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Lorentz equation — =F =¢q(E+v xB)

E : total energy

1" : kinetic energy E = \/p2c2 +mict =T +moc® =T + Ey
p :momentum

3 : reduced velocity 3= %
~ . reduced energy v = b 5
mocC
3y : reduced momentum By = p
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a Cartesian coordinates not useful to describe motion in a circular
accelerator (not true for linacs)

a A system following an ideal path along the accelerator is used
(Frenet reference system) (uy,uy,u,) —

(uxa Uy, us)

\ Particle trajectory

d’s
The curvature vectoris kK = ——— deal path
ds? /7 Ny e
From Lorentz equation
dp d*s 2d23 5 &
— =m = MoV = —mpYViK =q|v X B
o 0V m = MV o 0VVsK = ¢ 2] 2
d d
where we used the curvature vector definition and pri vﬁﬁ

Q Using moyvs = ps = (p* — p- —pz)l/z ~ p, the ideal path of the

reference trajectory is defined by

[1 X B()]
Vg 5



" Beam guidance

a Consider uniform magnetic field B = {0, B,,,0} in a direction
perpendicular to particle motion. From the reference trajectory
equation, after developing the cross product and considering that the
transverse velocities v, , v, < vs, the radius of curvature Is

2

1 q
~ =k =B
p p

0 We define the magnetic rigidity |Bp| = b

o In more practical units [BE[GeV] = 0.2998| Bp|[Tm]|

Q For ions with charge multiplicity n and atomic number A, the energy
per nucleon is
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BE|GeV/u] = 0.2998 — \Bp|[Tm]
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Q Consider ring for particles
with energy E with N dipoles
of length L (or effective length
[, 1.e. measured on beam path)

. 27
Bending angle p = ——
g angle ¢ N

[
Bending radius p = 7

Integrated dipole strength Bl =

2T D
q

O Note: \

By choosing a dipole field, the dipole v ;.
length is imposed and vice versa \ ’

The higher the field, the shorter or smaller \
number of dipoles can be used NG N

The ring circumference (cost) is AR
Influenced by the field choice v 7




Beam focusing

Q Consider a particle in a dipole field

particle

Q In the horizontal plane with initial
offset

2 1t performs harmonic oscillations .
r = xq cos(wt + ¢) with frequency w = =
P

21 the horizontal acceleration is described by
d’x 1 d’z 1

_— e ——— = ——X
ds?> w2 dt? p> reference orbit
2 there 1s a week focusing effect in the horizontal plane

a In the vertical plane, the only force present is gravitation
-1 Particles are displaced vertically following the usual law Ay = %agAtQ

0 With a, = 10 m/s?, the particle is displaced by 18 mm (LHC dipole
aperture) in 60 ms (few hundred turns in LHC) =» need focusing!
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~ Quadrupoles

0 Quadrupoles are focusing in one plane
and defocusing in the other

Q The fieldis (B,, B,) = G(y, x)

Q The resulting force (F,, F,) = k(y, —x)
with the normalised gradient defined as

p = 9G
GFE
a In more practical units:
G[T/m]

k[m™2] = 0.2998

BE|GeV]

Q Need to alternate focusing and
defocusing to control the beam,
I.e. alternating gradient focusing
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QO Consider s-dependent fields from dipoles and normal quadrupoles

~." - Equations of motion }

B, = By(s) — G(s)xr, B, =—-G(s)y

2 The term % corresponds to the dipole week focusing and

Je, :
14p represents off-momentum particles

: A
Q The total momentum can be written p = po(1 + ?p)
a With magnetic rigidity Byp = 0 and normalized gradient
G(s) : a .

» k(s) = the equations of motion are
(;’ Bop - =~ .
1 1 Aph
: s (k(s) / 2\) o p ;
5,_ \\8(8)//1 \\IQ(S) p’ ’
y' +k(s)y = 0
?%; 2 Inhomogeneous equations with s-dependent coefficients

10



Hill’s equations

0 Solutions are combination of the homogeneous and
Inhomogeneous equations’ solutions

Qa Consider particles with the design momentum.
Equations of motion become

" + K, (s) x
y" + Ky(s) y

0

O George Hill

with &, (s) = — (k(s) _ p(i)2> K, (s) = k(s)

Q Hill’s equations of linear transverse particle motion

Linear equations with s-dependent coefficients (harmonic oscillator
with time dependent frequency)

In a ring (or in transport line with symmetries), the coefficients are
periodic K,(s) = K,(s+C), Ky(s)=Ky(s+C)

Not straightforward to derive analytical solutions for whole accelerator
11
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" . Betatron motion

Q The on-momentum linear betatron motion of a particle in both
planes, is described by

u(s) = VeB(s) cos(¥(s) + ¥o)]  ur12,y}

B(s)’ 1+ oz(s)2
2 T T B(s)

with o, B, ~y the twiss functions a(s) = —
ds
(s)

and the beta function 3 is defined by the envelope equation
2/8/8// . /6/2 —|—4,82K _ 4

1) the betatron phase ¥ (s) =

Q By differentiation, we have that the angle is

u'(s) = (sin(¥(s) + o) + a(s) cos(1(s) +100))

€

B(s)
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" General transfer matri

Q From the position and angle equations it follows that

u

Sin(0(s) + g) — Bs) ., als)
TOR ((s) +ho) =/ — +\/m

0 Expand the trigonometric formulas and set v)(0) = 0 to get the
transfer matrix from location 0 to s

(i) = (3)

