
L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
F

e
b

ru
a

ry
 2

0
1

7

1

Linear imperfections and 

correction

Hannes BARTOSIK and Yannis PAPAPHILIPPOU

with help from Fanouria ANTONIOU
Accelerator and Beam Physics group - Beams Department

CERN

Joint University Accelerator School 

Archamps, FRANCE

1 February 2017



L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
F

e
b

ru
a

ry
 2

0
1

7

2

References

 O. Brüning, Linear imperfections, CERN Accelerator School, 

Intermediate Level, Zeuthen 2003, 

http://cdsweb.cern.ch/record/941313/files/p129.pdf

 H. Wiedemann, Particle Accelerator Physics I, Springer, 1999.

 K.Wille, The physics of Particle Accelerators, Oxford University 

Press, 2000.

 S.Y. Lee, Accelerator Physics, 2nd edition, World Scientific, 2004

http://cdsweb.cern.ch/record/941313/files/p129.pdf


L
in

e
a

r 
im

p
e
rf

e
c
ti
o

n
s
 a

n
d

 c
o

rr
e

c
ti
o
n

, 
J
U

A
S

, 
F

e
b

ru
a

ry
 2

0
1

7

3

Reminder of 

transverse beam 

dynamics
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Equation reminder

: total energy

: kinetic energy

: momentum 

: reduced velocity

: reduced energy

: reduced momentum

Lorentz equation
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Reference trajectory

 Cartesian coordinates not useful to describe motion in a circular 

accelerator (not true for linacs)

 A system following an ideal path along the accelerator is used 

(Frenet reference system)

 The curvature vector is

 From Lorentz equation

where we used the curvature vector definition and

 Using , the ideal path of the 

reference trajectory is defined by

Ideal path

Particle trajectory

ρ

x

y

s

x
y
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Beam guidance

 Consider uniform magnetic field in a direction 
perpendicular to particle motion. From the reference trajectory 
equation, after developing the cross product and considering that the 
transverse velocities , the radius of curvature is

 We define the magnetic rigidity

 In more practical units

 For ions with charge multiplicity n and atomic number A, the energy 
per nucleon is
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Dipoles

 Consider ring for particles 

with energy E with N dipoles 

of length L (or effective length 

l, i.e. measured on beam path)

 Bending angle

 Bending radius 

 Integrated dipole strength

 Note: 
 By choosing a dipole field, the dipole 

length is imposed and vice versa

 The higher the field, the shorter or smaller 
number of dipoles can be used

 The ring circumference (cost) is 
influenced by the field choice

SNS ring dipole

B

θ ρ

l
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Beam focusing

 Consider a particle in a dipole field

 In the horizontal plane

 it performs harmonic oscillations

with frequency

 the horizontal acceleration is described by

 there is a week focusing effect in the horizontal plane

 In the vertical plane, the only force present is gravitation

 Particles are displaced vertically following the usual law 

 With ag ≈ 10 m/s2, the particle is displaced by 18 mm (LHC dipole 

aperture) in 60 ms (few hundred turns in LHC) need focusing!

s = vtx0

reference orbit

particle 

with initial 

offset

y

ρ
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Quadrupoles

 Quadrupoles are focusing in one plane

and defocusing in the other

 The field is

 The resulting force

with the normalised gradient defined as

 In more practical units: 

 Need to alternate focusing and 

defocusing to control the beam, 

i.e. alternating gradient focusing   

v

F

B

F

B
v
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Equations of motion – Linear fields 

 Consider s-dependent fields from dipoles and normal quadrupoles

 The total momentum can be written

 With magnetic rigidity and normalized gradient 

the equations of motion are

 Inhomogeneous equations with s-dependent coefficients

 The term corresponds to the dipole week focusing and  

represents off-momentum particles 
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Hill’s equations

 Solutions are combination of the homogeneous and 

inhomogeneous equations’ solutions

 Consider particles with the design momentum. The 

Equations of motion become 

with

 Hill’s equations of linear transverse particle motion

 Linear equations with s-dependent coefficients (harmonic oscillator 

with time dependent frequency)

