Linear imperfections and correction

Hannes BARTOSIK and Yannis PAPAPHILIPPOU with help from Fanouria ANTONIOU

Accelerator and Beam Physics group - Beams Department CERN

Joint University Accelerator School

Archamps, FRANCE
1 February 2017

- O. Brüning, Linear imperfections, CERN Accelerator School, Intermediate Level, Zeuthen 2003, http://cdsweb.cern.ch/record/941313/files/p129.pdf
- H. Wiedemann, Particle Accelerator Physics I, Springer, 1999.
- K.Wille, The physics of Particle Accelerators, Oxford University Press, 2000.
- S.Y. Lee, Accelerator Physics, $2^{\text {nd }}$ edition, World Scientific, 2004

Reminder of

transverse beam dynamics

Equation reminder

Lorentz equation

$$
\frac{d \mathbf{p}}{d t}=\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

E : total energy
T : kinetic energy

$$
E=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}=T+m_{0} c^{2}=T+E_{0}
$$

p : momentum
β : reduced velocity

$$
\begin{aligned}
\beta & =\frac{v}{c} \\
\gamma & =\frac{E}{m_{0} c^{2}}
\end{aligned}
$$

$\beta \gamma$: reduced momentum

$$
\beta \gamma=\frac{p}{m_{0} c^{2}}
$$

- Cartesian coordinates not useful to describe motion in a circular accelerator (not true for linacs)
- A system following an ideal path along the accelerator is used (Frenet reference system) $\left(\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{y}}, \mathbf{u}_{\mathbf{z}}\right) \rightarrow\left(\mathbf{u}_{\mathbf{x}}, \mathbf{u}_{\mathbf{y}}, \mathbf{u}_{\mathbf{s}}\right)$
\square The curvature vector is $\kappa=-\frac{d^{2} \mathbf{s}}{d s^{2}}$
\square From Lorentz equation

$$
\frac{d \mathbf{p}}{d t}=m_{0} \gamma \frac{d^{2} \mathbf{s}}{d t^{2}}=m_{0} \gamma v_{s}^{2} \frac{d^{2} \mathbf{s}}{d s^{2}}=-m_{0} \gamma v_{s}^{2} \boldsymbol{\kappa}=q[\mathbf{v} \times \mathbf{B}]
$$

where we used the curvature vector definition and $\frac{d^{2}}{d t^{2}}=v_{s}^{2} \frac{d^{2}}{d s^{2}}$

- Using $m_{0} \gamma v_{s}=p_{s}=\left(p^{2}-p_{x}^{2}-p_{y}^{2}\right)^{1 / 2} \approx p$, the ideal path of the reference trajectory is defined by

$$
\boldsymbol{\kappa}_{0}=-\frac{q}{p}\left[\frac{\mathbf{v}}{v_{s}} \times \mathbf{B}_{\mathbf{0}}\right]
$$

- Consider uniform magnetic field $\mathbf{B}=\left\{0, B_{y}, 0\right\}$ in a direction perpendicular to particle motion. From the reference trajectory equation, after developing the cross product and considering that the transverse velocities $v_{x}, v_{y} \ll v_{s}$, the radius of curvature is

$$
\frac{1}{\rho}=|k|=\left|\frac{q}{p} B\right|
$$

- We define the magnetic rigidity $|B \rho|=\frac{p}{q}$
- In more practical units $\beta E[\mathrm{GeV}]=0.2998|B \rho|[\mathrm{Tm}]$
- For ions with charge multiplicity n and atomic number A, the energy per nucleon is

$$
\beta \bar{E}[G e V / u]=0.2998 \frac{n}{A}|B \rho|[T m]
$$

- Consider ring for particles with energy E with N dipoles of length L (or effective length l, i.e. measured on beam path)
\square Bending angle $\theta=\frac{2 \pi}{N}$
\square Bending radius $\rho=\frac{l}{\theta}$

\square Integrated dipole strength $B l=\frac{2 \pi}{N} \frac{p}{q}$
- Note:
\square By choosing a dipole field, the dipole length is imposed and vice versa
\square The higher the field, the shorter or smaller number of dipoles can be used
\square The ring circumference (cost) is influenced by the field choice

- Consider a particle in a dipole field
- In the horizontal plane
\square it performs harmonic oscillations

$$
x=x_{0} \cos (\omega t+\phi) \text { with frequency } \omega=\frac{v_{s}}{\rho}
$$

\square the horizontal acceleration is described by

$$
\frac{d^{2} x}{d s^{2}}=\frac{1}{v_{s}^{2}} \frac{d^{2} x}{d t^{2}}=-\frac{1}{\rho^{2}} x
$$

reference orbit
\square there is a week focusing effect in the horizontal plane

- In the vertical plane, the only force present is gravitation
\square Particles are displaced vertically following the usual law $\Delta y=\frac{1}{2} a_{g} \Delta t^{2}$
\square With $a_{g} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$, the particle is displaced by $\mathbf{1 8} \mathbf{~ m m}$ (LHC dipole aperture) in $\mathbf{6 0 ~ m s}$ (few hundred turns in LHC$) \rightarrow$ need focusing!
- Quadrupoles are focusing in one plane and defocusing in the other
- The field is $\left(B_{x}, B_{y}\right)=G(y, x)$
- The resulting force $\left(F_{x}, F_{y}\right)=k(y,-x)$ with the normalised gradient defined as

$$
k=\frac{q G}{\beta E}
$$

- In more practical units:

$$
k\left[m^{-2}\right]=0.2998 \frac{G[T / m]}{\beta E[G e V]}
$$

- Need to alternate focusing and defocusing to control the beam, i.e. alternating gradient focusing

Equations of motion - Linear fields

- Consider s-dependent fields from dipoles and normal quadrupoles

$$
B_{y}=B_{0}(s)-G(s) x, \quad B_{x}=-G(s) y
$$

- The total momentum can be written $p=p_{0}\left(1+\frac{\Delta p}{p}\right)$
- With magnetic rigidity $B_{0} \rho=\frac{p_{0}}{q}$ and normalized gradient $k(s)=\frac{G(s)}{B_{0} \rho}$ the equations of motion are

$$
\begin{aligned}
& x^{\prime \prime}-\left(k(s)-\frac{1}{\rho(s)^{2}}!\right. \\
& y^{\prime \prime}+\bar{k}(s) y=!^{\prime} \frac{1}{\rho(s)} \frac{\Delta p}{p} \\
&=0
\end{aligned}
$$

\square Inhomogeneous equations with s-dependent coefficients
\square The term $\frac{1}{\rho^{2}}$ corresponds to the dipole week focusing and $\frac{1}{\rho} \frac{\Delta p}{p}$ represents off-momentum particles

- Solutions are combination of the homogeneous and inhomogeneous equations' solutions
\square Consider particles with the design momentum.
Equations of motion become

$$
\begin{aligned}
& x^{\prime \prime}+K_{x}(s) x=0 \\
& y^{\prime \prime}+K_{y}(s) y=0
\end{aligned}
$$