\/ % (cos Ay 4+ ag sin Av)) \/ B(s) B sin A )

M —S I
0 ((aoa(s)) COS Awﬁ—(gg—oaoa(s)) sin A % (COS A1) — aq sin Aw)

cos((s) + i) =
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°d
and p(s) = Ay = / " the phase advance
o B(s)
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" Periodic transfer matrix
Q Consider a periodic cell of length C
Q The optics functionsare Gy = B(C) =6, ap = a(C) =«

“ ds
and the phase advance u =
o B(s)
a The transfer matrix is Mg = (COSM t L ﬂsm“. )
—7y sin W COS 4 — (xSIn [

a The cell matrix can be also written as

Mec =TZcosp+ Jsinpu

with 7 = ((1) (1)> and the Twiss matrix |/ = ( “ o )I

Linear imperfections and correction, JUAS, February 2017
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" Tune and working

Q Inaring, the tune is defined from the 1-turn phase advance

2

1 ds Vg g
Qx,y — a8 —
21 | Buy(s) 27

I.e. number of betatron oscillations per turn

0O Taking the average of the betatron tune around the ring we have in
smooth approximation
C R
V=21 = — — ) = —
(B) (B)

Extremely useful formula for deriving scaling laws!

Q The position of the tunes in a diagram of horizontal versus vertical
tune is called a working point

O The tunes are imposed by the choice of the quadrupole strengths
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a One should try to avoid resonance conditions
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Q Closed orbit distortion (steering error)
-1 Beam orbit stability importance
2 Imperfections leading to closed orbit distortion
2 Interlude: dispersion and chromatic orbit
2 Effect of single and multiple dipole kicks
-1 Closed orbit correction methods

a Optics function distortion (gradient error)
2 Imperfections leading to optics distortion
- Tune-shift and beta distortion due to gradient errors
-1 Gradient error correction

a Coupling error
-1 Coupling errors and their effect
-1 Coupling correction

a Chromaticity

Linear imperfections and correction, JUAS, February 2017
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Q Closed orbit distortion (steering error)
-1 Beam orbit stability importance
2 Imperfections leading to closed orbit distortion
2 Interlude: dispersion and chromatic orbit
2 Effect of single and multiple dipole kicks
-1 Closed orbit correction methods

18



Beam orbit stal
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Q Beam orbit stability is very critical
Injection and extraction efficiency of synchrotrons
Stability of collision point in colliders
Stability of the synchrotron light spot in the beam lines of light sources

0 Consequences of orbit distortion

Miss-steering of beams, modification of dispersion function, resonance
excitation, aperture limitations, lifetime reduction, coupling,
modulation of lattice functions, poor injection/extraction efficiency

a Causes
Long term (years - months): ground settling, season changes

Medium term (days - hours): sun and moon, day-night variations
(thermal), rivers, rain, wind, refills and start-up, sensor motion, drift of
electronics, local machinery, filling patterns

Short term (minutes - seconds): ground vibrations, power supplies,
experimental magnets, air conditioning, refrigerators/compressors o

Linear imperfections and correction, JUAS, February 2017



Linear imperfections and correction, JUAS, February 2017

Imperfections distc

Q Magnetic imperfections distorting the orbit
Dipole field errors (or energy errors)
Dipole rolls
Quadrupole misalignments

o Consider the displacement of a particle ox from the ideal orbit. The

vertical field in the quadrupole is
B, =Gz =G(x+dx) = Gx + Gozx

quadrupole dipole

a Remark: Dispersion can be interpreted as closed
orbit distortion for off-momentum particles with 6z = D(s)

Q Effect of orbit errors in any multi-pole magnet

—1
\_Y_’ S ~ J
Feed-down: 2(n+1)-pole  2n-pole 2(n-1)-pole

op

p

(62)2z" 24 -+ (d2)"

e
dipole

20
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|
a Up to now all particles had the same momentum p,

a What happens for off-momentum particles, i.e. particles with
momentum p,+Ap?

Consider a dipole with field B and
bending radius p
Po

Recall that the magnetic rigidity is Bp = —
and for off-momentum particles q

Ap  Ap A
Blp+8p) =020 o 20 20
q P bo

Considering the effective length of the dipole unchanged

A, A A
Qp:l:const.:>pA9+6’Ap:O:>—:__p:__p
0 P Do

a Off-momentum particles get different deflection (different orbit)
Apl
AG ==L
Po -




.~ Dispersion equation

Q Consider the equations of motion for off-momentum particles
1 Ap

2

2 + Kx(S)x = p(S) D

2 The solution is a sum of the homogeneous (on-momentum) and the
Inhomogeneous (off-momentum) equation solutions

z(s) =z (s)+ xr(s)

2 In that way, the equations of motion are split in two parts

vf + Ky(s)zg = 0
: .
r; + Ky(s)xr = ) e
0 The dispersion function can be defined as D(s) = =
Ap/p

Q The dispersion equation is

D"(s) + Kz (s) D(s) = (5)

Linear imperfections and correction, JUAS, February 2017




" Closed orbit

Q Design orbit defined by main dipole field

2

0 On-momentum particles oscillate around design orbit (w/o errors)

0 Off-momentum particles are not oscillating around design orbit, but
around “chromatic” closed orbit, defined by the dispersion function
times the momentum offset