 In a ring (or in transport line with symmetries), the coefficients are 

periodic

 Not straightforward to derive analytical solutions for whole accelerator

George Hill
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Betatron motion

 The on-momentum linear betatron motion of a particle in both 

planes, is described by

with the twiss functions

the betatron phase

and the beta function is defined by the envelope equation

 By differentiation, we have that the angle is
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General transfer matrix

 From the position and angle equations it follows that

 Expand the trigonometric formulas and set to get the 

transfer matrix from location 0 to s

with

and                                         the phase advance
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Periodic transfer matrix

 Consider a periodic cell of length C

 The optics functions are

and the phase advance

 The transfer matrix is 

 The cell matrix can be also written as

with and the Twiss matrix
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Tune and working point

 In a ring, the tune is defined from the 1-turn phase advance

i.e. number of betatron oscillations per turn

 Taking the average of the betatron tune around the ring we have in 
smooth approximation

 Extremely useful formula for deriving scaling laws!

 The position of the tunes in a diagram of horizontal versus vertical  
tune is called a working point

 The tunes are imposed by the choice of the quadrupole strengths

 One should try to avoid resonance conditions
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Transverse linear 

imperfections and 

correction
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Outline

 Closed orbit distortion (steering error)

 Beam orbit stability importance

 Imperfections leading to closed orbit distortion

 Interlude: dispersion and chromatic orbit

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

 Coupling error

 Coupling errors and their effect

 Coupling correction

 Chromaticity
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Outline

 Closed orbit distortion (steering error)

 Beam orbit stability importance

 Imperfections leading to closed orbit distortion

 Interlude: dispersion and chromatic orbit

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

 Coupling error

 Coupling errors and their effect

 Coupling correction

 Chromaticity
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Beam orbit stability

 Beam orbit stability is very critical 

 Injection and extraction efficiency of synchrotrons

 Stability of collision point in colliders

 Stability of the synchrotron light spot in the beam lines of light sources

 Consequences of orbit distortion

 Miss-steering of beams, modification of dispersion function, resonance 

excitation, aperture limitations, lifetime reduction, coupling, 

modulation of lattice functions, poor injection/extraction efficiency

 Causes 

 Long term (years - months): ground settling, season changes

 Medium term (days - hours): sun and moon, day-night variations 

(thermal), rivers, rain, wind, refills and start-up, sensor motion, drift of 

electronics, local machinery, filling patterns

 Short term (minutes - seconds): ground vibrations, power supplies, 

experimental magnets, air conditioning, refrigerators/compressors
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Imperfections distorting closed orbit

 Magnetic imperfections distorting the orbit

 Dipole field errors (or energy errors)

 Dipole rolls

 Quadrupole misalignments

 Consider the displacement of a particle δx from the ideal orbit. The 

vertical field in the quadrupole is

 Remark: Dispersion can be interpreted as closed 

orbit distortion for off-momentum particles with

 Effect of orbit errors in any multi-pole magnet

 Feed-down:

quadrupole   dipole

2(n+1)-pole    2n-pole 2(n-1)-pole dipole
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Off-momentum particles in a dipole

 Up to now all particles had the same momentum p0

 What happens for off-momentum particles, i.e. particles with 

momentum p0+Δp?

 Consider a dipole with field B and 

bending radius ρ

 Recall that the magnetic rigidity is 

and for off-momentum particles

 Considering the effective length of the dipole unchanged

 Off-momentum particles get different deflection (different orbit)

θ

p0+Δp

p0

ρ

ρ+Δρ
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Dispersion equation

 Consider the equations of motion for off-momentum particles

 The solution is a sum of the homogeneous (on-momentum) and the 

inhomogeneous (off-momentum) equation solutions

 In that way, the equations of motion are split in two parts

 The dispersion function can be defined as

 The dispersion equation is
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Closed orbit

 Design orbit defined by main dipole field

 On-momentum particles oscillate around design orbit (w/o errors)

 Off-momentum particles are not oscillating around design orbit, but 
around “chromatic” closed orbit, defined by the dispersion function 
times the momentum offset

