~	Calculate
Material/Solid	d	Conductivity	Mue	Loss/W	Loss/%	Q	~	Close
Cond. End	losure	5.8000e+007	1	1.8902e+005	100	1.2677e+004	1	
Sum				1.8902e+005		1.2677e+004		Specials
								Export
								Help
							\mathbf{v}	
Modify	Modify All	. Hide / Unhid	le	Hide/Unh. All				

ANALYSIS

As for the frequencies, we can compare the obtained value of the Q-factor with the computed ones. In order to do this, let's briefly recall some theoretical results for a pill-box. In particular, in cylindrical coordinates, the magnetic and electric fields can be written as (From CERN-94-01-V1, page 253 and following):

$$E_{z} = k_{2}^{2} \cos(k_{1}z) J_{n}(k_{2}\rho) \cos(n\theta)$$

$$E_{\rho} = -k_{1}k_{2} \sin(k_{1}z) J_{n}'(k_{2}\rho) \cos(n\theta)$$

$$E_{\theta} = \frac{nk_{1}}{\rho} \sin(k_{1}z) J_{n}(k_{2}\rho) \sin(n\theta)$$

$$H_{z} = 0$$

$$H_{\rho} = -i \frac{nk}{Z_{0}\rho} J_{n}(k_{2}\rho) \sin(n\theta)$$

$$H_{\theta} = -i \frac{kk_{2}}{Z_{0}} J_{n}'(k_{2}\rho) \cos(n\theta)$$

In order to have the TM modes the following boundary conditions have to be respected:

$$E_{\rho} = E_{\theta} = 0$$
 for $z = 0$ and $z = L$

$$E_z = E_\theta = 0$$
 for $\rho = r$

they lead to:

$$k_1 = \frac{l\pi}{L}, \quad k_2 = \frac{p_{nm}}{r}, \quad k = \frac{2\pi}{c} f_{nml}$$

Here Z_0 is the impedance of free space. The reported field components have a multiplying time dependent term $\cos(2\pi f_{nml}t)$ omitted because not of interest for our purposes.

ANALYSIS

The Q factor is defined as:

 $Q = 2\pi \frac{\text{Stored energy}}{\text{Energy lost during one period}}$

The stored energy in the cavity volume is given by:

$$W_{s} = \frac{\mu}{2} \int_{V} |H|^{2} dV = \frac{\varepsilon}{2} \int_{V} |E|^{2} dV$$

While the energy loss during one period because of the induced surface current is:

$$W_d = \frac{\pi\mu\delta}{2} \int_{S} \left| H^2 \right| \, dS$$

Where δ is the skin depth:

$$\delta = \frac{1}{\sqrt{\pi\mu\sigma_c f_{nml}}}$$

With σ_c the electric conductivity of the metallic wall, and μ its magnetic permeability

ANALYSIS

Finally:

$$Q = \frac{2}{\delta} \frac{\int |H|^2 dV}{\int |H|^2 dS}$$

Considering the TM_{010} mode we get:

$$Q = \frac{L}{\delta} \frac{r}{(r+L)}$$

And considering the values:

 $\begin{array}{ll} L = 0.05 \ [m] & \mu = 4\pi e\text{-7} \ [\text{H/m}] \\ r = 0.3 \ [m] & \delta = 3.3791e\text{-06} \ [m] \\ \sigma_{c} = 5.8e7 \ [\text{S/m}] \end{array}$

CST Quality Factor TM ₀₁₀	Analytical Quality Factor TM ₀₁₀
1.2677e+004	1.2683e+004

ANALYSIS

Another factor of interest for a cavity is R, the shunt impedance, (for further analysis about it see the Fritz Caspers lessons in the second course). Its expression is given by (Linac convention):

$$R = 256 \ Q \ \frac{r \sin\left(1.2024 \frac{L}{r}\right)^2}{L}$$

In order to compute it with CST let's go to Post Processing -> Template Based Post Processing

ANALYSIS

Select "2D and 3D Field Results" from the first drop-down menu and then "3D Eigenmode Result" from the second one.

Template Based Postprocessing	×
General Results	
2D and 3D Field Results	
Filter Analysis General 1D	
MRI Toolbox Misc	Template Based Postprocessing
Optical S-Parameters	General Results
Themal Time Signals	2D and 3D Field Results
	Combine Power Loss
	- Combine Results - Export 3D Field Result
	- Import 3D Field Result - Mix 3D Fields
Settings Delete Duplicate Evaluate 🏠 🦊 Delete All Evaluate All	- Power Flow - 3D Mode 0D Value from 2D Color Map Plot
	0D Value from 2D or 3D Plot
Abort Close Help	3D Eigenmode Result
	Evaluate Field in arbitrary Coordinates Evaluate Field on Curve
	Evaluate Field on Face Evaluate Field Statistics
	Field by Solid or Material HAC (Hearing Aid Compatibility of Mobile Phone)
	Loss and Q Value from H-Field Loss per Solid or Material (Volume Loss)
	Peak Field Values from Probes Port Properties
	SAR Result

ANALYSIS

Then set the value of the appearing window as shown below and press ok.

a 3D Eigenmode	Result ×
Result value: Frequency	Modes: eg 1,3,5-10
(Conductivity taken from Results->Lo	ss and Q-Calculation)
Voltage integration Range pirection: Xmin: X 0.0 Stor, size (Dearting, Y:	Xmax:
0.0	0.0
Z: max. range 0.0	0.0
Fransit Time Factor	
consider part.velocity bet	a = not used
Sensitivity Analysis Design Parameter / undefined	~
Input Deformation Field	
OK Cancel Help	DrawPoints Logfile

ANALYSIS

You should see the following window, click Evaluate and then you will get the value of the shunt impedance on the "Value" column.

Template Based Postprocessing				
General Results				
2D and 3D Field Results				
Add new postprocessing step				
Result name	Туре	Template name	Value	
1 Shunt Impedance (Pertubation) beta=1 (Mode 1)	0D	3D Eigenmode Result	7.745815257e+005	
Settings Delete Duplicate Evaluate 1 Delete All Evaluate All				
		Abort	Close Help	

CST Shunt Impedance TM ₀₁₀	Analytical Shunt Impedance TM ₀₁₀
7.745815257e+05 [Ω]	7.719408360e+05 [Ω]