Design orbit

On-momentum

particle trajectory

Off-momentum
particle trajectory

Linear imperfections and correction, JUAS, February 2017
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< )A6

7 | -
SO \

0 Consider a single dipole kick 9 = §u(, = du'(sg) = ——=

Q The coordinates before and after the kick are

(o) =4 ()
uy — 0 Uy

with the 1-turn transfer matrix

M- (€08 21 + g sin 27(Q) Bo sin 27()
o —~0 8in 27 Q) cos 2m() — ap sin 27 (Q)

a The final coordinates are
Uy = 0 BO and u6 _ Q (1 o 870 )

)

LW

24



Closed orbit from si

Q Taking the solutions of Hill’s equations at the location of the Kick,
the orbit will close to itself only if

2

€Bo cos(dg) = \/ €8 cos(pg + 27Q)
\/g (sin(¢g) + g cos(pg)) = \/g (sin(¢g + 27Q)) + ag cos(pg + 27Q))) —

2 This yields the following relations for the invariant and phase (this can
be also derived by the equations in the previous slide)

_ Bot? -
 4sin?(7Q)’ b0 = —mQ

Q For any location around the ring, the orbit distortion is written as

B(s)bo
2 sm(7rQ)

I\/IaX|mum dlstortlon amplitude

u(s) =0 cos(m@Q — [¥(s) — thol)

Linear imperfections and correction, JUAS, February 2017
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Q Dipole perturbations add-up in
consecutive turns for Q = n

Q Integer tune excites orbit
oscillations (resonance)

A /\\//\9 r
o’ — = il
Kick |

| Kick |

2

2 cos(mQ — [¥(s) — o)

Qa Dipole kicks get cancelled in
consecutive turns for QQ = n/2

Q Half-integer tune cancels orbit
oscillations

(Kick)

26
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.~ - Transport of closed o

a Consider a transport matrix between positions 1 and 2
M . (m11 le)
1—2 —

a1 122

Q The transport of transverse coordinates is written as

Uo = MUl + Mmiou
uy, = Moty + Mooty
. . . . " 6(Bl)
a Consider a single dipole kick at position 1: ¢, = By

Q Then, the first equation may be rewritten

Ug + 0ug = myguy + miz(uj + 61) — duz = my26y
O Replacing the coefficient from the general betatron matrix

duy = +/B1B2sin(¢12)0

Oy = % [cos(¢12)01 — a2 sin(t12))] .

Linear imperfections and correction, JUAS, February 2017



“_ " Global orbit distortio

Q Orbit distortion due to many errors

2

Courant and Snyder, 1957

B(s)

s+C
u(s) = g [ 0BT cos(r@ — [0(s) — w(r))dr

Q By approximating the errors as delta functions in n locations, the
distortion at |1 observation points (Beam Position Monitors) is

+n

U; = 2sm7rQ 29 Bj cos(mQ — |v; — 1j])

J=1+1

with the kick produced by the j" error

) Integrated dipole field error ¢, = _5(§jlff)
p
' B;l;sin ¢
—1 Dipole roll e j
P 0; 5
Gjljéﬂj

Linear imperfections and correction, JUAS, February 2017

-1 Quadrupole displacement 0; =
28
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2 In the SNS accumulator ring, the beta function is 6m in the dipoles and
30m in the quadrupoles, the tune is 6.2

- Consider dipole error of Imrad

- . . - - . . V 6 * 6 -3
2 The maximum orbit distortion in dipoles is vy = Yin(6.27) 107° ~ 5mm
S11N( 0. 477

2 For quadrupole displacement giving the same 1mrad kick (and betas of

30m) the maximum orbit distortion is 25mm, to be compared to magnet

radius of 105mm 29
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Q In the ESRF storage ring, the Vertical orbit correction
beta function is 1.5m in the g ”di:“:;;‘:r:‘:;‘f;j; g M
dipOIeS and 30m in the 3r damp;r;?nifnagk?rr?égﬂﬁns: 24 4604
quadrupoles, the horizontal o | |
tune iIs 36.44 Ay

Q Consider dipole error of o M %ﬂ Wﬁ( iy m
1mrad al

a Maximum orbit distortionin ~ 2[lf| | &
dipoles i

\/1-5 - 1.5 3 0 50 100 T80 200 250
— . 10_ ~ 1 ane
10 =3 sin(36.44m) T *

Q For quadrupole displacement
with Imm, the distortion Is vy ~ 8mm !!!

Q Magnet alignment is critical

30
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.~ Statistical estimatior

Q Consider random distribution of errors in N magnets

2 By squaring the orbit distortion expression and averaging over the
angles (considering uncorrelated errors), the expectation (rms) value is

given by

U S \/ \/Nﬁ(s)ﬁrms
rma (8) = 21/2] sin( wQ Z\/E ST sin(ﬂQ)|9rmS

a Example:
21 In the SNS ring, there are 32 dipoles and 54 quadrupoles

-1 The rms value of the orbit distortion in the dipoles

udip L \/66\/ 32
T 24/25in(6.27)

2 In the quadrupoles, for equivalent kick

= V30 30vV51 1 0-5 1 153em
2v/2 sin(6.27) 31

1072 ~ 2cm

Linear imperfections and correction, JUAS, February 2017
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Correcting the orbit