George Hill

- The on-momentum linear betatron motion of a particle in both planes, is described by

$$
u(s)=\sqrt{\epsilon \beta(s)} \cos \left(\psi(s)+\psi_{0}\right) \quad u \mapsto\{x, y\}
$$

with α, β, γ the twiss functions $\alpha(s)=-\frac{\beta(s)^{\prime}}{2}, \gamma=\frac{1+\alpha(s)^{2}}{\beta(s)}$
ψ the betatron phase $\psi(s)=\int \frac{d s}{\beta(s)}$
and the beta function β is defined by the envelope equation

$$
2 \beta \beta^{\prime \prime}-\beta^{\prime 2}+4 \beta^{2} K=4
$$

- By differentiation, we have that the angle is

$$
u^{\prime}(s)=\sqrt{\frac{\epsilon}{\beta(s)}}\left(\sin \left(\psi(s)+\psi_{0}\right)+\alpha(s) \cos \left(\psi(s)+\psi_{0}\right)\right)
$$

- From the position and angle equations it follows that

$$
\cos \left(\psi(s)+\psi_{0}\right)=\frac{u}{\sqrt{\epsilon \beta(s)}}, \sin \left(\psi(s)+\psi_{0}\right)=\sqrt{\frac{\beta(s)}{\epsilon}} u^{\prime}+\frac{\alpha(s)}{\sqrt{\epsilon \beta(s)}} u
$$

- Expand the trigonometric formulas and set $\psi(0)=0$ to get the transfer matrix from location 0 to s

$$
\binom{u(s)}{u^{\prime}(s)}=\mathcal{M}_{0 \rightarrow s}\binom{u_{0}}{u_{0}^{\prime}}
$$

with
$\mathcal{M}_{0 \rightarrow s}=\left(\begin{array}{cc}\sqrt{\frac{\beta(s)}{\beta_{0}}}\left(\cos \Delta \psi+\alpha_{0} \sin \Delta \psi\right) & \sqrt{\beta(s) \beta_{0}} \sin \Delta \psi \\ \frac{\left(a_{0}-a(s)\right) \cos \Delta \psi-\left(1+\alpha_{0} \alpha(s)\right) \sin \Delta \psi}{\sqrt{\beta(s) \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta(s)}}\left(\cos \Delta \psi-\alpha_{0} \sin \Delta \psi\right)\end{array}\right)$
and $\mu(s)=\Delta \psi=\int_{0}^{s} \frac{d s}{\beta(s)}$ the phase advance

- Consider a periodic cell of length C
- The optics functions are $\beta_{0}=\beta(C)=\beta, \alpha_{0}=\alpha(C)=\alpha$
and the phase advance $\mu=\int_{0}^{C} \frac{d s}{\beta(s)}$
- The transfer matrix is $\mathcal{M}_{C}=\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu-\alpha \sin \mu\end{array}\right)$
- The cell matrix can be also written as

$$
\mathcal{M}_{C}=\mathcal{I} \cos \mu+\mathcal{J} \sin \mu
$$

with $\mathcal{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the Twiss matrix $\mathcal{J}=\left(\begin{array}{cc}\alpha & \beta \\ -\gamma & -\alpha\end{array}\right)$
\square In a ring, the tune is defined from the 1-turn phase advance

$$
Q_{x, y}=\frac{1}{2 \pi} \oint \frac{d s}{\beta_{x, y}(s)}=\frac{\nu_{x, y}}{2 \pi}
$$

i.e. number of betatron oscillations per turn

- Taking the average of the betatron tune around the ring we have in smooth approximation

$$
\nu=2 \pi Q=\frac{C}{\langle\beta\rangle} \rightarrow Q=\frac{R}{\langle\beta\rangle}
$$

\square Extremely useful formula for deriving scaling laws!

- The position of the tunes in a diagram of horizontal versus vertical tune is called a working point
- The tunes are imposed by the choice of the quadrupole strengths
- One should try to avoid resonance conditions

Transverse linear imperfections and correction

- Closed orbit distortion (steering error)
\square Beam orbit stability importance
\square Imperfections leading to closed orbit distortion
\square Interlude: dispersion and chromatic orbit
\square Effect of single and multiple dipole kicks
\square Closed orbit correction methods
- Optics function distortion (gradient error)
\square Imperfections leading to optics distortion
\square Tune-shift and beta distortion due to gradient errors
\square Gradient error correction
- Coupling error
\square Coupling errors and their effect
\square Coupling correction
- Chromaticity
- Closed orbit distortion (steering error)
\square Beam orbit stability importance
\square Imperfections leading to closed orbit distortion
\square Interlude: dispersion and chromatic orbit
\square Effect of single and multiple dipole kicks
\square Closed orbit correction methods
- Optics function distortion (gradient error)
- Imperfections leading to optics distortion
- Tune-shift and beta distortion due to gradient errors
- Gradient error correction
\square Coupling error
\square Coupling errors and their effect
- Coupling correction
\square Chromaticity
- Beam orbit stability is very critical
\square Injection and extraction efficiency of synchrotrons
\square Stability of collision point in colliders
\square Stability of the synchrotron light spot in the beam lines of light sources
- Consequences of orbit distortion
\square Miss-steering of beams, modification of dispersion function, resonance excitation, aperture limitations, lifetime reduction, coupling, modulation of lattice functions, poor injection/extraction efficiency
- Causes
\square Long term (years - months): ground settling, season changes
\square Medium term (days - hours): sun and moon, day-night variations (thermal), rivers, rain, wind, refills and start-up, sensor motion, drift of electronics, local machinery, filling patterns
\square Short term (minutes - seconds): ground vibrations, power supplies, experimental magnets, air conditioning, refrigerators/compressors

Imperfections distorting closed orbit

- Magnetic imperfections distorting the orbit
\square Dipole field errors (or energy errors)
\square Dipole rolls
\square Quadrupole misalignments
\square Consider the displacement of a particle δx from the ideal orbit. The vertical field in the quadrupole is

$$
B_{y}=G \bar{x}=G(x+\delta x)=\underbrace{G x}_{\text {quadrupole }}+\underbrace{G \delta x}_{\text {dipole }}
$$

- Remark: Dispersion can be interpreted as closed orbit distortion for off-momentum particles with $\delta x=D(s) \frac{\delta p}{p}$
- Effect of orbit errors in any multi-pole magnet

$$
\begin{aligned}
& B_{y}=b_{n} \bar{x}^{n}=b_{n}(x+\delta x)^{n}=b_{n}(\underbrace{x^{n}}_{\mathbf{2}(\mathbf{n}+\mathbf{1}) \text {-pole }}+\underbrace{n \delta x x^{n-1}}_{\text {2n-pole }}+\underbrace{\frac{n(n-1)}{2}(\delta x)^{2} x^{n-2}}_{\mathbf{2}(\mathbf{n}-\mathbf{1}) \text {-pole }}+\cdots+\underbrace{\left.(\delta x)^{n}\right)}_{\text {dipole }}
\end{aligned}
$$

- Up to now all particles had the same momentum p_{0}
- What happens for off-momentum particles, i.e. particles with momentum $p_{0}+\Delta p$?
\square Consider a dipole with field B and bending radius ρ
$\square \begin{aligned} & \text { Recall that the magnetic rigidity is } B \rho=\frac{p_{0}}{q} \\ & \text { and for off-momentum particles }\end{aligned}$ and for off-momentum particles

$$
B(\rho+\Delta \rho)=\frac{p_{0}+\Delta p}{q} \Rightarrow \frac{\Delta \rho}{\rho}=\frac{\Delta p}{p_{0}}
$$

