JUAS 2017 - RF Exam

 $\mu = \mu_0 \mu_r$ $\mu_0 = 4\pi \cdot 10^{-7} \text{ Vs/(Am)}$ $\varepsilon = \varepsilon_0 \varepsilon_r$ $\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ As/(Vm)}$ $c_0 = 3 \cdot 10^8 \text{ m/s}$

Name:	Points:	of 20	(25 with bonus points)

Utilities: JUAS RF Course 2017 lecture script, personal notes,

pocket calculator, ruler, compass, and your brain!

(No cell- or smartphone, no iPad, laptop, or wireless devices, no text books or any other tools!!!)

Please compute and write your results clear and readable, if appropriate on a separate sheet of paper. Any unreadable parts are considered as wrong.

1. "Brick-style" Cavity

(5 points)

Design a "brick"-shaped, rectangular cavity with relative dimensions $c = 0.7 \cdot a$ and a/b = 2, operating at the fundamental mode of 500 MHz.

a) Of what type is the fundamental mode?

(½ point)

- b) What are the physical dimensions a, b and c of the cavity? (1½ points) Hint: Free-space wavelength and frequency are linked through the speed-of-light: $\lambda_0 = \frac{c_0}{f}$
- c) What is the (unloaded) Q-value of the cavity if it is made out of copper? (1 point) $(\sigma_{Cu} = 58.5 \cdot 10^6 \text{ S/m})$
- d) Determine the Q-value if the cavity is made out of stainless steel. (½ point) $(\sigma_{SS} = 1.35 \cdot 10^6 \, \text{S/m})$
- e) What are the mode types and frequencies of the next two higher order modes? (1½ points)

2. Smith chart (5 points)

a) Indicate points $P_1...P_6$ in the Smith chart, assuming a reference impedance $Z_0 = 50 \Omega$. From the Smith chart, determine the missing Z or Γ , and complete the table. (1 point) (Use the provided Smith chart)

Point no.	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	
Ζ/Ω	8		0		50 + j 50	50 - j 100	
Г		0		0.7∠-62°			

b) Draw the locus of $|\Gamma| = 0.5$ in the Smith chart.

(½ point)

c) Points P_5 and P_6 represent a complex load impedance Z_{load} . Indicate the normalized z_{load} in the Smith chart, and look up

• the reflection coefficient, (½ point)

• the (voltage) standing wave ratio, (½ point)

• the return loss (in dB), (½ point)

• the reflection loss (in dB) (½ point)

again, assuming a reference impedance of $Z_0 = 50 \Omega$.

(Hint: Use a ruler to determine $|\Gamma|$ of z_{load} , and compare it with value found at the "radially scaled parameters" Smith chart ruler at the bottom.)

d) With a simple loss-less matching circuit, a single reactive element, the complex loads represented by points P_5 and P_6 (two independent cases!) can be matched to the reference impedance of $Z_0 = 50 \Omega$.

Indicate the matching as graph in the Smith chart.

(½ point)

· Sketch the matching circuit.

(½ point)

• Evaluate the element value, assuming an operation frequency of f = 500 MHz.

(½ point)

3. S-Parameters

(2 points)

Match the ideal S-parameters in matrix form to the corresponding components.

$$S_{A} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{bmatrix} \qquad S_{B} = \begin{bmatrix} 0 & \frac{j}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{j}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & 0 & \frac{j}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{j}{\sqrt{2}} & 0 \end{bmatrix} \qquad S_{C} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \qquad S_{D} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

a) Assign the S-matrices $(S_A ... S_D)$ to the components:

(1 point)

component	dB directional coupler	transmission line, electrical length = λ /	resistive power divider	isolator
S-matrix				

b) Fill the missing dB (coupler) and λ (transmission-line) information (...).

(1 point)

4. Multiple choice

(5 points)

Tick *one* correct answer like this: **⋈**.

Tick one correct answer like this. &.