0 Place horizontal and vertical dipole correctors and beam position
monitors close to focusing and defocusing quads, respectively

HBPM VBPM
QF DX QD pvy

a Measure orbit in BPMs and minimize orbit distortion

-1 Globally ) Locally
o Harmonic, minimizing components of a Sliding Bumps
the orbit frequency response after a o Singular Value
Fourier analysis Decomposition (SVD)

o Most efficient corrector (MICADO),
finding the most efficient corrector for
minimizing the rms orbit

0 Least square minimization using the
orbit response matrix of the correctors

Linear imperfections and correction, JUAS, February 2017
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a Consider a cell, where correctors are placed close to the focusing
quads

Q The orbit shift at the 2" corrector is dus = 1/ S1 82 sin (Y12) 04

Q This orbit error can be eliminated by choosing a phase advance
equal to z between correctors

Q The angle should satisfy the following equation

92 = 5?//2 = % [COS (¢12) (91 — (X9 sin (¢12)] = \/%(91 .



e

" Orbit bumps: 3-bump

QF QF QF " QF
—— 1

0, oo oo B QD""-__ QD

a 3-bump: works for any phase advance if the three correctors satisfy

VB, VB, B,
Sinipgg ! Siﬂlpgl 2 Sinwlg ?

Q Need large number of correctors

2 No control of the angles at the entrance and exit of the bump

Linear imperfections and correction, JUAS, February 2017
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81 QD

COS ¢2s — Qs sin ¢2s
sin 12

V 51ﬁs

COS 15 — Qug SIN Y14
sin 112

V ﬁ2ﬁs

COS ¢s4 — O sin ws4
sin ¢34

V 5353

COS ¢s3 — Q5 sin %3
Sin 134

Linear imperfections and correction, JUAS, February 2017

V 5453

0 4-bump: works for any
phase advance

o Cancels position and
angle outside of the bump

o Can be used for aperture
scanning, extraction
bumps, ...

35



Singular Value Decc

N monitors / N correctors

)

Monitors Correctors Correctors Monitol
~ \\ !
A= U * W * V T \\\\\\\\\\\\ 0
“Inverse
Response
72| = Ma?rix x| 72 SVD | = Hesponse x| 72
A Matrix .
_ —1 o0

s AT oveawru T o A
eV \\\\ ~
> .
(]
% => Minimization of the RMS orbit (=0 in case of "Matrix Inversion" using all Eigenvalues)
LL -
p N monitors / M correctors
> NN =
< TNITs e 0
= 36 36 IS :i}é =1- A
5 * = SR
3 0 TR
2 72| = A SVD = —e 72
5
E
g
£
T
2 => Minimization of the RMS orbit (monitor averaging)
-

36
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" Orbit feedback

2

Q Closed orbit stabilization performed using slow and fast orbit
feedback system.

0 Slow feedback operates every few seconds and uses complete set of
BPMs for both planes

Q Efficient in correcting distortion due to current decay in magnets or
other slow processes

QO Fast orbit correction system operates in a wide frequency range

correcting distortions induced by quadrupole and girder vibrations (up
to 10kHz for the ESRF)

0 Local feedback systems used to damp oscillations in areas where
beam stabilization is critical (interaction points, insertion devices)

37
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~ Feedback perfor

Summary of integrated rms beam motion (1-100 Hz) with FOFB
and comparison with 10% beam stability target

FOFB BW Horizontal Vertical

ALS 40 Hz <2uminH (30 pm)* <1uminV (2.3 ym)*

APS 60 Hz <3.2PgminH (6 um)** <1.8uminV (0.8 pm)**
Diamond 100 Hz <09 uminH (12 um) <0.1uminV (0.6 uym)

ESRF 100 Hz <1.5uminH (40 um) ~0.7 yminV (0.8 pm)

ELETTRA 100 Hz <11 uminH (24 uym) <0.7uminV (1.5 uym)

SLS 100 Hz <0.5uminH (9.7 um) <0.25uminV (0.3 ym)
SPEARS3 60Hz ~1puminH (30 um) ~1uminV (0.8 um)

Trends on Orbit Feedback

a restriction of tolerances w.r.t. to beam size and divergence ™ up to 200 Hz

o higher frequencies ranges
0 integration of XBPMs
o feedback on beamlines components

* up to 500 Hz

R. Bartolini, LER2010
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224 BPM

A

colormap scale=
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The European Synchrotron | ESRF
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Beam threading

Q Threading the beam round the LHC ring (very first commissioning)
-1 One beam at a time, one hour per beam.

2 Collimators were used to intercept the beam (1 bunch, 2 X 109
protons)

- Beam through 1 sector (1/8 ring) = correct trajecton’ ~nnn cnllimatar
and move on Beam 2 threading BPM availability ~ 99%

2

YASP DV LHCRING / INJ-TEST-NB / beam 2 | -] ]

=
(Baviews | R ] &Je8) 55 8 wore

10

5 -

=5

-10

B
E
w0
o
[
=

-0.336 / RMS =  2.868 /|Dp = -0.37
| i Ik
i1 || 1
ATLAS] RF-B2 5 DUMP-B2 iN)-B2
T T T T T
100 200 200 400 500

Monitor H

\ Pos [mm]

IE;EI [DumPp-82) II\II:—Bz

T T T T
100 200 200 400 500
Monitor V
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" Problem 1 @

SNS: A proton ring with kinetic energy of 1GeV and a circumference of 248m has
18, 1m-long focusing quads with gradient of 5T/m. In one of the quads, the
horizontal and vertical beta function is of 12m and 2m respectively. The rms beta
function in both planes on the focusing quads is 8m. With a horizontal tune of 6.23
and a vertical of 6.2, compute the expected horizontal and vertical orbit distortions on
the single focusing quad given by horizontal and by vertical misalignments of 1mm
in all the quads. What happens to the horizontal and vertical orbit distortions if the
horizontal tune drops to 6.1 and 6.01?