\square Considering the effective length of the dipole unchanged

$$
\theta \rho=l=\text { const. } \Rightarrow \rho \Delta \theta+\theta \Delta \rho=0 \Rightarrow \frac{\Delta \theta}{\theta}=-\frac{\Delta \rho}{\rho}=-\frac{\Delta p}{p_{0}}
$$

\square Off-momentum particles get different deflection (different orbit)

$$
\Delta \theta=-\theta \frac{\Delta p}{p_{0}}
$$

- Consider the equations of motion for off-momentum particles

$$
x^{\prime \prime}+K_{x}(s) x=\frac{1}{\rho(s)} \frac{\Delta p}{p}
$$

\square The solution is a sum of the homogeneous (on-momentum) and the inhomogeneous (off-momentum) equation solutions

$$
x(s)=x_{H}(s)+x_{I}(s)
$$

\square In that way, the equations of motion are split in two parts

$$
\begin{aligned}
x_{H}^{\prime \prime}+K_{x}(s) x_{H} & =0 \\
x_{I}^{\prime \prime}+K_{x}(s) x_{I} & =\frac{1}{\rho(s)} \frac{\Delta p}{p}
\end{aligned}
$$

- The dispersion function can be defined as $D(s)=\frac{x_{I}(s)}{\Delta p / p}$
- The dispersion equation is

$$
D^{\prime \prime}(s)+K_{x}(s) D(s)=\frac{1}{\rho(s)}
$$

- Design orbit defined by main dipole field
- On-momentum particles oscillate around design orbit (w/o errors)
- Off-momentum particles are not oscillating around design orbit, but around "chromatic" closed orbit, defined by the dispersion function times the momentum offset

Effect of single dipole kick

Consider a single dipole kick $\theta=\delta u_{0}^{\prime}=\delta u^{\prime}\left(s_{0}\right)=\frac{\delta(B l)}{B \rho}$ at $s=s_{0}$
\square The coordinates before and after the kick are

$$
\binom{u_{0}}{u_{0}^{\prime}-\theta}=\mathcal{M}\binom{u_{0}}{u_{0}^{\prime}}
$$

with the 1-turn transfer matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
\cos 2 \pi Q+\alpha_{0} \sin 2 \pi Q & \beta_{0} \sin 2 \pi Q \\
-\gamma_{0} \sin 2 \pi Q & \cos 2 \pi Q-\alpha_{0} \sin 2 \pi Q
\end{array}\right)
$$

- The final coordinates are

$$
u_{0}=\theta \frac{\beta_{0}}{2 \tan \pi Q} \quad \text { and } \quad u_{0}^{\prime}=\frac{\theta}{2}\left(1-\frac{\alpha_{0}}{\tan \pi Q}\right)
$$

Closed orbit from single dipole kick

- Taking the solutions of Hill's equations at the location of the kick, the orbit will close to itself only if

$$
\begin{aligned}
\sqrt{\epsilon \beta_{0}} \cos \left(\phi_{0}\right) & =\sqrt{\epsilon \beta_{0}} \cos \left(\phi_{0}+2 \pi Q\right) \\
-\sqrt{\frac{\epsilon}{\beta_{0}}}\left(\sin \left(\phi_{0}\right)+\alpha_{0} \cos \left(\phi_{0}\right)\right) & \left.\left.=-\sqrt{\frac{\epsilon}{\beta_{0}}}\left(\sin \left(\phi_{0}+2 \pi Q\right)\right)+\alpha_{0} \cos \left(\phi_{0}+2 \pi Q\right)\right)\right)-\theta
\end{aligned}
$$

\square This yields the following relations for the invariant and phase (this can be also derived by the equations in the previous slide)

$$
\epsilon=\frac{\beta_{0} \theta^{2}}{4 \sin ^{2}(\pi Q)}, \quad \phi_{0}=-\pi Q
$$

- For any location around the ring, the orbit distortion is written as

$$
u(s)=\underbrace{\theta \frac{\sqrt{\beta(s) \beta_{0}}}{2 \sin (\pi Q)}}_{\text {Maximum distortion amplitude }} \cos \left(\pi Q-\left|\psi(s)-\psi_{0}\right|\right)
$$

Integer and half integer resonance

$$
u(s)=\theta \frac{\sqrt{\beta(s) \beta_{0}}}{2 \sin (\pi Q)} \cos \left(\pi Q-\left|\psi(s)-\psi_{0}\right|\right)
$$

- Dipole perturbations add-up in consecutive turns for $Q=n$
- Integer tune excites orbit oscillations (resonance)

Kick

- Dipole kicks get cancelled in consecutive turns for $Q=n / 2$
- Half-integer tune cancels orbit oscillations

Transport of closed orbit distortion

- Consider a transport matrix between positions 1 and 2

$$
\mathcal{M}_{1 \rightarrow 2}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

- The transport of transverse coordinates is written as

$$
\begin{aligned}
u_{2} & =m_{11} u_{1}+m_{12} u_{1}^{\prime} \\
u_{2}^{\prime} & =m_{21} u_{1}+m_{22} u_{1}^{\prime}
\end{aligned}
$$

- Consider a single dipole kick at position 1: $\theta_{1}=\frac{\delta(B l)}{B \rho}$
- Then, the first equation may be rewritten

$$
u_{2}+\delta u_{2}=m_{11} u_{1}+m_{12}\left(u_{1}^{\prime}+\theta_{1}\right) \rightarrow \delta u_{2}=m_{12} \theta_{1}
$$

- Replacing the coefficient from the general betatron matrix

$$
\begin{aligned}
& \delta u_{2}=\sqrt{\beta_{1} \beta_{2}} \sin \left(\psi_{12}\right) \theta_{1} \\
& \delta u_{2}^{\prime}=\sqrt{\frac{\beta_{1}}{\beta_{2}}}\left[\cos \left(\psi_{12}\right) \theta_{1}-\alpha_{2} \sin \left(\psi_{12}\right)\right]
\end{aligned}
$$

- Orbit distortion due to many errors

$$
u(s)=\frac{\sqrt{\beta(s)}}{2 \sin (\pi Q)} \int_{s}^{s+C} \theta(\tau) \sqrt{\beta(\tau)} \cos (\pi Q-|\psi(s)-\psi(\tau)|) d \tau
$$

- By approximating the errors as delta functions in n locations, the distortion at i observation points (Beam Position Monitors) is

$$
u_{i}=\frac{\sqrt{\beta_{i}}}{2 \sin (\pi Q)} \sum_{j=i+1}^{i+n} \theta_{j} \sqrt{\beta_{j}} \cos \left(\pi Q-\left|\psi_{i}-\psi_{j}\right|\right)
$$

with the kick produced by the $j^{\text {th }}$ error
\square Integrated dipole field error

$$
\begin{aligned}
& \theta_{j}=\frac{\delta\left(B_{j} l_{j}\right)}{B \rho} \\
& \theta_{j}=\frac{B_{j} l_{j} \sin \phi_{j}}{B \rho} \\
& \theta_{j}=\frac{G_{j} l_{j} \delta u_{j}}{B \rho}
\end{aligned}
$$