- 1. Using an electromagnetic simulation software, the mesh cells in regions with electric field concentration should be made: (½ point)
 - o smaller
 - o larger
 - o doesn't matter
- 2. A sinusoidal RF signal is measured with an oscilloscope, having and internal 50 Ω termination. The cursors displays a peak-to-peak voltage of 500 mV. What is the signal power in dBm?

(½ point)

- o -1 dBm
- o -2 dBm
- o +4 dBm
- 3. For a "E" (or "TM") mode, the following is true:

(½ point)

- o Its magnetic field has only transverse components
- o Its magnetic field has transverse and longitudinal components
- o Its electric field has only transverse components

4.	Changing the height h of a cylindrical cavity operating on the TM $_{110}$ dipole-mode will NOT					
	change:					
	0	its resonant frequency				
	0	its quality factor				
	0	its R/Q				
5.	The GS	M standard specifies a minimum sensitivity requirement of -100 dBm for the sig	nal			
	recepti	on, while the output power of the cell phone transmitter is typically in the order	of 1 W.			
	This co	rresponds to how many orders of magnitude in power?	(½ point)			
	0	5				
	0	10				
	0	13				
6.	5. A 4-port directional coupler has 10 dB coupling and 20 dB directivity. What is the relative leve					
	betwee	en the desired coupled output and the input signal?	(½ point)			
	0	-10 dB				
	0	+20 dB				
	0	-30 dB				
7.	In a RF	accelerating cavity, the transit time factor expresses:	(½ point)			
	0	The time it takes for the energy to transfer from the electric field to the magne	tic field			
	0	The time variation of the accelerating field during the bunch passage				
	0	The time it takes the bunch to travel through the cavity				
8.	Examples of TEM transmission lines are:					
	0	Waveguides operating below cut-off frequency				
	0	Coaxial cables				
	0	Resonant cavities with input and output coupler				
9. Critical coupling (impedance match at resonance) between resonator and generator occurs (½)						
	0	$Q_L = Q_{ext}$				
	0	$Q_L = Q_0/2$				
	0	$Q_L = 2 \cdot Q_0$				
10.	A netw	ork analyser is used to	(½ point)			
	0	Analyse signals in the frequency domain				
	0	To characterize the S-parameters of an RF element (DUT = device under test)				
	0	Measure and calibrate signals from the internet communication structure.				

5. Skin-Effect (3 points)

A beam pipe with circular cross-section is given. It has a diameter of 10 cm and is made out copper $(\sigma_{Cu} = 58.5 \cdot 10^6 \text{ S/m})$, with a wall thickness of 2 mm.

- a) Determine the skin depth at f = 1 GHz. Determine the real part of the impedance per meter at this frequency. (1½ points) (Hint: This is the surface resistance as defined for lossy coaxial cables.)
- b) Now assume the beam pipe is made from a stainless steel, which has a 43 times higher bulk resistivity compared to copper.

 (½ point)

 What are the skin depth and the surface resistance (= resistance per unit square) now?
- c) At which frequency (case: stainless steel) the wall thickness equals the skin depth? (1 point)

6. "Pillbox" Cavity

(5 bonus points)

Analyze a simple cylindrical "pillbox" cavity (the beam-pipe ports are neglected). The cavity is made out of copper ($\sigma_{Cu} = 58.5 \cdot 10^6$ S/m), has a dimension ratio h/a = 0.2 (a = radius, h = height), and operates at 200 MHz for the fundamental mode (TM₀₁₀ = E₀₁₀).

a) Calculate the R/Q of the cavity!

(½ point)

b) What is the is radius a of this resonator?

(½ point)

c) Determine the lumped elements R, L, and C of the equivalent parallel R-C-L circuit.

(1½ points)

- d) Now assume that this cavity is made from a stainless steel, which has a 43 times higher resistivity than copper. For the same geometrical dimensions, re-compute the resonance frequency, R/Q, and the unloaded Q-value. Which values of the parallel equivalent circuit has changed? (1½ points)
- e) The copper cavity is now scaled to a resonance frequency of 100 MHz. Indicate the scaling ratio of all linear dimensions. What is the new Q-value? (1 point)