. (2005)

S [m] 41
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2

Three correctors are placed at locations with phase advance of nt/4 between them and
beta functions of 12, 2 and 12m. How are the corrector kicks related to each other in
order to achieve a closed 3-bump.

42



Problem 3
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2

SPS: Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and
defocusing quads of 15 T/m, with a horizontal and vertical beta of 108m and 30m in
the focusing quads which are 30m and 108m for the defocusing ones. The tunes of
the machine are Qx=20.13 and Qy=20.18. Due to a mechanical problem, one
focusing quadrupole was slowly sinking down in 2016, resulting in an increasing

closed orbit distortion wrt a reference taken in the beginning of the year.

- By how much the quadrupole had shifted down when the maximum vertical closed
orbit distortion amplitude in defocusing quadrupoles reached 4 mm?

- Why was there no change of the horizontal orbit measured?

- How big would have been the maximum closed orbit distortion amplitude if it
would have been a defocusing quadrupole?

Difference orbit wrt reference (18 08 2016)

¥ OpenYASP DV SPSRING / SPS.USER.LHC4 / LHC 25ns SLOW_2INJ Q20 2015 V1

| R o

2| Gl O |EE| More | 3|
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a Optics function distortion (gradient error)
2 Imperfections leading to optics distortion
-1 Tune-shift and beta distortion due to gradient errors
2 Gradient error correction

Linear imperfections and correction, JUAS, February 2017
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2

v f(wf Gradient error an

a Optics functions perturbation can induce aperture
restrictions

0 Tune perturbation can lead to dynamic aperture loss

Q Broken super-periodicity = excitation of all resonances

In a ring made out of N identical cells, only resonances that are integer
multiples of N can be excited

a Causes

Errors in quadrupole strengths (random and systematic)
Injection elements
Higher-order multi-pole magnets and errors

2 Observables
Tune-shift
Beta-beating
Excitation of integer and half integer resonances 45
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2

ar “., Gradient error

Q Consider the transfer matrix for 1-turn

Mo — cos(2mQ) + ap sin(27Q) Bo sin(27Q)
U —~0 sin(27Q) cos(2m(Q)) — apsin(27Q)

Q Consider a gradient error in a quad. In thin element approximation
the quad matrix with and without error are

o= (—Kol(s)ds (1)> and m = (—(Ko(s)1+ SK)ds (1))

Q The new 1-turn matrix is M = mmg ' M, = <—5;(d3 (1)) Mo

which yields

M= cos(27Q) + apsin(27Q)) 3o sin(2w Q)
— \0Kds(cos(2mQ)) — apsin(2wQ))) — vo sin(27Q)  cos(2wQ) — (0K dsfy + ag) sin(27Q)

Linear imperfections and correction, JUAS, February 2017
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. Gradient error and t !

Q Consider a new matrix after 1 turn with a new tune x = 27(Q + 0Q)

Bo sin(x)
cos(x) — g sin(x)

X) + g sin(x)

= (T

and finally 476() = 6 Kdsfy

Q The traces of the two matrices describing the 1-turn should be equal
Tra(M™) = Tra(M)
which gives 2 cos(27Q) — 6 KdsBy sin(27Q) = 2 cos(27(Q + 6Q))

Q Developing the right hand side

cos(2m(Q + 0Q)) = cos(27Q) cos(2m Q) — sin(27Q) sin(27w6Q)

—

Q For a quadrupole of finite length, we have

Linear imperfections and correction, JUAS, February 2017
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2

A — (all Cl12>
My = (mll m12> = B-A with azi a2
m21 122
o bi1 D12
B = (b21 bgg)
Q Introduce a gradient perturbation between the two matrices
* *
x (M1 M2} _ 1 0
o <m§1 m§2) =B (—5de 1) A
0 Recall that mi12 = Gy sin(27Q) and write the perturbed term as
miy = (Bo +08)sin(2m(Q + 0Q)) = mi2 + 48sin(27Q) + 2m6Q By cos(27Q)

where we used sin(276Q) =~ 275Q and cos(273Q) ~ 1

48



i

.~ Gradient error and beta
a On the other hand

2

a1z = \/BoB(s1)sin, bl = /BoB(s1)sin (27Q — V)

and m’{z = b11a12 + bioa9s — a12b120 K ds = myo — a12b120 K ds
— y,

Y
mi2

Q Equating the two terms

§3sin(27Q) + 2wdQ By cos(2mQ)) = — a12b120 Kds

Q Integrating through the quad

0B 1
Bo  2sin(2rQ)

s1+I1
/ B(s)0 K (s) cos(2y — 27Q)ds

Q There is also an equivalent effect on dispersion

Linear imperfections and correction, JUAS, February 2017
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0 Consider 18 focusing quads in the SNS ring with 0.01T/m gradient
error. In this location f=12m. The length of the quads is 0.5m and

the magnetic rigidity 1s 5.6567Tm
1 0.01

The tune-shift i = —18. 5=0.
e tune-shiftis 5Q = —18 - 12205 = 0.015
Q For a random distribution of errors the beta beating is
g (Y sk