Dipole roll

\square In the SNS accumulator ring, the beta function is $\mathbf{6 m}$ in the dipoles and $\mathbf{3 0 m}$ in the quadrupoles, the tune is $\mathbf{6 . 2}$
\square Consider dipole error of $\mathbf{1 m r a d}$
The maximum orbit distortion in dipoles is $u_{0}=\frac{\sqrt{6 \cdot 6}}{2 \sin (6.2 \pi)} \cdot 10^{-3} \approx 5 \mathrm{~mm}$
\square For quadrupole displacement giving the same 1mrad kick (and betas of 30 m) the maximum orbit distortion is 25 mm , to be compared to magnet radius of 105 mm

- In the ESRF storage ring, the beta function is $\mathbf{1 . 5 m}$ in the dipoles and $\mathbf{3 0 m}$ in the quadrupoles, the horizontal tune is $\mathbf{3 6 . 4 4}$
- Consider dipole error of 1mrad
- Maximum orbit distortion in dipoles

$$
u_{0}=\frac{\sqrt{1.5 \cdot 1.5}}{2 \sin (36.44 \pi)} \cdot 10^{-3} \approx 1 \mathrm{~mm}
$$

\square For quadrupole displacement with $\mathbf{1 m m}$, the distortion is $u_{0} \approx 8 \mathrm{~mm}$!!!

- Magnet alignment is critical
- Consider random distribution of errors in N magnets
\square By squaring the orbit distortion expression and averaging over the angles (considering uncorrelated errors), the expectation (rms) value is given by

$$
u_{\mathrm{rms}}(s)=\frac{\sqrt{\beta(s)}}{2 \sqrt{2}|\sin (\pi Q)|}\left(\sum_{i} \sqrt{\beta_{i}} \theta_{i}\right)_{\mathrm{rms}}=\frac{\sqrt{N \beta(s) \beta_{\mathrm{rms}}}}{2 \sqrt{2}|\sin (\pi Q)|} \theta_{\mathrm{rms}}
$$

- Example:
\square In the SNS ring, there are $\mathbf{3 2}$ dipoles and $\mathbf{5 4}$ quadrupoles
\square The rms value of the orbit distortion in the dipoles

$$
u_{\mathrm{rms}}^{\mathrm{dip}}=\frac{\sqrt{6 \cdot 6} \sqrt{32}}{2 \sqrt{2} \sin (6.2 \pi)} \cdot 10^{-3} \approx 2 \mathrm{~cm}
$$

\square In the quadrupoles, for equivalent kick

$$
u_{\mathrm{rms}}^{\mathrm{quad}}=\frac{\sqrt{30 \cdot 30} \sqrt{54}}{2 \sqrt{2} \sin (6.2 \pi)} \cdot 10^{-3} \approx 13 \mathrm{~cm}
$$

- Place horizontal and vertical dipole correctors and beam position monitors close to focusing and defocusing quads, respectively

- Measure orbit in BPMs and minimize orbit distortion
\square Globally
- Harmonic, minimizing components of the orbit frequency response after a Fourier analysis
- Most efficient corrector (MICADO), finding the most efficient corrector for minimizing the rms orbit
- Least square minimization using the orbit response matrix of the correctors
- Sliding Bumps
- Singular Value

Decomposition (SVD)

Orbit bumps: 2-bump

- Consider a cell, where correctors are placed close to the focusing quads
The orbit shift at the $2^{\text {nd }}$ corrector is $\delta u_{2}=\sqrt{\beta_{1} \beta_{2}} \sin \left(\psi_{12}\right) \theta_{1}$
- This orbit error can be eliminated by choosing a phase advance equal to $\boldsymbol{\pi}$ between correctors
- The angle should satisfy the following equation

$$
\theta_{2}=\delta u_{2}^{\prime}=\sqrt{\frac{\beta_{1}}{\beta_{2}}}\left[\cos \left(\psi_{12}\right) \theta_{1}-\alpha_{2} \sin \left(\psi_{12}\right)\right]=\sqrt{\frac{\beta_{1}}{\beta_{2}}} \theta_{1}
$$

Orbit bumps: 3-bump

- 3-bump: works for any phase advance if the three correctors satisfy

$$
\frac{\sqrt{\beta_{1}}}{\sin \psi_{23}} \theta_{1}=\frac{\sqrt{\beta_{2}}}{\sin \psi_{31}} \theta_{2}=\frac{\sqrt{\beta_{3}}}{\sin \psi_{12}} \theta_{3}
$$

- Need large number of correctors
- No control of the angles at the entrance and exit of the bump

Orbit bumps: 4-bump

$$
\begin{aligned}
& \theta_{1}=\frac{1}{\sqrt{\beta_{1} \beta_{s}}} \frac{\cos \psi_{2 s}-\alpha_{s} \sin \psi_{2 s}}{\sin \psi_{12}} x_{s}-\sqrt{\frac{\beta_{s}}{\beta_{1}}} \frac{\sin \psi_{2 s}}{\sin \psi_{12}} x_{s}^{\prime} \\
& \theta_{2}=\frac{1}{\sqrt{\beta_{2} \beta_{s}}} \frac{\cos \psi_{1 s}-\alpha_{s} \sin \psi_{1 s}}{\sin \psi_{12}} x_{s}+\sqrt{\frac{\beta_{s}}{\beta_{2}}} \frac{\sin \psi_{1 s}}{\sin \psi_{12}} x_{s}^{\prime}
\end{aligned}
$$

$$
\theta_{3}=\frac{1}{\sqrt{\beta_{3} \beta_{s}}} \frac{\cos \psi_{s 4}-\alpha_{s} \sin \psi_{s 4}}{\sin \psi_{34}} x_{s}-\sqrt{\frac{\beta_{s}}{\beta_{3}}} \frac{\sin \psi_{s 4}}{\sin \psi_{34}} x_{s}^{\prime}
$$

$$
\theta_{4}=\frac{1}{\sqrt{\beta_{4} \beta_{s}}} \frac{\cos \psi_{s 3}-\alpha_{s} \sin \psi_{s 3}}{\sin \psi_{34}} x_{s}+\sqrt{\frac{\beta_{s}}{\beta_{4}}} \frac{\sin \psi_{s 3}}{\sin \psi_{34}} x_{s}^{\prime}
$$

Singular Value Decomposition

Correctors

$$
A=U * W * V^{\top}
$$

Response

$=$ Matrix
A

Inverse Response Matrix

$$
A^{-1}=V * 1 / W * U^{\top}
$$

Orbit feedback

- Closed orbit stabilization performed using slow and fast orbit feedback system.
- Slow feedback operates every few seconds and uses complete set of BPMs for both planes
\square Efficient in correcting distortion due to current decay in magnets or other slow processes
\square Fast orbit correction system operates in a wide frequency range
\square correcting distortions induced by quadrupole and girder vibrations (up to 10 kHz for the ESRF)
- Local feedback systems used to damp oscillations in areas where beam stabilization is critical (interaction points, insertion devices)

Summary of integrated rms beam motion ($1-100 \mathrm{~Hz}$) with FOFB and comparison with 10% beam stability target