Design orbit
Design orbit

On-momentum 

particle trajectory Off-momentum 

particle trajectory

Chromatic closed orbit
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Effect of single dipole kick

 Consider a single dipole kick at s=s0

 The coordinates before and after the kick are 

with the 1-turn transfer matrix

 The final coordinates are

and
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Closed orbit from single dipole kick 

 Taking the solutions of Hill’s equations at the location of the kick, 

the orbit will close to itself only if

 This yields the following relations for the invariant and phase (this can 

be also derived by the equations in the previous slide)

 For any location around the ring, the orbit distortion is written as

Maximum distortion amplitude
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Integer and half integer resonance

 Dipole perturbations add-up in 

consecutive turns for 

 Integer tune excites orbit 

oscillations (resonance)

 Dipole kicks get cancelled in 

consecutive turns for 

 Half-integer tune cancels orbit 

oscillations
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Transport of closed orbit distortion

 Consider a transport matrix between positions 1 and 2

 The transport of transverse coordinates is written as

 Consider a single dipole kick at position 1:

 Then, the first equation may be rewritten

 Replacing the coefficient from the general betatron matrix
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Global orbit distortion

 Orbit distortion due to many errors

 By approximating the errors as delta functions in n locations, the 

distortion at i observation points (Beam Position Monitors) is

with the kick produced by the jth error

 Integrated dipole field error 

 Dipole roll

 Quadrupole displacement

Courant and Snyder, 1957

φj
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Example: Orbit distortion in SNS

 In the SNS accumulator ring, the beta function is 6m in the dipoles and 

30m in the quadrupoles, the tune is 6.2

 Consider dipole error of 1mrad

 The maximum orbit distortion in dipoles is

 For quadrupole displacement giving the same 1mrad kick (and betas of 

30m) the maximum orbit distortion is 25mm, to be compared to magnet 

radius of 105mm

βx

βy

ηx

horizontal rms CO

vertical rms CO
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Example: Orbit distortion in ESRF

 In the ESRF storage ring, the 

beta function is 1.5m in the 

dipoles and 30m in the 

quadrupoles, the horizontal 

tune is 36.44

 Consider dipole error of 

1mrad

 Maximum orbit distortion in 

dipoles

 For quadrupole displacement 

with 1mm, the distortion is

 Magnet alignment is critical 

Vertical orbit correction
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Statistical estimation of orbit errors

 Consider random distribution of errors in N magnets

 By squaring the orbit distortion expression and averaging over the 

angles (considering uncorrelated errors), the expectation (rms) value is 

given by

 Example:

 In the SNS ring, there are 32 dipoles and 54 quadrupoles

 The rms value of the orbit distortion in the dipoles

 In the quadrupoles, for equivalent kick
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Correcting the orbit distortion

 Place horizontal and vertical dipole correctors and beam position 

monitors close to focusing and defocusing quads, respectively

 Measure orbit in BPMs and minimize orbit distortion

 Globally

 Harmonic, minimizing components of 

the orbit frequency response after a 

Fourier analysis

 Most efficient corrector (MICADO), 

finding the most efficient corrector for 

minimizing the rms orbit 

 Least square minimization using the 

orbit response matrix of the correctors

 Locally

 Sliding Bumps

 Singular Value 

Decomposition (SVD)
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Orbit bumps: 2-bump

 Consider a cell, where correctors are placed close to the focusing 

quads

 The orbit shift at the 2nd corrector is

 This orbit error can be eliminated by choosing a phase advance 

equal to π between correctors

 The angle should satisfy the following equation 
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Orbit bumps: 3-bump

 3-bump: works for any phase advance if the three correctors satisfy

 Need large number of correctors

 No control of the angles at the entrance and exit of the bump
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Orbit bumps: 4-bump

 4-bump: works for any 

phase advance

 Cancels position and 

angle outside of the bump

 Can be used for aperture 

scanning, extraction 

bumps, …
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Singular Value Decomposition
N monitors / N correctors

N monitors / M correctors
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Orbit feedback

 Closed orbit stabilization performed using slow and fast orbit 

feedback system. 