Borms  2v/2|sin(27Q)|

Optics functions beating > 20% by random errors (1% of gradient) in

high dispersion quads of the SNS ring ... justifies correctors strengths
50
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a Consider 128
focusing arc quads in
the ESRF storage ring
with 0.001T/m
gradient error. In this
location 5=30m. The
length of the quads is
around 1m. The
magnetic rigidity of
the ESRF is 20Tm.

a The tune-shift is

1 0.001
= —128-30———1 =0.014
0@ ypn 8- 30 50 0.0

phase modulation

WA T

\J\]\ —— correction OFF

— correction ON

=, @ =

50 100 150
BPM number

200
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" Gradient error co

a Windings on the core of the quadrupoles or individual correction
magnets (trim windings or quadrupoles)

2

0 Compute tune-shift and optics function beta distortion
a Move working point close to integer and half integer resonance

a Minimize beta wave or quadrupole resonance width with trim
windings

Q Individual powering of trim windings can provide flexibility and
beam based alignment of BPM

Modern methods of response matrix analysis (LOCO) can fit optics
model to real machine and correct optics distortion

Linear imperfections and correction, JUAS, February 2017
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J. Safranek et al.
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Machine beta functions compared to model (08/11/2006) 1 H O r. B - beatl ng

§ Ver. 3 - beating
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o] 100 200 300 400 500 600
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S (m)

17th Aprll 2008
7th May 2008

Modified version of LOCO with constraints on
gradient variations (see ICFA Newsl, Dec’ 07)

B - beating reduced to 0.4% rms
Quadrupole variation reduced to 2%
Results compatible with mag. meas. and calibration:

’W

Ll
w‘ | Ml il | “\’L 'Il"H'{ll‘l‘l{},‘ “‘m n

Strength variation from model (%)

Quadrupole gradient
variation

50 100 150 200
Quad number

LOCO allowed remarkable progress with the correct implementation of the
linear optics

iné»('nkdor'\)»'-‘o»-‘r\:wb
T T 1 T 1
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Q At 3*=40cm, the bare machine has a beta-beat of more than 100%

Q After global and local corrections, -beating was reduced to few %

40cm LHCB2 before and after local correction

L3
;a..o .’o.]‘ ‘d". .-o%.. 8. %o .-:-. Sde
s g 3% 2% = & 3
L - -

—l ¢ virgin { corrected

Linear imperfections and correction, JUAS, February 2017

5000 10000 15000 20000 25000
Longitudinal location (m)

final corrections

AB, /B,

AB, /B,

Longitudinal location (m)

R. Tomas et al. 2016
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a Coupling error
21 Coupling errors and their effect
-1 Coupling correction
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z(s)
()

y(s)

'
\/(s))

)= (

C(s)
Cy(s)

* =
o*

(7o)

Yo

56



Linear imperfections and correction, JUAS, February 2017

2

QO Coupling errors lead to transfer of horizontal betatron motion and
dispersion into the vertical plane

0 Coupling may result from rotation of a quadrupole, so that the field
contains a skew component

Q A vertical beam offset in a sextupole has the same effect as a skew
quadrupole. The sextupole field for the displacement of a particle oy
becomes

By = koxy = koxy + koxdy
skew quadrupole
1 1 1
B, = §k2(372 — ?32) = —koydy + §k2($2 - 92) — §k25312




“. Effect of coupling

O Betatron motion is coupled in the presence of skew quadrupoles

2

Q The field is (B., B,) = ks(z,y) and Hill’ s equations are coupled

Q Motion still linear with two new eigen-mode tunes, which are
always split. In the case of a thin skew quad:

5Q X |ks|\/6x5y

a Coupling coefficients represent the degree of coupling

|C:|:| = ‘QL]{dSk‘S(S)\/ﬁw(S)By(8)e’i(wxiwy_(QxiQy—q:t)Qﬂ'S/C)
7

a As motion is coupled, vertical dispersion and optics function
distortion appears

Linear imperfections and correction, JUAS, February 2017
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.~ Linear coupling corre

0 Introduce skew quadrupole correctors

2

Q Correct globally/locally coupling coefficient (or resonance driving
term)

Correct optics distortion (especially vertical dispersion)
Move working point close to coupling resonances and repeat
Correction especially important for flat beams

Note that (vertical) orbit correction may be critical for reducing
coupling

Linear imperfections and correction, JUAS, February 2017
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. Example: SNS coupling correc

0O Local decoupling by super period using 16 skew quadrupole
correctors

a Results of Q,=6.23 Q,=6.20 after a 2mrad quad roll

Q Additional 8 correctors used to compensate vertical dispersion

0.0200

0.0150

0.0100

0.0050

0.0000

-0.0050

-0.0100

-0.0150

Tune split difference

Seed #

-0.0200

o BeforeCorrection +0.009|-0.014({0.016|-0.013-0.004|0.007 |0.015|0.008 |0.008|0.007 |0.014]0.006 {0.000|0.005 -0.006/0.006 {0.015|-0.015/0.009|0.010

m After correction 0.000(0.000 (0.000{0.000 +-0.000{0.000 |-0.000/0.000 [-0.000|-0.000{0.000{0.000 [0.000{-0.000{0.000]|0.000 [-0.000{0.000 (0.000(0.000