	FOFB BW	Horizontal	Vertical
ALS	40 Hz	$<2 \mu \mathrm{~m}$ in $\mathrm{H}(30 \mu \mathrm{~m})^{*}$	$<1 \mu \mathrm{~m}$ in $\mathrm{V}(2.3 \mu \mathrm{~m})^{*}$
APS	60 Hz	$<3.2 \mu \mathrm{~m}$ in $\mathrm{H}(6 \mu \mathrm{~m})^{* *}$	$<1.8 \mu \mathrm{~m}$ in $\mathrm{V}(0.8 \mu \mathrm{~m})^{* *}$
Diamond	100 Hz	$<0.9 \mu \mathrm{~m}$ in $\mathrm{H}(12 \mu \mathrm{~m})$	$<0.1 \mu \mathrm{~m}$ in $\mathrm{V}(0.6 \mu \mathrm{~m})$
ESRF	100 Hz	$<1.5 \mu \mathrm{~m}$ in $\mathrm{H}(40 \mu \mathrm{~m})$	$\sim 0.7 \mu \mathrm{~m}$ in $\mathrm{V}(0.8 \mu \mathrm{~m})$
ELETTRA	100 Hz	$<1.1 \mu \mathrm{~m}$ in $\mathrm{H}(24 \mu \mathrm{~m})$	$<0.7 \mu \mathrm{~m}$ in $\mathrm{V}(1.5 \mu \mathrm{~m})$
SLS	100 Hz	$<0.5 \mu \mathrm{~m}$ in $\mathrm{H}(9.7 \mu \mathrm{~m})$	$<0.25 \mu \mathrm{~m}$ in $\mathrm{V}(0.3 \mu \mathrm{~m})$
SPEAR3	60 Hz	$\sim 1 \mu \mathrm{~m}$ in $\mathrm{H}(30 \mu \mathrm{~m})$	$\sim 1 \mu \mathrm{~m}$ in $\mathrm{V}(0.8 \mu \mathrm{~m})$

\square Trends on Orbit Feedback
\square restriction of tolerances w.r.t. to beam size and divergence
** up to 200 Hz

- higher frequencies ranges
- integration of XBPMs
- feedback on beamlines components

$\sim 0.1 \mu \mathrm{~m}$ stability routinely achieved in V
P. Raimondi 2014
$\sim 1.0 \mu \mathrm{~m}$ stability routinely achieved in $\mathrm{H}_{\text {The }} \mathrm{H}$

Beam threading

- Threading the beam round the LHC ring (very first commissioning)
\square One beam at a time, one hour per beam.
\square Collimators were used to intercept the beam (1 bunch, 2×109 protons)
\square Beam through 1 sector ($1 / 8$ ring) \rightarrow correct traject \sim mor nnon nonlimntn. and move on Beam 2 threading

BPM availability ~ 99\%

SNS: A proton ring with kinetic energy of 1 GeV and a circumference of 248 m has 18, 1m-long focusing quads with gradient of $5 \mathrm{~T} / \mathrm{m}$. In one of the quads, the horizontal and vertical beta function is of $\mathbf{1 2 m}$ and $\mathbf{2 m}$ respectively. The rms beta function in both planes on the focusing quads is $\mathbf{8 m}$. With a horizontal tune of $\mathbf{6 . 2 3}$ and a vertical of 6.2 , compute the expected horizontal and vertical orbit distortions on the single focusing quad given by horizontal and by vertical misalignments of 1mm in all the quads. What happens to the horizontal and vertical orbit distortions if the horizontal tune drops to $\mathbf{6 . 1}$ and $\mathbf{6 . 0 1}$?

Three correctors are placed at locations with phase advance of $\boldsymbol{\pi} \mathbf{4}$ between them and beta functions of 12, $\mathbf{2}$ and $\mathbf{1 2 m}$. How are the corrector kicks related to each other in order to achieve a closed 3-bump.

Problem 3

SPS: Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and defocusing quads of $\mathbf{1 5} \mathbf{T} / \mathbf{m}$, with a horizontal and vertical beta of $\mathbf{1 0 8 m}$ and $\mathbf{3 0 m}$ in the focusing quads which are $\mathbf{3 0 m}$ and $\mathbf{1 0 8 m}$ for the defocusing ones. The tunes of the machine are $\mathbf{Q x}=\mathbf{2 0 . 1 3}$ and $\mathbf{Q y}=\mathbf{2 0 . 1 8}$. Due to a mechanical problem, one focusing quadrupole was slowly sinking down in 2016, resulting in an increasing closed orbit distortion wrt a reference taken in the beginning of the year.

- By how much the quadrupole had shifted down when the maximum vertical closed orbit distortion amplitude in defocusing quadrupoles reached 4 mm ?
- Why was there no change of the horizontal orbit measured?
- How big would have been the maximum closed orbit distortion amplitude if it would have been a defocusing quadrupole?

Difference orbit wrt reference (18.08.2016)

- Closed orbit distortion (steering error)
\square Beam orbit stability importance
\square Imperfections leading to closed orbit distortion
\square Interlude: dispersion and chromatic orbit
\square Effect of single and multiple dipole kicks
\square Closed orbit correction methods
- Optics function distortion (gradient error)
\square Imperfections leading to optics distortion
\square Tune-shift and beta distortion due to gradient errors
\square Gradient error correction

```
\square Coupling error
Coupling errors and their effect
\squareCounling correction
Chromaticity
```

- Optics functions perturbation can induce aperture restrictions
\square Tune perturbation can lead to dynamic aperture loss
\square Broken super-periodicity \rightarrow excitation of all resonances
\square In a ring made out of N identical cells, only resonances that are integer multiples of N can be excited

- Causes

\square Errors in quadrupole strengths (random and systematic)
\square Injection elements
\square Higher-order multi-pole magnets and errors

- Observables
\square Tune-shift
\square Beta-beating
\square Excitation of integer and half integer resonances

Gradient error

- Consider the transfer matrix for 1-turn

$$
\mathcal{M}_{0}=\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha_{0} \sin (2 \pi Q) & \beta_{0} \sin (2 \pi Q) \\
-\gamma_{0} \sin (2 \pi Q) & \cos (2 \pi Q)-\alpha_{0} \sin (2 \pi Q)
\end{array}\right)
$$

\square Consider a gradient error in a quad. In thin element approximation the quad matrix with and without error are

$$
m_{0}=\left(\begin{array}{cc}
1 & 0 \\
-K_{0}(s) d s & 1
\end{array}\right) \text { and } m=\left(\begin{array}{cc}
1 & 0 \\
-\left(K_{0}(s)+\delta K\right) d s & 1
\end{array}\right)
$$

- The new 1-turn matrix is $\mathcal{M}=m m_{0}^{-1} \mathcal{M}_{0}=\left(\begin{array}{cc}1 & 0 \\ -\delta K d s & 1\end{array}\right) \mathcal{M}_{0}$ which yields

$$
\mathcal{M}=\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha_{0} \sin (2 \pi Q) & \beta_{0} \sin (2 \pi Q) \\
\delta K d s\left(\cos (2 \pi Q)-\alpha_{0} \sin (2 \pi Q)\right)-\gamma_{0} \sin (2 \pi Q) & \cos (2 \pi Q)-\left(\delta K d s \beta_{0}+\alpha_{0}\right) \sin (2 \pi Q)
\end{array}\right)
$$