 Slow feedback operates every few seconds and uses complete set of 

BPMs for both planes

 Efficient in correcting distortion due to current decay in magnets or 

other slow processes

 Fast orbit correction system operates in a wide frequency range

 correcting distortions induced by quadrupole and girder vibrations (up 

to 10kHz for the ESRF) 

 Local feedback systems used to damp oscillations in areas where 

beam stabilization is critical (interaction points, insertion devices)
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Feedback performance

 Trends on Orbit Feedback

 restriction of tolerances w.r.t. to beam size and divergence 

 higher frequencies ranges

 integration of XBPMs

 feedback on beamlines components

FOFB BW Horizontal Vertical

ALS 40 Hz < 2 μm in H (30 μm)* < 1 μm in V (2.3 μm)*

APS 60 Hz < 3.2 μm in H (6 μm)** < 1.8 μm in V (0.8 μm)**

Diamond 100 Hz < 0.9 μm in H (12 μm) < 0.1 μm in V (0.6 μm)

ESRF 100 Hz < 1.5 μm in H (40 μm)  0.7 μm in V (0.8 μm)

ELETTRA 100 Hz < 1.1 μm in H (24 μm) < 0.7 μm in V (1.5 μm)

SLS 100 Hz < 0.5 μm in H (9.7 μm) < 0.25 μm in V (0.3 μm)

SPEAR3 60Hz  1 μm in H (30 μm)  1 μm in V (0.8 μm)

Summary of integrated rms beam motion (1-100 Hz) with FOFB 

and comparison with 10% beam stability target

* up to 500 Hz

** up to 200 Hz

R. Bartolini, LER2010
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Example: Orbit Feedback at ESRF

P. Raimondi 2014
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Beam threading

 Threading the beam round the LHC ring (very first commissioning)

 One beam at a time, one hour per beam.

 Collimators were used to intercept the beam (1 bunch, 2×109 

protons)

 Beam through 1 sector (1/8 ring)  correct trajectory, open collimator 

and move on. Beam 2 threading BPM availability ~ 99%
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Problem 1
SNS: A proton ring with kinetic energy of 1GeV and a circumference of 248m has 
18, 1m-long focusing quads with gradient of 5T/m. In one of the quads, the 
horizontal and vertical beta function is of 12m and 2m respectively. The rms beta
function in both planes on the focusing quads is 8m. With a horizontal tune of 6.23
and a vertical of 6.2, compute the expected horizontal and vertical orbit distortions on 
the single focusing quad given by horizontal and by vertical misalignments of 1mm 
in all the quads. What happens to the horizontal and vertical orbit distortions if the 
horizontal tune drops to 6.1 and 6.01? 

S. Henderson et al. (2005)
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Problem 2
Three correctors are placed at locations with phase advance of π/4 between them and 
beta functions of 12, 2 and 12m. How are the corrector kicks related to each other in 
order to achieve a closed 3-bump.
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Problem 3
SPS: Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and 
defocusing quads of 15 T/m, with a horizontal and vertical beta of 108m and 30m in 
the focusing quads which are 30m and 108m for the defocusing ones. The tunes of 
the machine are Qx=20.13 and Qy=20.18. Due to a mechanical problem, one 
focusing quadrupole was slowly sinking down in 2016, resulting in an increasing 
closed orbit distortion wrt a reference taken in the beginning of the year. 
- By how much the quadrupole had shifted down when the maximum vertical closed 
orbit distortion amplitude in defocusing quadrupoles reached 4 mm?
- Why was there no change of the horizontal orbit measured?
- How big would have been the maximum closed orbit distortion amplitude if it 
would have been a defocusing quadrupole?

vertical BPMs (at defocusing quadrupoles)

Difference orbit wrt reference (18.08.2016)

horizontal BPMs (at focusing quadrupoles)
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Outline

 Closed orbit distortion (steering error)