Linear imperfections and correction, JUAS, February 2017
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" Vertical dispersion

2

Q The equation of motion for a particle with momentum p is

d2
Py _ep
ds? p

-1 For small energy deviation o, p is related to the reference momentum
p~ (1+9)po
) We can write for the horizontal field (to first order in the derivatives)

0B, 0B,

B, ~ By,
0 _I_y@y —I—aﬁax

2 If we consider a particle following an off-momentum closed orbit

y=mny0, and x =m0

a Combining the above equations, we find to first order in

Linear imperfections and correction, JUAS, February 2017
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Q It is thus reasonable to generalize the relationship between the
closed orbit and the quadrupole misalignments, to find

Skew dipole terms assumed arise from vertical misalignments of
quadrupoles

Skew quadrupoles assumed to come from tilts on the quads and
vertical misalignments of sextupoles

All alignment errors are considered uncorrelated.
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Q The natural emittance in the vertical plane can be written as the

horizontal one

2 Isy

8
q7 ]yI2

Q The synchrotron radiation integrals are given by

1
deN —ds—?-[ I, and 12:7{—ds
Ty = § ok pp s = (s e

with the dispersion invariant H,

Q Then the vertical emittance is ¢, ~ C,4? (Hy) 7
]y 2

or in terms of energy spread ¢, ~ “=(#,)o; with

a Note that <

2

By

J
Jy

> ;<’Hy> so that finally

I3

2

0'5:

C’quz ,

Y

(C.::yN

Jz

Jy

B

2
Y

Ty

Y

o5

= Yy + 200y Mpy + By,

I3
]zIZ
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2

~ Methods for coup

O Measurement or estimation of BPM roll errors to avoid “fake” vertical dispersion
measurement.

0 Realignment of girders / magnets to remove sources of coupling and vertical
dispersion.
O Model based corrections:

Establish lattice model: multi-parameter fit to orbit response matrix
(using LOCO or related methods) to obtain a calibrated model.

Use calibrated model to perform correction or to minimize derived lattice parameters
(e.g. vertical emittance) in simulation and apply to machine.

Application to coupling control: correction of vertical dispersion, coupled response
matrix, resonance drive terms using skew quads and orbit bumps, or direct
minimization of vertical emittance in model.

O Model independent corrections:

empirical optimization of observable quantities related to coupling
(e.g. beam size, beam life time).

a Coupling control in operation: on-line iteration of correction
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Q Achieved correction of below 0.25% reaching vertical emittance of

Skew Strength [m-1]

below 4pm
0.001
A A
0.0008 X A Initial o
0.0006 rAS ® Corrected | |
0.0004
(Y )
0.0002 °
A®® °
0 . . 206 28 e
A ® 00
-0.0002 A ® A
A
20.0004 AT
-0.0006
15 25 35 =

Position [m|]

. Nagaoka, EPAC 2000

tn
n

1.00E+01

1.00E+00

1.00E-01

Normal Mode Coupling

1.00E-02

2

0O Local decoupling using 16 skew quadrupole correctors and coupled
response matrix reconstruction

---@--- Most Effective 16

e

---A--- Existing 16

0

Number of Iterations



M. Aiba, M. Boge,
N. Milas, A. Streun

a Vertical emittance reduced to a minimum value of 0.9%+0.4pm

Q Achieved by careful re-alignment campaign and different methods
of coupling suppression using 36 skew quadrupoles (combination of
response matrix based correction and random walk optimisation)

Linear imperfections and correction, JUAS, February 2017
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Q 1 hour of random

2

Q Coupling minimization at SLS observable: vertical beam size from

monitor

° = P P
0 Knobs: 24 skew quadrupoles g e et
4.5 g
0 Random optimization: g
trial & error (small steps) s ¢
E : : : - ——f
Q Start: model based § S
3

correction: &, = 1.3 pm

S I S S B B N

Imi - I i sitm 5000
0pt|m|za’[|0n gy_) 0.9+0.4 pm 0 500 1000 1500 2000 2500 3000 3500 4000 4

Time [seconds]

O Measured coupled response

matrix off-diagonal terms were reduced after optimization

0 Model based correction limited by model deficiencies rather than

measurement errors.
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Coupling control In

2

QO Keep vertical emittance constant during insertion device gap
changes

a Example from DIAMOND

d

d
d
d

Offset 6SQ to ALL skew quads generates dispersion wave and
Increases vert. emittance without coupling.