- Consider a new matrix after 1 turn with a new tune $\chi=2 \pi(Q+\delta Q)$

$$
\mathcal{M}^{\star}=\left(\begin{array}{cc}
\cos (\chi)+\alpha_{0} \sin (\chi) & \beta_{0} \sin (\chi) \\
-\gamma_{0} \sin (\chi) & \cos (\chi)-\alpha_{0} \sin (\chi)
\end{array}\right)
$$

- The traces of the two matrices describing the 1-turn should be equal

$$
\operatorname{Tra}\left(\mathcal{M}^{\star}\right)=\operatorname{Tra}(\mathcal{M})
$$

which gives $2 \cos (2 \pi Q)-\delta K d s \beta_{0} \sin (2 \pi Q)=2 \cos (2 \pi(Q+\delta Q))$

- Developing the right hand side

$$
\cos (2 \pi(Q+\delta Q))=\cos (2 \pi Q) \underbrace{\cos (2 \pi \delta Q}_{1})-\sin (2 \pi Q) \underbrace{\sin (2 \pi \delta Q)}_{2 \pi \delta Q}
$$

and finally $4 \pi \delta Q=\delta K d s \beta_{0}$

- For a quadrupole of finite length, we have $\delta Q=\frac{1}{4 \pi} \int_{s_{0}}^{s_{0}+l} \delta K \beta_{0} d s$
- On the other hand

$$
\begin{aligned}
& a_{12}=\sqrt{\beta_{0} \beta\left(s_{1}\right)} \sin \psi, b_{12}=\sqrt{\beta_{0} \beta\left(s_{1}\right)} \sin (2 \pi Q-\psi) \\
& \text { and } m_{12}^{\star}=\underbrace{b_{11} a_{12}+b_{12} a_{22}}_{m_{12}}-a_{12} b_{12} \delta K d s=m_{12}-a_{12} b_{12} \delta K d s
\end{aligned}
$$

- Equating the two terms

$$
\delta \beta \sin (2 \pi Q)+2 \pi \delta Q \beta_{0} \cos (2 \pi Q)=-a_{12} b_{12} \delta K d s
$$

- Integrating through the quad

$$
\frac{\delta \beta}{\beta_{0}}=-\frac{1}{2 \sin (2 \pi Q)} \int_{s_{1}}^{s_{1}+l} \beta(s) \delta K(s) \cos (2 \psi-2 \pi Q) d s
$$

- There is also an equivalent effect on dispersion
- Consider $\mathbf{1 8}$ focusing quads in the SNS ring with $\mathbf{0 . 0 1 T} / \mathbf{m}$ gradient error. In this location $\beta=\mathbf{1 2 m}$. The length of the quads is $\mathbf{0 . 5 m}$ and the magnetic rigidity is 5.6567 Tm
\square The tune-shift is $\delta Q=\frac{1}{4 \pi} 18 \cdot 12 \frac{0.01}{5.6567} 0.5=0.015$
- For a random distribution of errors the beta beating is

$$
\frac{\delta \beta}{\beta_{0 \text { rms }}}=-\frac{1}{2 \sqrt{2}|\sin (2 \pi Q)|}\left(\sum_{i} \delta k_{i}^{2} \beta_{i}^{2}\right)^{1 / 2}
$$

\square Optics functions beating $>\mathbf{2 0 \%}$ by random errors (1% of gradient) in high dispersion quads of the SNS ring ... justifies correctors strengths

Example: Gradient error in ESRF

- Consider 128 focusing arc quads in the ESRF storage ring with $0.001 \mathrm{~T} / \mathrm{m}$ gradient error. In this location $\beta=\mathbf{3 0 m}$. The length of the quads is around $\mathbf{1 m}$. The magnetic rigidity of the ESRF is 20Tm.

- The tune-shift is

$$
\delta Q=\frac{1}{4 \pi} 128 \cdot 30 \frac{0.001}{20} 1=0.014
$$

- Windings on the core of the quadrupoles or individual correction magnets (trim windings or quadrupoles)
- Compute tune-shift and optics function beta distortion
- Move working point close to integer and half integer resonance
- Minimize beta wave or quadrupole resonance width with trim windings
- Individual powering of trim windings can provide flexibility and beam based alignment of BPM
- Modern methods of response matrix analysis (LOCO) can fit optics model to real machine and correct optics distortion

J. Safranek et al.

R. Bartolini, LER2010

Modified version of LOCO with constraints on gradient variations (see ICFA NewsI, Dec' 07)
β - beating reduced to 0.4% rms
Quadrupole variation reduced to 2%
Results compatible with mag. meas. and calibrations

LOCO allowed remarkable progress with the correct implementation of the linear optics

Example: LHC optics corrections

- At $\beta^{*}=40 \mathrm{~cm}$, the bare machine has a beta-beat of more than 100%
- After global and local corrections, β-beating was reduced to few $\%$

R. Tomas et al. 2016

Outline

\square Closed orbit distortion (steering error)
\square Beam orbit stability importance
\square Imperfections leading to closed orbit distortion
\square Interlude: dispersion and chromatic orbit
\square Effect of single and multiple dipole kicks
\square Closed orbit correction methods
\square Optics function distortion (gradient error)
\square Imperfections leading to optics distortion
\square Tune-shift and beta distortion due to gradient errors
\square Gradient error correction

- Coupling error

Coupling errors and their effect
Coupling correction

- Combine the matrices for each plane

$$
\begin{aligned}
& \binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{ll}
C_{x}(s) & S_{x}(s) \\
C_{x}^{\prime}(s) & S_{x}^{\prime}(s)
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}} \\
& \binom{y(s)}{y^{\prime}(s)}=\left(\begin{array}{ll}
C_{y}(s) & S_{y}(s) \\
C_{y}^{\prime}(s) & S_{y}^{\prime}(s)
\end{array}\right)\binom{y_{0}}{y_{0}^{\prime}}
\end{aligned}
$$

to get a total 4 x 4 matrix

Coupling error

- Coupling errors lead to transfer of horizontal betatron motion and dispersion into the vertical plane
- Coupling may result from rotation of a quadrupole, so that the field contains a skew component

$+$

- A vertical beam offset in a sextupole has the same effect as a skew quadrupole. The sextupole field for the displacement of a particle $\boldsymbol{\delta} \boldsymbol{y}$ becomes

$$
\begin{aligned}
& B_{x}=k_{2} x \bar{y}=k_{2} x y+\underbrace{k_{2} x \delta y} \\
& B_{y}=\frac{1}{2} k_{2}\left(x^{2}-\bar{y}^{2}\right)=-\underbrace{}_{k_{2} y \delta y}+\frac{1}{2} k_{2}\left(x^{2}-y^{2}\right)-\frac{1}{2} k_{2} \delta y^{2}
\end{aligned}
$$