 Beam orbit stability importance

 Imperfections leading to closed orbit distortion

 Interlude: dispersion and chromatic orbit

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

 Coupling error

 Coupling errors and their effect

 Coupling correction

 Chromaticity
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Gradient error and optics distortion

 Optics functions perturbation can induce aperture 

restrictions

 Tune perturbation can lead to dynamic aperture loss

 Broken super-periodicity  excitation of all resonances

 In a ring made out of N identical cells, only resonances that are integer 

multiples of N can be excited

 Causes
 Errors in quadrupole strengths (random and systematic)

 Injection elements

 Higher-order multi-pole magnets and errors

 Observables
 Tune-shift

 Beta-beating

 Excitation of integer and half integer resonances
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Gradient error

 Consider the transfer matrix for 1-turn

 Consider a gradient error in a quad. In thin element approximation 

the quad matrix with and without error are

 The new 1-turn matrix is

which yields
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Gradient error and tune-shift

 Consider a new matrix after 1 turn with a new tune 

 The traces of the two matrices describing the 1-turn should be equal

which gives

 Developing the right hand side 

and finally 

 For a quadrupole of finite length, we have
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Gradient error and beta distortion

 Consider the unperturbed transfer matrix for one turn

with

 Introduce a gradient perturbation between the two matrices

 Recall that and write the perturbed term as

where we used and
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Gradient error and beta distortion

 On the other hand 

and 

 Equating the two terms 

 Integrating through the quad

 There is also an equivalent effect on dispersion
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Example: Gradient error in SNS

 Consider 18 focusing quads in the SNS ring with 0.01T/m gradient 

error. In this location β=12m. The length of the quads is 0.5m and 

the magnetic rigidity is 5.6567Tm

 The tune-shift is 

 For a random distribution of errors the beta beating is 

 Optics functions beating > 20% by random errors (1% of gradient) in 

high dispersion quads of the SNS ring … justifies correctors strengths
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Example: Gradient error in ESRF 

 Consider 128

focusing arc quads in 

the ESRF storage ring 

with 0.001T/m

gradient error. In this 

location β=30m. The 

length of the quads is 

around 1m. The 

magnetic rigidity of 

the ESRF is 20Tm.

 The tune-shift is
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Gradient error correction

 Windings on the core of the quadrupoles or individual correction 

magnets (trim windings or quadrupoles)

 Compute tune-shift and optics function beta distortion 

 Move working point close to integer and half integer resonance

 Minimize beta wave or quadrupole resonance width with trim 

windings

 Individual powering of trim windings can provide flexibility and 

beam based alignment of BPM

 Modern methods of response matrix analysis (LOCO) can fit optics 

model to real machine and correct optics distortion
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Linear Optics from Closed Orbit
J. Safranek et al.

Modified version of LOCO with constraints on 

gradient variations (see ICFA Newsl, Dec’07)

 - beating reduced to 0.4%  rms

Quadrupole variation reduced to 2%

Results compatible with mag. meas. and calibrations 
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Example: LHC optics corrections

 At *=40cm, the bare machine has a beta-beat of more than 100%

 After global and local corrections, -beating was reduced to few %

R. Tomas et al. 2016

final corrections
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Outline

 Closed orbit distortion (steering error)

 Beam orbit stability importance

 Imperfections leading to closed orbit distortion

 Interlude: dispersion and chromatic orbit

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

 Coupling error

 Coupling errors and their effect

 Coupling correction

 Chromaticity
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4x4 Matrices

 Combine the matrices for each plane

to get a total 4x4 matrix

Uncoupled motion
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Coupling error

 Coupling errors lead to transfer of horizontal betatron motion and 

dispersion into the vertical plane

 Coupling may result from rotation of a quadrupole, so that the field 

contains a skew component

 A vertical beam offset in a sextupole has the same effect as a skew 

quadrupole. The sextupole field for the displacement of a particle δy

becomes

skew quadrupole
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Effect of coupling

 Betatron motion is coupled in the presence of skew quadrupoles

 The field is and Hill’s equations are coupled 

 Motion still linear with two new eigen-mode tunes, which are 

always split. In the case of a thin skew quad:

 Coupling coefficients represent the degree of coupling

 As motion is coupled, vertical dispersion and optics function 

distortion appears
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Linear coupling correction

 Introduce skew quadrupole correctors

 Correct globally/locally coupling coefficient (or resonance driving 

term) 

 Correct optics distortion (especially vertical dispersion)

 Move working point close to coupling resonances and repeat

 Correction especially important for flat beams

 Note that (vertical) orbit correction may be critical for reducing 

coupling
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Example: SNS coupling correction 

 Local decoupling by super period using 16 skew quadrupole 

correctors 

 Results of Qx=6.23 Qy=6.20 after a 2mrad quad roll 

 Additional 8 correctors used to compensate vertical dispersion
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Vertical dispersion

 The equation of motion for a particle with momentum p is

 For small energy deviation δ, p is related to the reference momentum

 We can write for the horizontal field (to first order in the derivatives)

 If we consider a particle following an off-momentum closed orbit

and

 Combining the above equations, we find to first order in 
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Vertical dispersion from errors

 The previous equation is similar to the equation of the closed orbit

 It is thus reasonable to generalize the relationship between the 

closed orbit and the quadrupole misalignments, to find

 Skew dipole terms assumed arise from vertical misalignments of 

quadrupoles

 Skew quadrupoles assumed to come from tilts on the quads and 

vertical misalignments of sextupoles

 All alignment errors are considered uncorrelated.
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Impact on vertical emittance

 The natural emittance in the vertical plane can be written as the 

horizontal one

 The synchrotron radiation integrals are given by 

and 

with the dispersion invariant

 Then the vertical emittance is 

or in terms of energy spread                            with

 Note that so that finally 
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Methods for coupling control

 Measurement or estimation of BPM roll errors to avoid “fake” vertical dispersion 

measurement.

 Realignment of girders / magnets to remove sources of coupling and vertical 

dispersion.

 Model based corrections: 

 Establish lattice model: multi-parameter fit to orbit response matrix 

(using LOCO or related methods) to obtain a calibrated model.

 Use calibrated model to perform correction or to minimize derived lattice parameters 

(e.g. vertical emittance) in simulation and apply to machine.

 Application to coupling control: correction of  vertical dispersion,  coupled response 

matrix, resonance drive terms using skew quads and orbit bumps, or direct 

minimization of vertical emittance in model.

 Model independent corrections: 

 empirical optimization of observable quantities related to coupling

(e.g. beam size, beam life time).

 Coupling control in operation: on-line iteration of correction
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Example: ESRF coupling correction

 Local decoupling using 16 skew quadrupole correctors and coupled 

response matrix reconstruction

 Achieved correction of below 0.25% reaching vertical emittance of 

below 4pm

R. Nagaoka, EPAC 2000
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Vertical emittance at PSI

 Vertical emittance reduced to a minimum value of 0.9±0.4pm

 Achieved by careful re-alignment campaign and different methods 

of coupling suppression using 36 skew quadrupoles (combination of 

response matrix based correction and random walk optimisation) 

M. Aiba, M. Boge, 

N. Milas, A. Streun
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Random walk optimisation

 Coupling minimization at SLS observable: vertical beam size from 

monitor

 Knobs: 24 skew quadrupoles

 Random optimization: 

trial & error (small steps) 

 Start: model based 

correction: εy = 1.3 pm

 1 hour of random

optimization  εy 0.90.4 pm

 Measured coupled response 

matrix off-diagonal terms were reduced after optimization

 Model based correction limited by model deficiencies rather than 

measurement errors.
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Coupling control in operation

 Keep vertical emittance constant during insertion device gap 
changes

 Example from DIAMOND

 Offset SQ to ALL skew quads generates dispersion wave and 
increases vert. emittance without coupling. 