Skew quads from LOCO for low vert .emit. of ~ 3pm
Increase vertical emit to 8 pm by increasing the offset 6SQ

Use the relation between vertical emittance and 6SQ in a slow
feedback loop (5 Hz)

127

0.9 [Pt

0.6

0.37 M P e

Coupling (%)

1st March 4th March 7th March 10th March  13th March ~ 16th March  19th March  22nd March 68
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Chromaticity

Linear imperfections and correction, JUAS, February 2017

2

0 Linear equations of motion depend on the energy (term proportional

a

d

d

a

to dispersion)

Chromaticity iIs defined as: &y = OQayy
op/p
Recall that the gradient is x = & — €& 0% _ %P

Bp p k

This leads to dependence of tunes and optics function on the

particle’s momentum
For a linear lattice the tune shift is:
1 5p

0Qu y = ﬁ %ﬁm,y(%(s)ds = —— = j{ﬁx y

So the natural chromaticity is:

1
gaj,y — = j{ﬁx,yk(S)dS
41
Sometimes the chromaticity is quoted as &z,y =

p

70



" " Example: Chromaticity

Q In the SNS ring, the natural chromaticity is —7

Linear imperfections and correction, JUAS, February 2017

2

Q Consider that momentum spread dp/p = £1%

QO The tune-shift for off-momentum particles is

0Q sy = &z y0p/p = £0.07

Q In order to correct chromaticity introduce particles which can focus
off-momentum particle

Sextupoles

71



Linear imperfections and correction, JUAS, February 2017

" Chromaticity from s
0 The sextupole field component in the x-plane Is: B, = 5

. : : oP
0 In an area with non-zero dispersion = = xg + D —

S 2

P

L S 6P S _,0P?
Q Then the field is B, = 5:1:3 +ED?$(3 +§D2 ?}
Y Y
quadrupole dipole
: : : : oP
O Sextupoles introduce an equivalent focusing correction 6k = SD?

Q The sextupole induced chromaticity is
1
Sy g T (5)S(5)Das)ds

Q The total chromaticity is the sum of the natural and sextupole
Induced chromaticity

€% = = 1= P B (o) (4(5) F S(5)Da () ds
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2

Q Introduce sextupoles in high-dispersion areas
Q Tune them to achieve desired chromaticity

a Two families are able to control horizontal and vertical
chromaticity

a Sextupoles introduce non-linear fields (chaotic motion)
Qa Sextupoles introduce tune-shift with amplitude

a Example:

The SNS ring has natural chromaticity of —7

Placing two sextupoles of length 0.3m in locations where f=12m, and
the dispersion D=4m

For getting O chromaticity, their strength should be

T4

_ ~ -3 I 2
S = TR or a gradient of 17.3 T/m
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T T

— B, dp/p=0.7%

---= B, dp/p=0.7%

—— B, 8p/p=0.0%

30 ~-== B, dp/p=0.0%

— B, Sp/p=—0.7%
---= B, dp/p=—0.7%

B, ml

4.0
4 3.0
420

— 1, dp/p=07%
— 1, dp/p=0.0%

L M pp=07% suF2)

11.0
0.0
1 L L L L 1 1 L L L L 1 _1'0
0 10 20 30 40 50 60
S |m|

- Two families of sextupoles not enough for correcting off-momentum

M [m]

Two vs. four sextu

B, Im]

3

20 -

pol

W
10 -

— n, dp/p=0.7%
—— 1, dp/p=0.0%
— 0, dpp=-0.7%

T T T

— B, dp/p=0.7%
---= B, dp/p=07%
— B, 8p/p=0.0%
-=== B, dp/p=0.0%
— B, Sp/p=—0.7%
--=-= B, dp/p=-0.7%

S2(F2 I"‘.
S3Fy) |

0

10

20

optics functions’ distortion and second order chromaticity

1 Possible solutions:

4.0

130
120
110
o0
110

E
=
=

0 Place sextupoles accordingly to eliminate second order effects (difficult)

a Use more families (4 in the case of the SNS ring)

-1 Large optics function distortion for momentum spreads of +=0.7%,when
using only two families of sextupoles; Correction of off-momentum

optics beating with four families
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" Problem 4 @)

SPS: Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and
defocusing quads of 15 T/m, with a horizontal and vertical beta of 108m and 30m in
the focusing quads, and horizontal and vertical beta of 30m and 108m for the
defocusing ones.

- Find the tune change for systematic gradient errors of 1% in the focusing and 0.5%
In the defocusing quads.

- What is the chromaticity of the machine?

120 110

100y

Linear imperfections and correction, JUAS, February 2017
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Problem 5

CLIC pre-damping rings: Consider a 2.86 GeV electron storage ring with a racetrack

2

shape of 389 m circumference. Each arc is composed of 17 regular “TME” cells,
each consisting of 2 dipoles, 2 focusing and 2 defocusing quadrupoles. The beta
functions are around B,=4m (2m) and B,=4.2m (9m) in the focusing (defocusing)
guadrupoles and the normalized quadrupole gradients are 2.49/m? (2.07/m?). The
guadrupoles have a length of 0.28m. The natural chromaticity of the machine is
about -19 and -23 in the horizontal and vertical plane, respectively.

- How big is the chromaticity contribution from the arcs?

- Where would you install sextupole magnets for correcting chromaticity?

- Can you give an estimation for the required sextupole gradient assuming the
sextupoles have the same length as the quadrupoles?

10.0 . 0.34
’ L 0.33
L 0.32
L 0.31
L 0.30
L 0.29
L 0.28
L 027
L 0.26
L 0.25
L 0.24

B (m), B (m)
D (m)
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Problem 6

2

Derive an expression for the resulting magnetic field when a normal sextupole with
field B = S/2 x? is displaced by 8x from its center position. At what type of fields
correspond the resulting components? Do the same for an octupole with field B =
O/3 x3. What is the leading order multi-pole field error when displacing a general 2n-
pole magnet?

Linear imperfections and correction, JUAS, February 2017
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