- Betatron motion is coupled in the presence of skew quadrupoles
- The field is $\left(B_{x}, B_{y}\right)=k_{s}(x, y)$ and Hill' s equations are coupled
- Motion still linear with two new eigen-mode tunes, which are always split. In the case of a thin skew quad:

$$
\delta Q \propto\left|k_{s}\right| \sqrt{\beta_{x} \beta_{y}}
$$

- Coupling coefficients represent the degree of coupling

$$
\left|C_{ \pm}\right|=\left|\frac{1}{2 \pi} \oint d s k_{s}(s) \sqrt{\beta_{x}(s) \beta_{y}(s)} e^{i\left(\psi_{x} \pm \psi_{y}-\left(Q_{x} \pm Q_{y}-q_{ \pm}\right) 2 \pi s / C\right)}\right|
$$

- As motion is coupled, vertical dispersion and optics function distortion appears
- Introduce skew quadrupole correctors
\square Correct globally/locally coupling coefficient (or resonance driving term)
- Correct optics distortion (especially vertical dispersion)
- Move working point close to coupling resonances and repeat
- Correction especially important for flat beams
- Note that (vertical) orbit correction may be critical for reducing coupling

Example: SNS coupling correction

- Local decoupling by super period using 16 skew quadrupole correctors
- Results of $\mathrm{Q}_{\mathrm{x}}=6.23 \mathrm{Q}_{\mathrm{y}}=6.20$ after a 2 mrad quad roll
- Additional 8 correctors used to compensate vertical dispersion

Vertical dispersion

- The equation of motion for a particle with momentum p is

$$
\frac{d^{2} y}{d s^{2}}=\frac{e}{p} B_{x}
$$

\square For small energy deviation δ, p is related to the reference momentum

$$
p \approx(1+\delta) p_{0}
$$

\square We can write for the horizontal field (to first order in the derivatives)

$$
B_{x} \approx B_{0 x}+y \frac{\partial B_{x}}{\partial y}+x \frac{\partial B_{x}}{\partial x}
$$

\square If we consider a particle following an off-momentum closed orbit

$$
y=\eta_{y} \delta, \quad \text { and } \quad x=\eta_{x} \delta
$$

- Combining the above equations, we find to first order in

$$
\frac{d^{2} \eta_{y}}{d s^{2}}-k_{1} \eta_{y} \approx-k_{0 s}+k_{1 s} \eta_{x}
$$

Vertical dispersion from errors

- The previous equation is similar to the equation of the closed orbit

$$
\frac{d^{2} y_{c o}}{d s^{2}}-k_{1} y_{c o} \approx-k_{0 s}+k_{1 s} x_{c o}
$$

\square It is thus reasonable to generalize the relationship between the closed orbit and the quadrupole misalignments, to find

$$
\begin{aligned}
\left\langle\frac{\eta_{y}^{2}}{\beta_{y}}\right\rangle= & \frac{\Delta y_{Q}^{2}}{8 \sin ^{2} \pi Q_{y}} \sum_{\text {quads }} \beta_{y}\left(k_{1} L\right)^{2}+\frac{\left\langle\Delta \theta_{Q}^{2}\right\rangle}{8 \sin ^{2} \pi Q_{y}} \sum_{\text {quads }} \eta_{x}^{2} \beta_{y}\left(k_{1} L\right)^{2}+ \\
& \frac{\left\langle\Delta y_{s}^{2}\right\rangle}{8 \sin ^{2} \pi Q_{y}} \sum_{\text {sexts }} \eta_{x}^{2} \beta_{y}\left(k_{2} L\right)^{2}
\end{aligned}
$$

\square Skew dipole terms assumed arise from vertical misalignments of quadrupoles
\square Skew quadrupoles assumed to come from tilts on the quads and vertical misalignments of sextupoles
\square All alignment errors are considered uncorrelated.

Impact on vertical emittance

- The natural emittance in the vertical plane can be written as the horizontal one

$$
\varepsilon_{y}=C_{q} \gamma^{2} \frac{I_{5 y}}{j_{y} I_{2}}
$$

- The synchrotron radiation integrals are given by

$$
I_{5 y}=\oint \frac{\mathcal{H}_{y}}{|\rho|^{3}} d s \approx\left\langle\mathcal{H}_{y}\right\rangle \oint \frac{1}{|\rho|^{3}} d s=\left\langle\mathcal{H}_{y}\right\rangle I_{3} \quad \text { and } \quad I_{2}=\oint \frac{1}{\rho^{2}} d s
$$

with the dispersion invariant $\mathcal{H}_{y}=\gamma_{y} \eta_{y}^{2}+2 \alpha_{y} \eta_{y} \eta_{p y}+\beta_{y} \eta_{p y}^{2}$

- Then the vertical emittance is $\varepsilon_{y} \approx C_{q} \gamma^{2}\left\langle\mathcal{H}_{y}\right\rangle \frac{I_{3}}{j_{y} I_{2}}$
or in terms of energy spread $\varepsilon_{y} \approx \frac{j_{z}}{j_{y}}\left\langle\mathcal{H}_{y}\right\rangle \sigma_{\delta}^{2}$ with $\sigma_{\delta}^{2}=C_{q} \gamma^{2} \frac{I_{3}}{j_{z} I_{2}}$
- Note that $\left\langle\frac{\eta_{y}^{2}}{\beta_{y}}\right\rangle=\frac{1}{2}\left\langle\mathcal{H}_{y}\right\rangle$ so that finally

$$
\varepsilon_{y} \approx 2 \frac{j_{z}}{j_{y}}\left\langle\frac{\eta_{y}^{2}}{\beta_{y}}\right\rangle \sigma_{\delta}^{2}
$$

Methods for coupling control

- Measurement or estimation of BPM roll errors to avoid "fake" vertical dispersion measurement.
- Realignment of girders / magnets to remove sources of coupling and vertical dispersion.
- Model based corrections:
\square Establish lattice model: multi-parameter fit to orbit response matrix (using LOCO or related methods) to obtain a calibrated model.
\square Use calibrated model to perform correction or to minimize derived lattice parameters (e.g. vertical emittance) in simulation and apply to machine.
\square Application to coupling control: correction of vertical dispersion, coupled response matrix, resonance drive terms using skew quads and orbit bumps, or direct minimization of vertical emittance in model.
- Model independent corrections:
\square empirical optimization of observable quantities related to coupling (e.g. beam size, beam life time).
- Coupling control in operation: on-line iteration of correction

Example: ESRF coupling correction

\square Local decoupling using 16 skew quadrupole correctors and coupled response matrix reconstruction

- Achieved correction of below 0.25% reaching vertical emittance of below 4pm

Vertical emittance at PSI

- Vertical emittance reduced to a minimum value of $\mathbf{0 . 9} \pm \mathbf{0 . 4} \mathbf{p m}$
- Achieved by careful re-alignment campaign and different methods of coupling suppression using 36 skew quadrupoles (combination of response matrix based correction and random walk optimisation)

Random walk optimisation

- Coupling minimization at SLS observable: vertical beam size from monitor
- Knobs: 24 skew quadrupoles
- Random optimization: trial \& error (small steps)
- Start: model based correction: $\varepsilon_{y}=\mathbf{1 . 3} \mathbf{~ p m}$
- 1 hour of random optimization $\varepsilon_{y} \rightarrow \mathbf{0 . 9} \pm \mathbf{0 . 4} \mathbf{~ p m}$

\square Measured coupled response matrix off-diagonal terms were reduced after optimization
- Model based correction limited by model deficiencies rather than measurement errors.