 Skew quads from LOCO for low vert .emit. of ~ 3pm

 Increase vertical emit to 8 pm by increasing the offset SQ

 Use the relation between vertical emittance and SQ in a slow 
feedback loop (5 Hz)

1st March 4th March 7th March 10th March 13th March 16th March 19th March 22nd March
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Outline

 Closed orbit distortion (steering error)

 Beam orbit stability importance

 Imperfections leading to closed orbit distortion

 Interlude: dispersion and chromatic orbit

 Effect of single and multiple dipole kicks

 Closed orbit correction methods

 Optics function distortion (gradient error)

 Imperfections leading to optics distortion

 Tune-shift and beta distortion due to gradient errors

 Gradient error correction

 Coupling error

 Coupling errors and their effect

 Coupling correction

 Chromaticity
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Chromaticity

 Linear equations of motion depend on the energy (term proportional 

to dispersion)

 Chromaticity is defined as:

 Recall that the gradient is

 This leads to dependence of tunes and optics function on the 

particle’s momentum

 For a linear lattice the tune shift is:

 So the natural chromaticity is:

 Sometimes the chromaticity is quoted as
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Example: Chromaticity in SNS

 In the SNS ring, the natural chromaticity is –7

 Consider that momentum spread p/p = ±1%

 The tune-shift for off-momentum particles is

 In order to correct chromaticity introduce particles which can focus 

off-momentum particle

Sextupoles
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Chromaticity from sextupoles

 The sextupole field component in the x-plane is:

 In an area with non-zero dispersion

 Then the field is

 Sextupoles introduce an equivalent focusing correction 

 The sextupole induced chromaticity is

 The total chromaticity is the sum of the natural and sextupole 

induced chromaticity

quadrupole           dipole
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Chromaticity correction

 Introduce sextupoles in high-dispersion areas 

 Tune them to achieve desired chromaticity

 Two families are able to control horizontal and vertical 

chromaticity 

 Sextupoles introduce non-linear fields (chaotic motion)

 Sextupoles introduce tune-shift with amplitude

 Example:

 The SNS ring has natural chromaticity of –7

 Placing two sextupoles of length 0.3m in locations where β=12m, and 

the dispersion D=4m

 For getting 0 chromaticity, their strength should be 

or a gradient of 17.3 T/m2
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Two vs. four sextupole families

 Two families of sextupoles not enough for correcting off-momentum 

optics functions’ distortion and second order chromaticity

 Possible solutions:

 Place sextupoles accordingly to eliminate second order effects (difficult)

 Use more families (4 in the case of the SNS ring)

 Large optics function distortion for momentum spreads of ±0.7%,when 

using only two families of sextupoles; Correction of off-momentum 

optics beating with four families
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Problem 4
SPS: Consider a 400GeV proton synchrotron with 108 3.22m-long focusing and 
defocusing quads of 15 T/m, with a horizontal and vertical beta of 108m and 30m in 
the focusing quads, and horizontal and vertical beta of 30m and 108m for the 
defocusing ones. 
- Find the tune change for systematic gradient errors of 1% in the focusing and 0.5% 
in the defocusing quads.
- What is the chromaticity of the machine?
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Problem 5
CLIC pre-damping rings: Consider a 2.86 GeV electron storage ring with a racetrack 
shape of 389 m circumference. Each arc is composed of 17 regular “TME” cells, 
each consisting of 2 dipoles, 2 focusing and 2 defocusing quadrupoles. The beta 
functions are around x=4m (2m) and y=4.2m (9m) in the focusing (defocusing) 
quadrupoles and the normalized quadrupole gradients are 2.49/m2 (2.07/m2). The 
quadrupoles have a length of 0.28m. The natural chromaticity of the machine is 
about -19 and -23 in the horizontal and vertical plane, respectively. 
- How big is the chromaticity contribution from the arcs? 
- Where would you install sextupole magnets for correcting chromaticity?
- Can you give an estimation for the required sextupole gradient assuming the 
sextupoles have the same length as the quadrupoles?
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Problem 6
Derive an expression for the resulting magnetic field when a normal sextupole with 
field B = S/2 x2 is displaced by δx from its center position. At what type of fields 
correspond the resulting components? Do the same for an octupole with field B = 
O/3 x3. What is the leading order multi-pole field error when displacing a general 2n-
pole magnet? 

x