Coupling control in operation

- Keep vertical emittance constant during insertion device gap changes
- Example from DIAMOND
\square Offset δ SQ to ALL skew quads generates dispersion wave and increases vert. emittance without coupling.Skew quads from LOCO for low vert .emit. of ~ 3 pmIncrease vertical emit to 8 pm by increasing the offset $\delta S Q$Use the relation between vertical emittance and $\delta \mathrm{SQ}$ in a slow feedback loop (5 Hz)

\square Closed orbit distortion (steering error)
\square Beam orbit stability importance
\square Imperfections leading to closed orbit distortion
\square Interlude: dispersion and chromatic orbit
\square Effect of single and multiple dipole kicks
\square Closed orbit correction methods
\square Optics function distortion (gradient error)
\square Imperfections leading to optics distortion
\square Tune-shift and beta distortion due to gradient errors
\square Gradient error correction
\square Coupling error
\square Coupling errors and their effect
\square Coupling correction

- Chromaticity

- Linear equations of motion depend on the energy (term proportional to dispersion)
- Chromaticity is defined as: $\xi_{x, y}=\frac{\delta Q_{x, y}}{\delta p / p}$

ㅁ Recall that the gradient is $k=\frac{G}{B \rho}=\frac{e G}{p} \rightarrow \frac{\delta k}{k}=\mp \frac{\delta p}{p}$

- This leads to dependence of tunes and optics function on the particle's momentum
- For a linear lattice the tune shift is:

$$
\delta Q_{x, y}=\frac{1}{4 \pi} \oint \beta_{x, y} \delta k(s) d s=-\frac{1}{4 \pi} \frac{\delta p}{p} \oint \beta_{x, y} k(s) d s
$$

- So the natural chromaticity is:

$$
\xi_{x, y}=-\frac{1}{4 \pi} \oint \beta_{x, y} k(s) d s
$$

- Sometimes the chromaticity is quoted as $\overline{\xi_{x, y}}=\frac{\xi_{x, y}}{Q_{x, y}}$
- In the SNS ring, the natural chromaticity is -7
- Consider that momentum spread $\delta \boldsymbol{p} / \boldsymbol{p}= \pm \mathbf{1 \%}$
- The tune-shift for off-momentum particles is

$$
\delta Q_{x, y}=\xi_{x, y} \delta p / p= \pm 0.07
$$

- In order to correct chromaticity introduce particles which can focus off-momentum particle

Sextupoles

Chromaticity from sextupoles

- The sextupole field component in the x-plane is: $B_{y}=\frac{S}{2} x^{2}$
- In an area with non-zero dispersion $x=x_{0}+D \frac{\delta P}{P}$
- Then the field is $B_{y}=\frac{S}{2} x_{0}^{2}+\underbrace{S D \frac{\delta P}{P} x_{0}}_{\text {quadrupole }}+\underbrace{\frac{S}{2} D^{2} \frac{\delta P^{2}}{P}}_{\text {dipole }}$
- Sextupoles introduce an equivalent focusing correction $\delta k=S D \frac{\delta P}{P}$
- The sextupole induced chromaticity is

$$
\xi_{x, y}^{S}=-\frac{1}{4 \pi} \oint \mp \beta_{x, y}(s) S(s) D_{x}(s) d s
$$

- The total chromaticity is the sum of the natural and sextupole induced chromaticity

$$
\xi_{x, y}^{\mathrm{tot}}=-\frac{1}{4 \pi} \oint \beta_{x, y}(s)\left(k(s) \mp S(s) D_{x}(s)\right) d s
$$

- Introduce sextupoles in high-dispersion areas
\square Tune them to achieve desired chromaticity
a Two families are able to control horizontal and vertical chromaticity
\square Sextupoles introduce non-linear fields (chaotic motion)
a Sextupoles introduce tune-shift with amplitude
- Example:
\square The SNS ring has natural chromaticity of -7
\square Placing two sextupoles of length $\mathbf{0 . 3 m}$ in locations where $\beta=\mathbf{1 2 m}$, and the dispersion $D=\mathbf{4 m}$
\square For getting $\mathbf{0}$ chromaticity, their strength should be $S=\frac{7 \cdot 4 \pi}{12 \cdot 4 \cdot 2 \cdot 0.3} \approx 3 \mathrm{~m}^{-3}$ or a gradient of $\mathbf{1 7 . 3} \mathbf{~ T} / \mathbf{m}^{2}$

Two vs. four sextupole families

\square Two families of sextupoles not enough for correcting off-momentum optics functions' distortion and second order chromaticity
\square Possible solutions:

- Place sextupoles accordingly to eliminate second order effects (difficult)
- Use more families (4 in the case of the SNS ring)
\square Large optics function distortion for momentum spreads of $\pm 0.7 \%$, when using only two families of sextupoles; Correction of off-momentum optics beating with four families

SPS: Consider a 400GeV proton synchrotron with $1083.22 \mathrm{~m}-l o n g$ focusing and defocusing quads of $\mathbf{1 5} \mathbf{T} / \mathbf{m}$, with a horizontal and vertical beta of $\mathbf{1 0 8 m}$ and $\mathbf{3 0 m}$ in the focusing quads, and horizontal and vertical beta of $\mathbf{3 0 m}$ and $\mathbf{1 0 8 m}$ for the defocusing ones.

- Find the tune change for systematic gradient errors of $\mathbf{1 \%}$ in the focusing and $\mathbf{0 . 5 \%}$ in the defocusing quads.
- What is the chromaticity of the machine?

Problem 5

CLIC pre-damping rings: Consider a 2.86 GeV electron storage ring with a racetrack shape of 389 m circumference. Each arc is composed of $\mathbf{1 7}$ regular "TME" cells, each consisting of 2 dipoles, 2 focusing and 2 defocusing quadrupoles. The beta functions are around $\beta_{\mathrm{x}}=\mathbf{4 m}(\mathbf{2 m})$ and $\beta_{\mathbf{y}}=\mathbf{4 . 2 m}(\mathbf{9 m})$ in the focusing (defocusing) quadrupoles and the normalized quadrupole gradients are $\mathbf{2 . 4 9} / \mathbf{m}^{\mathbf{2}}\left(\mathbf{2 . 0 7} / \mathbf{m}^{\mathbf{2}}\right)$. The quadrupoles have a length of $\mathbf{0 . 2 8 m}$. The natural chromaticity of the machine is about $\mathbf{- 1 9}$ and $\mathbf{- 2 3}$ in the horizontal and vertical plane, respectively.

- How big is the chromaticity contribution from the arcs?
- Where would you install sextupole magnets for correcting chromaticity?
- Can you give an estimation for the required sextupole gradient assuming the sextupoles have the same length as the quadrupoles?

Problem 6

Derive an expression for the resulting magnetic field when a normal sextupole with field $\mathbf{B}=\mathbf{S} / \mathbf{2} \mathbf{x}^{\mathbf{2}}$ is displaced by $\boldsymbol{\delta x}$ from its center position. At what type of fields correspond the resulting components? Do the same for an octupole with field $\mathbf{B}=$ $\mathbf{O} / \mathbf{3} \mathbf{x}^{\mathbf{3}}$. What is the leading order multi-pole field error when displacing a general $\mathbf{2 n}$ pole magnet?

